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 2

Highlights 27 

 28 

RNA-seq data from 625 liver specimens comprising healthy controls and NAFLD 29 

patients with increasing severity were utilized for screening NAFLD biomarkers. 30 

• 31 

An unsupervised method for clustering genes based on the similarity of gene 32 

expression trajectory across all samples enhanced the discovery of novel effective 33 

non-invasive NAFLD biomarkers. 34 

• 35 

QSOX1, IL1RAP, and especially the QSOX1/IL1RAP ratio, were found to be associated 36 

with NAFLD severity. 37 

• 38 

The high sensitivity of the QSOX1/IL1RAP ratio in predicting NAFLD severity was 39 

validated with plasma proteomics quantification (AUROC = 0.95) and ELISA (AUROC = 40 

0.82) in two independent patient cohorts. 41 

 42 
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Abstract 44 

Background and Aims: Non-alcoholic fatty liver disease (NAFLD) is a progressive liver 45 

disease that ranges from simple steatosis to inflammation, fibrosis, and cirrhosis. To 46 

address the unmet need for new NAFLD biomarkers, we aimed to identify candidate 47 

biomarkers using publicly available RNA sequencing (RNA-seq) and proteomics data. 48 

Methods: An approach involving unsupervised gene clustering was performed using 49 

homogeneously processed and integrated RNA-seq data of 625 liver specimens to 50 

screen for NAFLD biomarkers, in combination with public proteomics data from 51 

healthy controls and NAFLD patients. Additionally, we validated the results in the 52 

NAFLD and healthy cohorts using enzyme-linked immunosorbent assay (ELISA) of 53 

plasma and immunohistochemical staining (IHC) of liver samples.  54 

Results: We generated a database (https://dreamapp.biomed.au.dk/NAFLD/) for 55 

exploring gene expression changes along NAFLD progression to facilitate the 56 

identification of genes and pathways involved in the disease’s progression. Through 57 

cross-analysis of the gene and protein clusters, we identified 38 genes as potential 58 

biomarkers for NAFLD severity. Up-regulation of Quiescin sulfhydryl oxidase 1 59 

(QSOX1) and down-regulation of Interleukin-1 receptor accessory protein (IL1RAP) 60 

were associated with increasing NAFLD severity in RNA-seq and proteomics data. 61 

Particularly, the QSOX1/IL1RAP ratio in plasma demonstrated effectiveness in 62 

diagnosing NAFLD, with an area under the receiver operating characteristic (AUROC) 63 

of up to 0.95 as quantified by proteomics profiling, and an AUROC of 0.82 with ELISA.  64 

Conclusions: We discovered a significant association between the levels of QSOX1 65 

and IL1RAP and NAFLD severity. Furthermore, the QSOX1/IL1RAP ratio shows 66 

promise as a non-invasive biomarker for diagnosing NAFLD and assessing its severity.  67 

 68 
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Lay Summary 70 

This study aimed to find non-invasive biomarkers for non-alcoholic fatty liver disease 71 

(NAFLD). Researchers utilized a new gene clustering method to analyze RNA-seq data 72 

from 625 liver samples. The identified biomarkers were further validated using 73 

plasma proteomics profiling, enzyme-linked immunosorbent assay (ELISA), and liver 74 

immunohistochemical staining (IHC) in three separate groups of healthy controls and 75 

NAFLD patients. The study revealed that the levels of QSOX1 were elevated while 76 

IL1RAP levels were reduced with increasing severity of NAFLD. Importantly, the ratio 77 

of QSOX1 to IL1RAP expression in plasma showed promise as a non-invasive 78 

diagnostic tool for assessing the severity of NAFLD, eliminating the reliance on liver 79 

biopsy. 80 

 81 

Keywords  82 

Non-alcoholic fatty liver disease, RNA sequencing data integration, non-invasive 83 

biomarker, quiescin sulfhydryl oxidase 1, interleukin-1 receptor accessory protein 84 
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Graphical abstract 86 

 87 

 88 
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Introduction 90 

Non-alcoholic fatty liver disease (NAFLD) is recognized as the hepatic manifestation 91 

of the metabolic syndrome, with an estimated global prevalence of around 25-32% (1, 92 

2). The severity of this liver disease ranges from Non-alcoholic Fatty Liver (NAFL) with 93 

simple steatosis to Non-alcoholic Steatohepatitis (NASH) with inflammation and 94 

fibrosis, which can progress to NASH-induced cirrhosis and increase the risk of 95 

hepatocellular carcinoma (HCC).  96 

 97 

Liver biopsy is currently the gold standard for histological diagnosis of NAFLD despite 98 

its associated side effects such as pain, bleeding, and rare mortality. To address these 99 

drawbacks and reduce costs, there is still an unmet need for novel, precise, and 100 

cost-effective imaging tools and non-invasive biomarkers (3). Moreover, non-invasive 101 

biomarkers are highly needed for replacing repeated liver biopsies when assessing 102 

liver histology during pharmacological interventions. Existing NAFLD biomarkers 103 

primarily focus on steatosis (e.g., SteatoTest™ or the lipid accumulation product), 104 

inflammation (e.g., circulating keratin 18 fragments [CK18), soluble CD163) or fibrosis 105 

(e.g., ELF, FibroTest or Pro-C3 tests) (4-8). Despite advancements in biomarker 106 

technology, development, and evaluation, an ideal biomarker for the diagnosis, 107 

prognosis, and assessment of treatment effects in NAFLD has yet to be identified.  108 

