
 S1 

Supplemental Material: 
Estimating Rates of Change to Interpret Quantitative 

Wastewater Surveillance of Disease Trends 
 

David A. Holcomba,b, Ariel Christensena,c, Kelly Hoffmanb, Allison Leeb, A. Denene Blackwoodd, 

Thomas Clerkind, Javier Gallard-Góngorad, Angela Harrise, Nadine Kotlarzf, Helena Mitasovag,h, 

Stacie Recklingc,g, Francis L. de los Reyes IIIe, Jill R. Stewartb, Virginia T. Guidryc, Rachel T. Nobleb,d, 

Marc L. Serreb, Tanya P. Garciai,†, Lawrence S. Engela,†,*  

 

a Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina 

at Chapel Hill, Chapel Hill, NC, USA 

b Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, 

University of North Carolina at Chapel Hill, Chapel Hill, NC, USA 

c Occupational & Environmental Epidemiology Branch, Division of Public Health, North Carolina 

Department of Health and Human Services, Raleigh, NC, USA 

d Institute of Marine Sciences, Department of Earth, Marine and Environmental Sciences, University of 

North Carolina at Chapel Hill, Morehead City, NC, USA 

e Department of Civil, Construction and Environmental Engineering, North Carolina State University, 

Raleigh, NC, USA 

f Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA 

g Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, USA 

h Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, 

NC, USA 

i Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at 

Chapel Hill, Chapel Hill, NC, USA 

 

† TG and LE are co-senior authors 

 

This supplement contains 48 pages, 3 tables, and 31 figures. 

  



 S2 

Table of Contents 

Table of Contents ........................................................................................................................................ 2 

S1 Gaussian Process Derivatives ......................................................................................................... 3 

S1.1 Jointly Sampling a Gaussian Process and its Derivative ............................................................ 3 

S1.2 Predicting Derivatives of a Gaussian Process ............................................................................. 4 

S2 Squared Exponential Kernel Function ............................................................................................ 7 

S3 Smoothing with Generalized Additive Models............................................................................... 8 

S4 Simulating Reported Case Counts .................................................................................................. 9 

S5 Indirect Simulation of Wastewater Viral Loads ........................................................................... 11 

S6 Analysis Code ............................................................................................................................... 14 

S7 Simulation Study Rate of Change Estimates ................................................................................ 15 

S8 Estimation Performance by Simulation Scenario ......................................................................... 16 

S9 Plateau Classification by Simulation Scenario ............................................................................. 18 

S10 North Carolina Sewershed Characteristics ................................................................................... 19 

S11 Relative Performance of Estimation Methods in NC Sewersheds................................................ 20 

S12 Trend Classifications in NC Sewersheds ...................................................................................... 21 

S13 Sewershed-Specific Rate of Change Estimates ............................................................................ 22 

S14 Supplementary References............................................................................................................ 47 

 



 S3 

S1 Gaussian Process Derivatives 

S1.1 Jointly Sampling a Gaussian Process and its Derivative 

 A Gaussian process (GP) represents a distribution over all the possible smooth functions of a 

continuous domain (e.g., time) and is defined by its covariance function that relates any pair of locations 

on that domain, with any finite set of observations following a multivariate normal distribution.1–3 

Sampling a GP at a finite set of locations 𝒛 provides the outputs 𝒙 of a single smooth function 𝑓(𝒛) 

evaluated at each of those points, with the function behavior determined by the covariance kernel 

function 𝑘(𝑧𝑖 , 𝑧𝑗|𝜽) with hyperparameters 𝜽 for each pair of locations 𝑧𝑖, 𝑧𝑗: 

 𝒙 = 𝑓(𝒛)

𝑓(𝒛) ∼ 𝒢𝒫 (𝑘(𝑧𝑖 , 𝑧𝑗|𝜽))
 (S1) 