 109 

The traditional RNA-seq analysis approach, which relies on established tools such as 110 

edgeR (9), DESeq2 (10), and Cufflinks (11), primarily focuses on identifying 111 

differentially expressed genes (DEGs) through pairwise comparisons (12). However, 112 

for conditions like NAFLD, which involve a complex scoring system and a continuous 113 

range of histological variations, this approach has its limitations. NAFLD doesn't 114 

involve transitioning between distinct states but represents a dynamic progression 115 

through constant histopathological changes. Pairwise comparisons oversimplify the 116 

intricate genetic alterations that occur throughout NAFLD's development. What's 117 

required is a more advanced analytical method capable of capturing the gradual and 118 
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overlapping gene expression changes across the entire spectrum of NAFLD. Such an 119 

approach would offer a comprehensive representation of NAFLD's complexity and 120 

enhance our understanding of its progression. In recent years, advancements in 121 

technologies such as RNA sequencing (RNA-seq), single-cell analysis, and spatial 122 

transcriptomics have provided deeper insights into the molecular and cellular 123 

processes involved in NAFLD progression (13-15). Large-scale profiling efforts, 124 

combined with targeted validation approaches, have led to the discovery of potential 125 

biomarkers (16, 17). However, the majority of available RNA-seq data are derived 126 

from smaller cohorts of NAFLD patients, which limits the comprehensive 127 

understanding of NAFLD severity.  128 

 129 

In this study, modularity optimization methods were utilized to cluster genes by 130 

employing a graph-based strategy, taking into account the gene expression patterns 131 

throughout the progression of NAFLD. We propose that integrating and analyzing 132 

these datasets with the unbiased gene-based profiling strategy will provide further 133 

insights into the molecular progression of NAFLD and the identification of biomarkers 134 

associated with NAFLD severity. In the present study, we identified over 300 NAFLD 135 

biomarkers by integrating and analyzing RNA-seq data from 625 liver 136 

samples, including their NAFLD activity scores (NAS) and fibrosis scores, 137 

along with public proteomics data. We further validated these findings in two 138 

independent NAFLD cohorts, demonstrating the potential of the QSOX1/IL1RAP ratio 139 

as a non-invasive biomarker for diagnosing NAFLD and assessing its severity.  140 

 141 

Materials and methods 142 

 143 

Data Collection 144 

Genome-wide RNA-seq data of human NAFLD and associated healthy controls were 145 

collected from the NCBI GEO (https://www.ncbi.nlm.nih.gov/gds, access date until 146 

May 2022). Only datasets that provided detailed NAS and fibrosis scores were 147 

included for further investigation, including seven datasets (GSE105127(18), 148 
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GSE107650(19), GSE126848(20), GSE130970(21), GSE135251(22, 23), GSE162694(24), 149 

and GSE167523(25). (Supplementary Table 1) 150 

  151 

Data Normalization 152 

The SRA-formatted data were converted into FASTQ format using ‘SraToolkit’ 153 

(sratoolkit.2.8.2-1-centos_linux64) (https://github.com/ncbi/sra-tools). Sequencing 154 

reads were aligned to the hg19 UCSC RNA sequences Genome Reference Consortium 155 

Human Build 37 (GRCh37) using ‘bowtie2’ (bowtie2-2.2.5) 156 

(https://rnnh.github.io/bioinfo-notebook/docs/bowtie2.html). Only protein-coding 157 

transcripts were considered, and Transcript Per Million (TPM) values were obtained 158 

by transforming the mapped transcript reads using ‘RSEM’ (rsem-1.2.12) 159 

(https://github.com/deweylab/RSEM). Then, TPM values were then subjected to 160 

Trimmed Mean of M-values (TMM) normalization across all samples using 161 

‘metaseqR ’ (metaseqR 1.12.2) (26). The data from various sources involved in this 162 

study were integrated and log1p-transformed, followed by batch correction using the 163 

‘removeBatchEffect’ function in the R package ‘limma’ (limma 3.54.2) 164 

(https://kasperdanielhansen.github.io/genbioconductor/html/limma.html) (27). 165 

Subsequently, the data were expanded (10^x) for further analysis (Figure 1A). 166 

 167 

RNA-seq Data Analysis and Database Construction 168 

After normalization and batch correction, the RNA-seq data were subjected to 169 

Principal Components Analysis (PCA) and unsupervised clustering using the R 170 

package ‘Seurat’ (Seurat-4.3.0) 171 

(https://satijalab.org/seurat/articles/get_started.html). We utilized the 172 

"LogNormalize" method for global-scaling normalization, which normalized the 173 

feature expression measurements across different samples for each gene by the total 174 

expression. The normalized values were multiplied by a scale factor (default: 175 

10,000) and log1p-transformed. Subsequently, scaling was applied to the identified 176 

variable features (default: 2,000). PCA was then performed on the scaled data, with a 177 

default setting of computing and storing 50 Principal Components (PCs). To cluster 178 
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the genes, we employed modularity optimization techniques using a graph-based 179 

clustering approach. The dimensions of reduction were set to 1:20, and 180 

the resolution parameter was set to 2.3 (28).  181 

 182 

To show the gene expression variation during the development of NAFLD associated 183 

with both NAS and fibrosis scores, we generated an RNA-seq database using 184 

'ShinyCell' (https://github.com/SGDDNB/ShinyCell). This database was deployed at 185 

https://dreamapp.biomed.au.dk/NAFLD/.   186 

 187 

Proteomics Data Collection and Analysis 188 

The proteomics cohort dataset (PXD011839) includes 10 healthy controls, 10 NAFLD 189 

patients with normal glucose tolerance (NAFLD_ngt), 10 NAFLD patients with type 2 190 

diabetes (NAFLD_T2D), and 10 NAFLD patients with cirrhosis (29). We performed the 191 

statistical analysis using R-4.3.0 on the dataset (EV1, tab4) 192 

(https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6396370/bin/MSB-15-e8793-s003.193 

xlsx). The NAFLD_ngt and NAFLD_T2D groups were merged into a single NAFLD group, 194 

resulting in three groups: healthy controls, NAFLD, and cirrhosis.  195 

 196 

Similar to RNA-seq analysis, we used ‘Seurat’ (Seurat-4.3.0) and employed the 197 

"LogNormalize" method for global-scaling normalization. This method normalized 198 

the feature expression measurements across different samples for each protein by 199 

the total expression. The normalized values were multiplied by a scale factor (default: 200 

10,000) and log1p-transformed. Subsequently, scaling was applied to the identified 201 

variable features (default: 2,000). PCA was performed on the scaled data, with a total 202 

of 39 Principal Components (PCs) computed and stored. Additionally, we calculated 203 

the log fold-change of the average expression between two groups (avg_log2FC) by 204 

comparing the health and NAFLD groups, as well as the NAFLD and cirrhosis groups. 205 

By setting avg_log2FC > 0, we selected up- and down-regulated proteins associated 206 

with increasing severity of NAFLD.  207 

 208 
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Validation of QSOX1 and IL1RAP as Biomarkers in NAFLD 209 

Our objective was to investigate whether QSOX1 and IL1RAP gene expression levels, 210 

as well as their encoded proteins, could predict the histological severity of NAFLD. To 211 

address this question, we examined the plasma concentrations of QSOX1 and IL1RAP 212 

in the proteomics data of healthy and NAFLD cohorts. Additionally, we conducted 213 

enzyme-linked immunosorbent assay (ELISA) tests for plasma QSOX1/IL1RAP in a 214 

cohort comprising healthy subjects and NAFLD patients recruited at Shenzhen 215 

Traditional Chinese Medicine Hospital, China (SZTCMH).   216 

 217 

Human Samples 218 

A total of 28 ultrasound-proven adult NAFLD patients, including NAFLD_ngt and 219 

NAFLD_T2D, and 14 healthy controls were enrolled from SZTCMH. Other diagnoses 220 

and etiologies, such as excessive alcohol consumption, viral hepatitis, autoimmune 221 

liver disease, and the use of steatogenic compounds, were excluded. Archived 222 

plasma samples were collected between October and December 2022. Informed 223 

consent was obtained from the healthy subjects and NAFLD patients, following the 224 

approved clinical protocols of the Ethical Committee of SZTCMH. Clinical information, 225 

including body mass index (BMI) and standard biochemistry (liver, kidney, 226 

hematology) with metabolic profiling (glucose, insulin, lipids), was collected. 227 

Fibroscan with controlled attenuation parameter (CAP) values was performed to 228 

assess fibrosis and steatosis. Clinical information for the healthy controls and NAFLD 229 

patients can be found in Supplementary Table 5. 230 

 231 

For immunohistochemical staining (IHC), 12 fixed liver tissues were collected from 232 

archived histological samples at SZTCMH between 2014 and 2023. These samples 233 

were scored based on the NAS score (N0 to N8) and fibrosis score (F0 to F4) by two 234 

pathologists (MMS and XWY). Six samples were from mild NAFLD patients (N0-4, 235 

F0-2), and six were from severe NAFLD patients (N5-8, F3-4). The clinical study was 236 

approved by the Ethical Committee of SZTCMH, and the approved clinical protocols 237 

adhere to the Helsinki Declaration (No. K2022-174-01). 238 
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 239 

ELISA 240 

Blind ELISA tests were conducted on the collected plasma samples. Randomly 241 

assigned sample identifiers and positions were used to ensure blindness to the 242 

clinical information and NAFLD stages. The levels of QSOX1 and IL1RAP were 243 

measured using QSOX1 ELISA Kits (Catalog No. YJ145587, Lot No. 12/2022 from 244 

Enzyme-linked Biotechnology, Shanghai, China) and IL1RAP ELISA Kits (Catalog No. 245 

YJ130558, Lot No. 12/2022 from Enzyme-linked Biotechnology, Shanghai, China), 246 

respectively. The measurements followed the manufacturer's instructions and the 247 

absorbance values were measured at 450nm. To ensure the reliability of the ELISA 248 

Kits, a pre-experiment was conducted three times before the formal experiment. 249 

 250 

Immunohistochemisgtry Assay  251 

We examined the association of QSOX1 and IL1RAP with human NAFLD severity by 252 

performing IHC on formalin-fixed and paraffin-embedded liver sections from 6 mild 253 

NAFLD patients and 6 severe NAFLD patients. The 3 μm-thick paraffin sections were 254 

deparaffinized and rehydrated with distilled water. Antigen retrieval was carried out 255 

using pH 9.0 EDTA buffer, followed by 20 minutes of boiling and washing with 1X PBS. 256 

Subsequently, the slides were blocked with 1% bovine serum albumin in 1X PBS for 257 

15 minutes and then incubated overnight at 4℃ with QSOX1 (Rabbit anti-human, 258 

Catalog No. Ab235444, Lot No. GR3386311-2 from Abcam) or IL1RAP (Rabbit 259 

anti-human, Catalog No.35605, Lot No. 4926 from Sabbiotech) antibodies at a 260 

concentration of 20 μg/ml. The following day, the slides were washed with 1X PBS 261 

and incubated with Goat anti-rabbit IgG H&L (Catalog No. Ab205718, Lot No. 262 

ab205718 from Abcam) for 15 minutes at room temperature, followed by another 263 

wash with 1X PBS. The images were captured using a light microscope and 264 

3DHISTECH digital scanner (https://www.3dhistech.com/).  265 

 266 

The IHC results were analyzed using the software tool ‘ImagineJ (Fiji)’. To prevent 267 
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potential bias, we randomly selected five locations of the same size from each 268 

sample at 20x magnification using 3DHISTECH CaseViewer_2.4 269 

(https://www.3dhistech.com/solutions/caseviewer/). Using ‘ImagineJ’, we applied 270 

the "Colour Deconvolution" tool with vectors=[H DAB]; followed by selecting the 271 

Colour_2 pictures and running "8-bit". Standard thresholds were used (QSOX1: 272 

setThreshold (60, 230), IL1RAP: setThreshold (94, 214)) (30, 31). The average 273 

integrated density from the five sites was calculated and used as the integrated 274 

density value for each sample, which was then subjected to statistical analysis. 275 

 276 

Statistical analysis 277 

The significance for all statistical tests was two-sided, with P < 0.05. All data analysis 278 

was presented in the plots using R-4.3.0, and MedCalc was used to calculate the 279 

AUROC, sensitivity, specificity, optimal cutoff value, and sample size.  280 
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Results 281 

Overview of RNA-seq data and NAFLD patient cohorts 282 

After applying stringent filtering criteria based on the availability of histological NAS 283 

and fibrosis scores, five datasets including GSE115193 (32), GSE134422 (33), 284 

GSE135448 (34), GSE160016 (35), and GSE164441 (36) were excluded from the 285 

analysis, while seven datasets (GSE105127 (18), GSE107650 (19), GSE126848 (20), 286 

GSE130970 (21), GSE135251 (22, 23), GSE162694 (24), and GSE167523 (25)) were 287 

included. These datasets collectively comprise 81 healthy controls (including healthy 288 

obsese individuals) (N0F0) and 544 NAFLD patients. The severity of NAFLD patients 289 

was classified based on the NAS score (ranging from N1 to N8) and the fibrosis score 290 

(ranging from F0 to F4) using the scoring systems proposed by Brunt (37) and Kleiner 291 

(38), respectively (Table 1, Supplementary Table 1). A positive correlation was 292 

observed between NAS and fibrosis scores (Pearson R = 0.64, P = 4.94E-74, Table 1), 293 

indicating an association with NAFLD severity.  294 

 295 

Normalization and Integration of RNA-seq Data 296 

To address the issue of batch effects resulting from differences in sequencing 297 

technology and studies, we processed the integrated data as depicted in Figure 1A. 298 