The first derivative 𝑓′(𝒙) of the smooth function is also distributed as a GP with covariance kernel 

function 𝑘′(𝑧𝑖 , 𝑧𝑗|𝜽), the derivative of the original covariance function with respect to the locations 𝑧𝑖 

and 𝑧𝑗:
4–6 

 𝑓′(𝒛) ∼ 𝒢𝒫 (𝑘′(𝑧𝑖 , 𝑧𝑗|𝜽))

𝑘′(𝑧𝑖 , 𝑧𝑗|𝜃) =
∂

∂𝑧𝑖 ∂𝑧𝑗
𝑘(𝑧𝑖 , 𝑧𝑗|𝜽)

 (S2) 

 This feature allows values of both the smooth function 𝑓(𝒛) and its derivative 𝑓′(𝒛) to be 

obtained simultaneously for all locations 𝒛 by sampling jointly from the GP and its derivative, enabling 

us to simulate both a smooth trend and its instantaneous rate of change at any finite set of time points. 

Designating the original covariance kernel function 𝑘00(𝑧𝑖 , 𝑧𝑗) =  𝑘(𝑧𝑖 , 𝑧𝑗|𝜽) and its derivative at the 

same locations 𝑘11(𝑧𝑖 , 𝑧𝑗) =  𝑘′(𝑧𝑖 , 𝑧𝑗|𝜽), the covariance between the trend value 𝑥𝑖 at location 𝑧𝑖 and 

the derivative value 𝑥′𝑗 at location 𝑧𝑗 is given by 

 
𝑘01(𝑧𝑖 , 𝑧𝑗) = 𝑘10(𝑧𝑗 , 𝑧𝑖) =

∂

∂𝑧𝑗
𝑘(𝑧𝑖 , 𝑧𝑗|𝜽) (S3) 
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We can then sample 𝒙𝑎𝑙𝑙 =  [
𝒙
𝒙′
] at positions 𝒛𝑎𝑙𝑙 =  [

𝒛𝑥

𝒛𝑥′
] by defining an indicator vector 

𝒅𝑎𝑙𝑙 =  [
𝒅𝑥 = 0
𝒅𝑥′ = 1

], calculating the joint covariance matrix Σ𝑎𝑙𝑙 as 

 

Σ𝑖𝑗
𝑎𝑙𝑙 =

{
 
 

 
 
𝑘00(𝑧𝑖 , 𝑧𝑗), 𝑑𝑖 = 0,𝑑𝑗 = 0 (both normal observations)

𝑘01(𝑧𝑖 , 𝑧𝑗), 𝑑𝑖 = 0,𝑑𝑗 = 1 (one normal, one derivative)

𝑘10(𝑧𝑖 , 𝑧𝑗), 𝑑𝑖 = 1,𝑑𝑗 = 0 (one derivative, one normal)

𝑘11(𝑧𝑖 , 𝑧𝑗), 𝑑𝑖 = 1,𝑑𝑗 = 1 (both derivatives)

 (S4) 

and sampling 𝒙𝑎𝑙𝑙 from a multivariate normal distribution as [
𝒙
𝒙′
] ∼  MVN(0, Σ𝑎𝑙𝑙).4,5  

 

S1.2 Predicting Derivatives of a Gaussian Process 

 An alternative to jointly sampling from a GP and its derivative is to sample only from the GP and 

predict the derivative observations 𝒙′ conditional on the sampled observations 𝒙 at the same locations 𝒛. 

To predict unobserved GP values 𝒙𝑝𝑟𝑒𝑑 = 𝑓(𝒛𝑝𝑟𝑒𝑑) using observed GP values 𝒙𝑜𝑏𝑠 =  𝑓(𝒛𝑜𝑏𝑠), the 

conditional probability distribution is also multivariate normal: 

 𝑥𝑝𝑟𝑒𝑑|𝑥𝑜𝑏𝑠 ∼ MVN(𝐦,𝐊) (S5) 

The prediction mean vector 𝐦 has an analytical solution given by  

 𝐦 = 𝜇𝑝𝑟𝑒𝑑 + (𝛴01)
𝑇(𝛴00)