Genes with low expression were filtered out, resulting in a total of 17,946 299 

protein-coding genes. Principal component analysis (PCA) demonstrated that 300 

normalization effectively eliminated noticeable batch effects (Figure 1B). Moreover, 301 

neither the NAS nor fibrosis scores appeared to be the main factors contributing to 302 

sample separation (Figure 1D, E). Instead, the normalized RNA abundance (nCount) 303 

in each sample emerged as the key component influencing transcriptome profiles 304 

(Figure 1C).  305 

  306 

Unsupervised Gene Clustering Identifies Clusters of Genes Associated with NAFLD 307 

Severity.   308 

To identify genes associated with NAFLD severity, we utilized a previously developed 309 
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unsupervised gene clustering method based on the similarity of gene expression 310 

patterns across each sample (39). We employed gene clustering, grouping genes 311 

according to their expression patterns during the progression of NAFLD. By setting a 312 

resolution of 2.3, we identified a total of 37 gene clusters (Supplementary Figure S1). 313 

Notably, cluster 4, consisting of 1021 genes, consistently exhibited increased 314 

expression with higher NAS and fibrosis scores (Figure 2A, Supplementary Figure 315 

S2A). Conversely, cluster 14, comprising 643 genes, showed decreased expression 316 

with increasing NAS and fibrosis scores (Figure 2B, Supplementary Figure S2B). As 317 

illustrated in figures (Figure 2A, B, Supplementary Figure S2A, B, C, D), this approach 318 

efficiently clustered genes into distinct groups based on their expression patterns 319 

across NAFLD severity stages. It offers a more structured depiction of gene 320 

expression variations, enabling a deeper understanding of NAFLD's molecular 321 

pathogenesis. Through visualizing and categorizing these gene expression changes, 322 

we can acquire a more comprehensive insight into the underlying mechanisms and 323 

factors that propel NAFLD progression. 324 

 325 

To explore the biological functions of these gene clusters, we performed Gene 326 

Ontology (GO) analysis using the R package ‘ClusterProfiler’ (ClusterProfiler-4.8.0). 327 

Specifically, we focused on cluster 4, which consisted of up-regulated genes. The GO 328 

analysis revealed significant enrichment of genes involved in the fibrosis-related 329 

process, such as extracellular matrix (ECM) organization (p.adjust = 9.77E-34), 330 

extracellular structure organization (p.adjust = 9.77E-34), external encapsulating 331 

structure organization (p.adjust = 1.09E-33), and cell-substrate adhesion (p.adjust = 332 

3.35E-17). Notably, the expression of multiple genes involved in the ECM processes, 333 

such as COL5A3, FBLN5, SPINT2, COL1A1, COL1A2, COL3A1, COL4A1, COL4A4, 334 

COL12A1, COL15A1, and COL16A1, showed a gradual up-regulation during the 335 

progression of NAFLD (Figure 2A, Supplementary Figure S3).  336 

 337 

In contrast, cluster 14, which displayed a reverse correlation with NAS and fibrosis 338 

scores, was significantly enriched in metabolic processes, indicating an association 339 
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between NAFLD progression and attenuated liver metabolism. The down-regulated 340 

genes in this cluster were particularly enriched in processes such as organic acid 341 

catabolic process (p.adjust = 2.57E-22), carboxylic acid catabolic process (p.adjust = 342 

2.57E-22), small molecule catabolic process (p.adjust = 5.28E-22), alpha-amino acid 343 

metabolic process (p.adjust = 6.03E-20), fatty acid metabolic process (p.adjust = 344 

2.60E-10), and alcohol metabolic process (p.adjust = 1.35E-09). Notably, genes 345 

encoding enzymes of the Cytochrome P450 superfamily, including CYP1A2, CYP2C19, 346 

CYP2J2, CYP2E1, CYP4A11, CYP4A22, CYP4F11, CYP2C8, and CYP3A4, were 347 

down-regulated with increasing NAFLD severity (Figure 2B, Supplementary Figure 348 

S4). For a comprehensive list of all enriched GO terms for genes in cluster 4 and 14, 349 

please refer to Supplementary Table 2.  350 

 351 

In addition, we developed a NAFLD gene expression database (NAFLD-DB) to 352 

facilitate the exploration and comparison of all identified protein-coding genes based 353 

on NAFLD severity. The NAFLD-DB (https://dreamapp.biomed.au.dk/NAFLD/) was 354 

constructed using the ShinyCell framework (40), which was specifically designed for 355 

convenient exploration and sharing of single-cell transcriptome data.   356 

 357 

Identification of Candidate Diagnostic Biomarkers   358 

We employed an additional complementary strategy to further refine our list of 359 

candidate genes. In this approach, we first analyzed the plasma protein levels from a 360 

NAFLD cohort in a proteomics dataset (PXD011839) (29). We selected proteins that 361 

showed positive correlations with increasing NAFLD severity (avg_log2FC > 0) and 362 

proteins that showed negative correlations. As a result, we identified 148 363 

up-regulated proteins and 114 down-regulated proteins associated with increasing 364 

NAFLD severity (Figure 2C, D).  365 

 366 

The secretome, which consists of secreted proteins, has emerged as a valuable 367 

resource for disease diagnostics (41-43). In our study, we aim to identify potential 368 

diagnostic markers among the candidate genes, by comparing our gene clusters with 369 
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the secretome database from the Human Protein Atlas (44). This cross-analysis 370 

revealed a total of 349 genes encoding secreted proteins, with 249 genes showing 371 

up-regulation and 100 genes showing down-regulation (Figure 2E). Notably, our 372 

approach successfully identified a comprehensive list of previously known NAFLD 373 

diagnostic and prognostic markers, including ADAMTSL2 (45), AEBP1 (46), and BGN 374 

(47) (Supplementary Table 3), further validating the effectiveness of our approach.  375 

 376 

Next, we intersected the protein-encoding genes of these proteins with the 377 

secretome genes and the candidate genes generated from our RNA-seq analysis. 378 

Through this cross-comparison, we identified 16 up-regulated secreting genes (A2M, 379 

C7, COL6A3, COLEC11, ENPP2, FBLN1, FBN1, FCGBP, IGFBP6, LCN2, LUM, MMP2, 380 

PAPLN, PTGDS, QSOX1, VWF) and 22 down-regulated secreting genes (AZGP1, C1RL, 381 