−1(𝑥𝑜𝑏𝑠 − 𝜇𝑜𝑏𝑠) (S6) 

where 𝜇𝑝𝑟𝑒𝑑  and 𝜇𝑜𝑏𝑠  are the means for the prediction and observation locations, respectively (which for 

simplicity we usually set to zero beforehand by mean-centering), 𝛴01 is the covariance between all 

observed and predicted points given by the kernel function 𝑘(𝑧𝑜𝑏𝑠, 𝑧𝑝𝑟𝑒𝑑), and 𝛴00 is the covariance 

matrix between observed locations given by the kernel function 𝑘(𝑧𝑜𝑏𝑠, 𝑧𝑜𝑏𝑠). Likewise, the prediction 

covariance matrix 𝐊 is obtained analytically as 

 𝐊 = 𝛴11 − (𝛴01)
𝑇(𝛴00)

−1𝛴01 (S7) 
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for the covariance matrix 𝛴11 between all prediction locations produced by the kernel function 

𝑘(𝑧𝑝𝑟𝑒𝑑 , 𝑧𝑝𝑟𝑒𝑑).
3,7 

 Predicted derivative values 𝒙′ conditional on the observations 𝒙 at the same locations 𝒛′ = 𝒛 can 

be obtained as the conditional prediction mean vector 𝐦: 

 𝒙′ = 𝐦
= 𝜇′ + (𝛴01)

𝑇(𝛴00)
−1(𝒙 − 𝜇)

= 0 + (𝛴01)
𝑇(𝛴00)

−1(𝒙 − 0)

= (𝛴01)
𝑇(𝛴00)

−1(𝒙)

= (𝑘01(𝒛
𝑥, 𝒛𝑥′))

𝑇
(𝑘00(𝒛

𝑥, 𝒛𝑥))
−1
(𝒙)

 (S8) 

where 𝑘00 is the covariance kernel function defined previously for use with pairs of normal GP 

observations and 𝑘01 is the kernel function used for one normal observation and one derivative 

observation. As the derivative predictions are all for the same locations as the observations, there is no 

prediction error and it is unnecessary to evaluate 𝐊. To illustrate, Figure S1 presents sampled GP 

observations and both the jointly-sampled derivative and the predicted derivative using a squared 

exponential kernel covariance function with 𝛼 = 1 and 𝜌 =  1. We can visually confirm that both 

approaches yield equivalent values of the GP derivative and that the derivative crosses zero wherever 

the GP has a local minimum or maximum. 
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Figure S1. Comparison of jointly sampled (green solid line) and predicted (blue dotted line) derivatives 

of a sampled GP (red solid line) 
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S2 Squared Exponential Kernel Function 

 The squared exponential kernel covariance function is defined as  

 
𝑘00
𝑠𝑞𝑒(𝑧𝑖 , 𝑧𝑗|𝛼, 𝜌) = 𝛼

2exp (−
1

2
(
𝑧𝑖 − 𝑧𝑗
𝜌

)
2

) (S9) 

where 𝛼 is the marginal standard deviation, a scale hyperparameter that controls the magnitude of the 

covariance.5 For the special case 𝑧𝑖 =  𝑧𝑗, the exponential term reduces to exp(0) =  1 and 𝑘(𝑧𝑖 , 𝑧𝑖) =

 𝛼2. The rate at which correlation decays with increasing distance between locations 𝑧𝑖 and 𝑧𝑗 is 

controlled by the range hyperparameter 𝜌, which corresponds to the distance between 𝑧𝑖 and 𝑧𝑗 for 

which the maximum covariance 𝛼2 has been reduced by approximately 40%. The derivative of the 

squared exponential kernel function 𝑘11
𝑠𝑞𝑒(𝑧𝑖 , 𝑧𝑗|𝛼, 𝜌) for the covariance between derivative observations 

at locations 𝑧𝑖 and 𝑧𝑗 is given by: 

 
𝑘11
𝑠𝑞𝑒 =

∂

∂𝑧𝑖 ∂𝑧𝑗
𝑘00
𝑠𝑞𝑒(𝑧𝑖 , 𝑧𝑗|𝛼, 𝜌) =

𝛼2

𝜌4
(𝜌2 − (𝑧𝑖 − 𝑧𝑗)