C4BPA, C6, C8B, CFHR3, CNDP1, F2, GC, HP, HPR, IL1RAP, ITIH1, ITIH2, ITIH4, KLKB1, 382 

PON3, SERPINA10, SERPINC1, SERPING1, SMPDL3A, TTR) associated with increasing 383 

NAFLD severity in both the RNA-seq and proteomics data (Supplementary Figure S5).  384 

 385 

QSOX1 and IL1RAP are promising biomarkers for NAFLD severity 386 

To demonstrate the applicability of our NAFLD-DB and validate the association of 387 

differential gene expression with increasing NAFLD severity, we selected two 388 

representative genes, QSOX1 and IL1RAP, which showed positive and negative 389 

correlations with increasing NAFLD severity, and their roles as biomarkers were 390 

under explored as compared to other NAFLD biomarkers (Supplementary Figure S5). 391 

We examined their expression levels in comparison to patients with a NAS or fibrosis 392 

score of 0 (N0 or F0). The expression of QSOX1 was significantly correlated with the 393 

severity of NAFLD compared to N0 or F0 patients: N1-4 (p = 0.003), N5-8 (p = 394 

1.9E-10), F1-2 (p = 0.001), F3-4 (p = 6.5E-8) (Figure 3A, B). On the other hand, IL1RAP 395 

expression was significantly lower in patients with increased NAFLD severity 396 

compared to N0 or F0: N1-4 (p = 1E-5), N5-8 (p = 4.7E-10), F1-2 (p = 0.00012), F3-4 (p 397 

= 0.00013) (Figure 3C, D).  398 

 399 
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Since QSOX1 and IL1RAP exhibited opposite correlations with NAFLD severity, we 400 

further explored whether the ratio of QSOX1/IL1RAP could better distinguish 401 

between patient groups. Our results showed that compared to N0 or F0 patients, the 402 

ratio of QSOX1 to IL1RAP mRNA levels showed even greater separation: N1-4 (p = 403 

7.6E-8), N5-8 (5.9E-16), F1-2 (4.6E-6), F3-4 (6.8E-8) (Figure 3E, F). These findings 404 

suggest that the QSOX1/IL1RAP ratio has the potential as a biomarker for diagnosing 405 

NAFLD severity.  406 

 407 

Validation of Plasma QSOX1/IL1RAP Levels as Biomarkers for NAFLD Severity with 408 

NAFLD Proteomics Cohort 409 

To further validate the potential of QSOX1 and IL1RAP as biomarkers for NAFLD 410 

severity, we analyzed the plasma levels of QSOX1 and IL1RAP in a NAFLD proteomics 411 

cohort (PXD011839) previously conducted by Niu L and colleagues (29). Consistent 412 

with our liver RNA profiling results in livers, the analysis of plasma proteomics data 413 

from this independent NAFLD cohort showed a significant increase in plasma QSOX1 414 

levels in patients with NAFLD (Wilcoxon rank sum test, p = 0.021) and cirrhosis (p = 415 

0.049) compared to healthy controls (Figure 4A). Conversely, IL1RAP levels were 416 

significantly reduced in patients with NAFLD (p = 5.8E-5) and cirrhosis (p = 0.0011) 417 

(Figure 4B). Moreover, when considering the combined marker of plasma 418 

QSOX1/IL1RAP ratio, it demonstrated even greater significance in distinguishing 419 

NAFLD (p = 9.3E-6) and cirrhosis (p = 0.00013) patients from the control group, 420 

compared to using QSOX1 or IL1RAP alone (Figure 4C).  421 

 422 

To access the diagnostic sensitivity and specificity of QSOX1, IL1RAP, and their ratio 423 

for NAFLD severity, we conducted ROC curve analysis using the 'MedCalc' tool (30). 424 

The sample sizes for each comparison were evaluated and are listed in 425 

Supplementary Table 4. The AUROC of the QSOX1/IL1RAP ratio for distinguishing 426 

NAFLD patients from healthy controls was 0.95, with a cutoff value of 1.12. The 427 

sensitivity was determined to be 90%, and the specificity was 100%. Notably, the 428 

efficacy of the QSOX1/IL1RAP ratio was superior to that of IL1RAP alone 429 
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(AUROC=0.92) or QSOX1 alone (not significant). Similarly, when assessing the 430 

differentiation between cirrhosis patients and healthy controls, the AUROC of the 431 

QSOX1/IL1RAP ratio was 0.96, with a cutoff value of 1.12. The sensitivity was 90%, 432 

and the specificity was 100%.  433 

 434 

These results indicate that the QSOX1/IL1RAP ratio holds promise as a highly 435 

effective biomarker for diagnosing NAFLD severity, surpassing the individual 436 

biomarkers alone, and maintaining better sensitivity and specificity in distinguishing 437 

NAFLD patients and cirrhosis patients from healthy individuals.  438 

 439 

Validation of QSOX1 and IL1RAP as biomarkers for NAFLD in another patient cohort 440 

To further validate the utility of QSOX1 and IL1RAP as biomarkers for NAFLD, we 441 

conducted a validation study in healthy controls and NAFLD patients recruited from 442 

the Department of Liver Disease of Shenzhen Traditional Chinese Medicine Hospital. 443 

Plasma samples were collected from 14 healthy subjects and 28 newly diagnosed 444 

NAFLD patients. Clinical information for the healthy controls and NAFLD patients can 445 

be found in Supplementary Table 5.  446 

 447 

We measured plasma levels of QSOX1 and IL1RAP using an enzyme-linked 448 

immunosorbent assay (ELISA). Consistent with our previous findings, plasma levels of 449 

QSOX1 (Wilcoxon rank sum test, p = 0.043), IL1RAP (p = 0.035), and the 450 

QSOX1/IL1RAP ratio (p = 0.00061) were significantly different between NAFLD 451 

patients and controls (Figure 4D, E, F).  452 

 453 

To assess the diagnostic value of QSOX1 and IL1RAP as non-invasive biomarkers for 454 

NAFLD by ELISA, we calculated the AUROC of the QSOX1/IL1RAP ratio in the ELISA 455 

test to distinguish NAFLD patients from healthy controls. The QSOX1/IL1RAP ratio 456 

exhibited an AUROC of 0.82. Using a cutoff of 0.05, the sensitivity was 93% and the 457 

specificity was 57%. In comparison, the AUROC of QSOX1/IL1RAP ratio quantified by 458 

ELISA showed less efficacy in distinguishing NAFLD patients from healthy controls 459 
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(Supplementary Table 4), which may be attributed to the sensitivity of protein 460 

quantification methods and small sample size.  461 

 462 

To further validate the association between QSOX1 and IL1RAP protein levels and 463 

NAFLD severity, we assessed their levels in liver biopsies from mild and severe NAFLD 464 

patients using IHC. Our results consistently demonstrated a significant correlation 465 

between QSOX1 and IL1RAP levels and NAFLD severity (Figure 5A). Quantification of 466 

QSOX1 and IL1RAP levels based on IHC confirmed that the QSOX1/IL1RAP ratio (p = 467 

0.027) could distinguish the severe NAFLD group (n=6; NAS 5-8, fibrosis score 3-4) 468 

from the mild NAFLD group (n=6; NAS 0-4, Fibrosis score 0-2) (Figure 5B, C). 469 

Collectively, these findings suggest that the QSOX1/IL1RAP ratio holds promise as an 470 

effective biomarker for the early diagnosis and prediction of NAFLD severity. 471 
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Discussion 472 

This study is the first to integrate publicly available RNA-seq datasets from over 600 473 

NAFLD patients with varying stages of disease severity, combined with proteomics 474 

data analysis of publicly available datasets. The key findings suggest that the 475 

QSOX1/IL1RAP, and particularly the QSOX1/IL1RAP ratio hold promise as potential 476 

biomarkers for NAFLD severity assessment. These results align with recent research 477 

highlighting the importance of different transcriptional profiles specific to NAS and 478 

fibrosis scores, offering valuable insights into the molecular mechanisms driving 479 

disease progression from simple steatosis to inflammation and fibrosis (21, 24).  480 

 481 

The Advantages of Utilizing Integrated RNA-seq Data for Investigating NAFLD 482 

Biomarkers 483 

Despite the growing availability of RNA-seq data in this field, many original studies 484 

have been limited by small sample sizes and biased sample distribution, making it 485 

challenging to accurately decipher transcriptional differences across various stages of 486 

NAFLD(18, 20-22, 24). Several studies have attempted to identify diagnostic 487 

biomarkers and potential drug targets. For instance, Brosch et al. conducted a 488 

positional analysis of transcriptomes across three micro-dissected liver zones from 19 489 

NAFLD patients (18). Suppli et al. demonstrated that immunohistochemical markers 490 

offer greater objectivity in distinguishing hepatocyte injury between NASH and NAFL 491 

(20). In the pursuit of diagnostic genes and novel drug targets, Hoang et al. studied 6 492 

histologically normal and 72 NAFLD patients, while Pantano et al. studied 31 493 

histologically normal and 112 NAFLD patients. These studies revealed that specific 494 

cells proportion and candidate gene signatures can accurately predict fibrosis stage 495 

and disease progression (21, 24). Likewise, Govaere et al. observed the correlation 496 

between gene expression and histology in a cohort of 10 controls and 206 NAFLD 497 

patients (22). In contrast to the studies above that identified sets of potential 498 

biomarker genes, Kozumi et al. validated thrombospondin 2 (THBS2) as a noninvasive 499 

biomarker for NAFLD. They confirmed its potential in identifying the disease stages 500 
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among 98 NAFLD patients, and the serum levels of its encoded protein TSP-2, 501 

measured by ELISA, showed an AUROC of 0.78 in the diagnosing of NASH among 213 502 

patients with biopsy-proven NAFLD (25). The major challenge of combining and 503 

analyzing these diverse datasets lies in achieving homogeneous processing, which 504 

requires substantial time and computational resources (48, 49). To generate more 505 

robust and compelling results, we employed unbiased integration of comprehensive 506 

NAFLD data to profile the liver transcriptome across a broad spectrum of NAFLD 507 

severity in our study, incorporating all the aforementioned samples.  508 

 509 

The Superiority of QSOX1 and IL1RAP as Potential Biomarkers of NAFLD  510 

The high prevalence and associated risks of NAFLD have driven global efforts to 511 

identify improved diagnostic biomarkers. However, most existing biomarkers are 512 

primarily suited for evaluating fibrosis (3, 50-52). The Fibrosis-4 (FIB-4) test 513 

commonly used in clinical practice, is sub-optimal for screening purposes, as it carries 514 

the risks of both overdiagnosis and false negatives, particularly in patients at risk of 515 

chronic liver disease (8). Although the patented ELF™ test was highly recommended 516 

for ruling out advanced fibrosis, it comes with higher costs. Several steatosis scores, 517 

such as the SteatoTest™ and the fatty liver index (FLI), have been proposed for 518 

steatosis detection, but they do not provide substantial additional information 519 

beyond routine clinical, laboratory, and imaging examinations conducted in 520 

patients suspected of having NAFLD(8). Non-coding RNAs (ncRNAs), which exhibit 521 

aberrant expression associated with NAFLD, have emerged as potential biomarkers 522 

for NAFLD pathology, and circulating ncRNAs including miR-122 and lncRNAs are 523 

proposed as potential biomarkers for NAFLD severity and progression (53-59). 524 

Despite the development of new biomarkers, there is still uncertainty surrounding 525 

their predictive value, underscoring the urgent need to develop novel, cost-effective, 526 

and efficient biomarkers with high sensitivity and specificity for NAFLD prediction 527 

and monitoring (4, 60). 528 

 529 

The approach by Hoang et al. (21) centered on identifying genes with diverse 530 
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expressions associated with NAFLD severity, inspired us to develop our gene 531 

clustering method. Our approach surpasses the constraints of conventional RNA-seq 532 

data analysis, which predominantly relies on pairwise comparisons. Instead, it 533 

classifies genes according to their dynamic expression patterns, enabling a more 534 

comprehensive and dynamic perspective of molecular alterations as NAFLD 535 

progresses. This method has the potential to map NAFLD severity and progression 536 

solely through gene expressions, thus avoiding invasive procedures like liver biopsies. 537 

Moreover, the gene-based scoring system can forecast NAFLD progression, 538 

facilitating early interventions for patients at risk of advancing to severe disease 539 

stages. 540 

 541 

Previous studies have explored the relationship between QSOX1, IL1RAP, and NAFLD 542 

or steatosis(16, 61). QSOX1 has been suggested as a potential diagnostic biomarker 543 

for NAFLD, playing a significant role in lipid metabolism as an enzyme expressed in 544 

various tissues, particularly in quiescent fibroblasts (18, 62, 63). IL1RAP is localized in 545 

vesicles and cytosol, and it is secreted into the bloodstream. Notably, IL1RAP 546 

expression at the RNA level was specifically detected in the liver and hepatocytes 547 

(44). Hence, the combination of QSOX1 and IL1RAP as secretome genes and proteins 548 

was selected as a potential biomarker combination. 549 

   550 

The potential of QSOX1, IL1RAP, and their ratio as biomarkers for NAFLD was 551 

demonstrated through the analysis of public RNA-seq and proteomics data, ELISA 552 

tests conducted on patients’ plasma, and IHC performed on fixed liver slides. These 553 

findings suggest that QSOX1, IL1RAP, and their ratio hold promise as effective 554 

biomarkers for NAFLD. Notably, the higher AUROC values for NAFLD diagnosis 555 

achieved by QSOX1, IL1RAP, and their ratio highlight their efficacy as NAFLD 556 

biomarkers. 557 

 558 

Limitation and Future Prospects. 559 

The current study possesses several strengths, including the integration and 560 
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processing of RNA-seq data from over 600 NAFLD patients with varying degrees of 561 

NAFLD severity, as well as validation using proteomics data and samples from NAFLD 562 

patients and controls. Furthermore, the well-established database with a 563 

user-friendly interface could benefit the research community in exploring 564 

differentially expressed genes in NAFLD at various stages. However, there are also 565 

limitations to consider. For instance, some samples in the GSE126848 and GSE167523 566 

datasets lacked individual NAS and fibrosis scores. To address this issue, 567 

we standardized scores based on their categories in the original articles, and the 568 

impact on the results was deemed negligible due to the provision of general stages 569 

and unsupervised gene clustering. Machine learning, an essential tool for biomarker 570 

validation and sample classification validation, should be employed to train large 571 

cohorts of biopsy-proven NAFLD patients and healthy controls. However, this would 572 

require an extended recruiting period(64) to determine the sensitivity and specificity 573 

of the QSOX1/IL1RAP ratio for NAFLD diagnosis and staging.  574 

 575 

Although newer technologies such as single-cell RNA sequencing (scRNA-seq) and 576 

spatial sequencing have gained popularity, RNA-seq still serves as a valuable tool in 577 

uncovering the pathogenesis of NAFLD (17). Computational analysis limitations make 578 

it impractical for large cohort research, and single-cell suspension processing may 579 

affect cell abundance and cell type representation, particularly in hepatic ballooning 580 

cells in NAFLD (65). Single-nuclei RNA sequencing (snRNA-seq) captures cell 581 

frequency more accurately than scRNA-seq but captures lower gene expression. 582 

Spatial transcriptomics and proteomics have limitations for discovering invasive 583 

biomarkers of NAFLD as they focus on small sampling areas (15). The combination of 584 

all these biological tools holds potential for future research. 585 

 586 

In conclusion, through a novel approach of unsupervised gene clustering performed 587 

on integrated RNA-seq data, we have discovered a significant association between 588 

QSOX1 and IL1RAP levels and NAFLD severity, with their ratio showing potential as a 589 

non-invasive biomarker for diagnosing and assessing the severity of NAFLD. 590 
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Validation of our plasma-level findings in larger cohorts of liver biopsies is required, 591 

but it holds promise as a new tool to diagnose NAFLD severity and reduce the need 592 

for liver biopsies. Our approach may lead to the discovery of more NAFLD biomarkers, 593 

and the ratios of other up-regulated and down-regulated genes associated with 594 

increasing NAFLD severity also have the potential to be verified as potential 595 

biomarkers. 596 

 597 
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Figure Legend 799 

 800 

Figure 1. RNA sequencing data processing, integration, and analysis 801 

A. Illustration of data processing.  802 

B. Principal component analysis (PCA) based on the origin of datasets.  803 

C. PCA based on normalized RNA abundance (nCount).  804 

D. PCA based on NAS score.  805 

E. PCA based on fibrosis scores.  806 

 807 

 808 

Figure 2. Integrative transcriptome and proteomics analysis to identify NAFLD 809 

biomarkers  810 

A. Heatmap presentation of 1021 up-regulated genes in cluster 4 associated with 811 

increasing NAS scores.  812 

B. Heatmap presentation of 643 down-regulated genes in cluster 14 associated with 813 

increasing NAS scores. 814 

C. Protein cluster of 148 up-regulated proteins associated with increasing NAFLD 815 

severity in PXD011839.  816 

D. Protein cluster of 114 down-regulated proteins associated with increasing NAFLD 817 

severity in PXD011839.  818 

E. (UP) Venn diagram showing 16 overlapping genes between up-regulated genes 819 

identified by RNA-seq, up-regulated proteins in the plasma, and secreting proteins. 820 

(DOWN) Venn diagram showing 22 overlapping genes between down-regulated 821 

genes identified by RNA-seq, down-regulated proteins in the plasma, and secreting 822 

proteins.  823 

 824 

Figure 3. Relationship between QSOX1/IL1RAP and NAS/fibrosis scores in 825 

integrative RNA-seq data of the human liver.  826 

A. Box plot of QSOX1 gene expressions grouped by NAS scores (N0, N1-4, N5-8). 827 

B. Box plot of QSOX1 gene expressions grouped by fibrosis stages (F0, F1-2, F3-4). 828 

C. Box plot of IL1RAP gene expressions grouped by NAS scores (N0, N1-4, N5-8). 829 

D. Box plot of IL1RAP gene expressions grouped by fibrosis stages (F0, F1-2, F3-4). 830 

E. Box plot of QSOX1/IL1RAP gene expression ratio grouped by NAS scores (N0, N1-4, 831 

N5-8). 832 

F. Box plot of QSOX1/ IL1RAP gene expression ratio grouped by fibrosis stages (F0, 833 

F1-2, F3-4). 834 

Statistical testing was performed using the Wilcoxon rank sum test, with p-values 835 

shown in the plot. 836 

 837 

Figure 4. Comparison of plasma protein QSOX1/IL1RAP between healthy 838 

individuals and NAFLD at various stages.  839 

A-B. Box plots of plasma QSOX1 (A) and IL1RAP (B) protein levels in healthy 840 

individuals, NAFLD patients, and cirrhosis patients quantified by mass spectrometry 841 

in the NAFLD proteomics cohort.  842 
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C. Box plots of plasma QSOX1 and IL1RAP protein ratios in healthy controls, NAFLD 843 

patients, and cirrhosis patients quantified by mass spectrometry in the NAFLD 844 

proteomics cohort.  845 

D-E. Box plots of plasma QSOX1 (D) and IL1RAP (E) protein levels in healthy controls 846 

and NAFLD groups (pg/ml) measured by ELISA.  847 

F. Box plot of plasma QSOX1 and IL1RAP protein ratio.  848 

Statistical testing was performed using the Wilcoxon rank sum test, with p-values 849 

shown in the plot. 850 

 851 

Figure 5. Quantification of liver QSOX1 and IL1RAP levels in NAFLD patients by IHC. 852 

A. Representative IHC images of QSOX1 and IL1RAP in liver biopsies from mild NAFLD 853 

patients (N0-4, F0-2) and severe NAFLD patients (N5-8, F3-4).  854 

B. The integrated density of QSOX1 IHC. Box plots showing the log10 value. 855 

C. The integrated density of IL1RAP IHC. Box plots showing the log10 value. 856 

D. Box plot of QSOX1 and IL1RAP ratio of the integrated density quantified with IHC.  857 

Statistical testing was performed using t-test, with p-values shown in the plot. 858 

 859 

Table 1 860 

 861 

 862 

 863 

 864 

 865 

 866 

Age (yrs) BMI (kg/m2)

mean ± S.D. mean ± S.D.

N0 (n) 81 1 1 - 1 46.4 ± 10.0 35.4 ± 9.1

N1 (n) 29 9 1 - 1 42.8 ± 12.7 36.1 ± 6.6

N2 (n) 27 10 1 - 1 51.9 ± 5.8 35.1 ± 6.0

N3 (n) 46 72 9 5 3 49.8 ± 9.4 34.6 ± 8.9

N4 (n) 30 19 20 15 3 49.6 ± 9.5 33.9 ± 4.6

N5 (n) 7 41 75 20 5 52.4 ± 11.7 32.5 ± 5.5

N6 (n) 1 18 17 18 3 53.2 ± 8.5 34.5 ± 5.6

N7 (n) - 1 14 11 1 49.4 ± 9.8 36.3 ± 7.2

N8 (n) - - 2 4 2 54 ± 0.0 31.3± 0.0
Age (yrs) mean 

± S.D.
46.6 ± 9.6 49.0 ± 10.6 53.2 ± 11.3 54.7 ± 6.0 54.8 ± 5.4

BMI(kg/m2) 

mean ± S.D.
37.1± 8.3 32.4 ± 5.6 33.1 ± 7.0 32.5 ± 2.9 32.6 ± 2.2

Gender 

n(male/female)

221(105/116)

*

171 

(108/63)*

140 

(64/76)*

73 

(35/38)*
20  (11/9)*

Table 1: Characteristics of the populations studied
A total of 625 human liver samples of the full histological range from normal, NAFL, NASH to cirrhosis 
with the NAS (N) and fibrosis (F) scores provided in the database or original articles.

Table 1. *The ratio of gender was estimated according to the gender ratio in the original articles.  BMI, body 
mass index; N, NAS score; F, Fibrosis score.

Sample  

distribution of 
NAS and FIB

F0 F1 F2 F3 F4
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Figure 3
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Figure 4
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Supplementary Figure S1

Supplementary Figure S1. t-SNE visualization of gene clusters

Visualization of gene expression profiling clusters across NAFLD progression with the t-

distributed stochastic neighbor embedding (t-SNE) statistical method. Each dot represents

one protein coding gene (n = 17,946). A graph-based clustering approach was used. The

dimensions of reduction were set to 1:20 and visualized with a resolution of 2.3.
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Supplementary Figure S2
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Supplementary Figure S2 Heatmap presentation of gene expression profile along NAFLD

progression.

A. Heatmap presentation of 1021 up-regulated genes in cluster 4 associated with increasing
fibrosis scores.
B. Heatmap presentation of 643 down-regulated genes in cluster 14 associated with
increasing fibrosis scores.
C and D. Contrary to genes in cluster 4 and 14, C and D displayed gene clusters with chaotic
gene expression patterns associated with both NAS scores and fibrosis scores.
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Supplementary Figure S3

Supplementary Figure S3 Heatmap presentation of ECM gene expression profile

A. Scale gene expression profile of multiple genes involved in the ECM process according to

NAS scores. B. Scale gene expression profile of multiple genes involved in the ECM process

according to fibrosis scores. Genes were clustered based on profile similarity. Genes

expression level was scaled for heatmap presentation (also see the NAFLD-DB).
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Supplementary Figure S4

Supplementary Figure S4 Heatmap presentation of Cytochrome P450 superfamily gene

expression profile

A. Scale gene expression profile of multiple genes involved in the Cytochrome P450

superfamily according to NAS scores. B. Scale gene expression profile of multiple genes

involved in the Cytochrome P450 superfamily according to fibrosis scores. Genes were

clustered based on profile similarity. Genes expression level was scaled for heatmap

presentation (also see the NAFLD-DB).
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Supplementary Figure S5

Supplementary Figure S5 Heatmap presentation of expression profile for 32 biomarker

genes

A. Scale gene expression profile of 38 biomarker genes (16 up-regulation, 22 down-

regulation) according to NAS scores. B. Scale gene expression profile of 38 biomarker genes

according to fibrosis scores. Genes were clustered based on profile similarity. Genes

expression level was scaled for heatmap presentation (also see the NAFLD-DB). This figure is

related to Figure 2E.
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List of Supplementary Tables

Supplementary Table 1

The RNA-seq data of human liver samples.

Supplementary Table 2

GO enrichment results for genes in cluster 4 (up-regulation) and cluster 14 (down regulation).

Supplementary Table 3

List of secreting protein-encoding genes in cluster 4, and 14 of RNA-seq analysis.

Representing PMID supporting that the candidate gene as potential biomarker for NAFLD

was listed. Note: this is a noncomprehensive list.

Supplementary Table 4

Performance Characteristics of QSOX1, IL1RAP, and the QSOX1/IL1RAP ratio in proteomics

data and the results of ELISA.

Supplementary Table 5

Metadata for NAFLD patients and control participants involved in the ELISA validation study.
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