2
) exp (−

1

2
(
𝑧𝑖 − 𝑧𝑗
𝜌

)
2

) (S10) 

and the kernel function 𝑘11
𝑠𝑞𝑒(𝑧𝑖 , 𝑧𝑗|𝛼, 𝜌) for an observation at 𝑧𝑖 and a derivative observation at 𝑧𝑗 is: 

 
𝑘01
𝑠𝑞𝑒 =

∂

∂𝑧𝑗
𝑘00
𝑠𝑞𝑒(𝑧𝑖 , 𝑧𝑗|𝛼, 𝜌) =

𝛼2

𝜌2
(𝑧𝑖 − 𝑧𝑗)exp (−

1

2
(
𝑧𝑖 − 𝑧𝑗
𝜌

)
2

) (S11) 
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S3 Smoothing with Generalized Additive Models 

 Smooth functions are commonly estimated using regression splines, in which polynomial 

regressions are fit to contiguous subsets of the observed data and constrained to have equal values, first 

derivatives, and second derivatives at the bounds of each subset (“knot”) to produce a piecewise, smooth 

function over the temporal range of the data.8–11 Introducing additional knots to subset the data more 

finely allows the resulting function to more closely trace the observed data, while fewer knots induce a 

smoother curve. Rather than manually specifying the number and locations of knots, an excess of knots 

may be supplied and smoothness instead induced by introducing a penalty based on the second 

derivative of the spline (which increases as the smoothness decreases) and an additional smoothness 

parameter that adjusts the strength of the penalty. Penalized splines are readily implemented as smooth 

predictor terms in a generalized additive model (GAM), a flexible extension of the generalized linear 

model that has previously demonstrated good performance estimating smooth trends in wastewater 

SARS-CoV-2 viral loads, among other times series applications.8,10,12 The first derivative of each 

smooth predictor in a fitted GAM can be estimated for any point within the range of the data due to the 

continuous support of GAM-estimated smooths.1,13 GAMs also provide a smoothness selection-

corrected Bayesian covariance matrix to account for the uncertainty introduced by estimating the spline 

smoothness parameter, allowing confidence intervals (CIs) to be constructed for both the estimated 

smooth term and any estimated derivatives.1,10 
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S4 Simulating Reported Case Counts 

 The multivariate imputation approach also required simulated daily case counts that shared an 

underlying trend with the simulated viral loads. While viral loads were simulated on a logarithmic scale 

with a mean of zero for simplicity (analogous to analyzing mean-centered data), case counts were 

simulated on the arithmetic scale by exponentiating the log scale-sampled trend, for which an additive 

mean on the log scale is meaningful. To simulate integer-valued case counts, we specified a sewershed 

population of 𝑃 =  200,000 individuals and a long-run mean infection rate 𝜆̅ =  0.0005 (5 cases per 

10,000 population). Furthermore, we assumed only 60% of infections were reported (𝐹𝑟𝑒𝑝𝑜𝑟𝑡 =  0.6) 

with a lag of three days after infection (𝑙𝑟𝑒𝑝𝑜𝑟𝑡 =  3). These conditions yielded a mean of 100 daily new 

infections, which were log-transformed and added to sampled trend value 𝑥𝑡 to obtain the infection log-

incidence rate 𝑥𝑡
𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 on study day 𝑡 before scaling by the reporting proportion to generate the 

reported log-incidence rate 𝑥𝑡
𝑟𝑒𝑝𝑜𝑟𝑡

. Independent Gaussian errors 𝜖𝑡
𝑐𝑎𝑠𝑒  (distinct from the wastewater 

errors 𝜖𝑡
𝑤𝑤 but sharing the same standard deviation 𝜎) were sampled and added to the reported log-

incidence rate to obtain an over-dispersed case log-incidence rate ln(𝜆𝑡). Case counts were generated by 

sampling from a Poisson distribution with rate 𝜆𝑡 and assigning the count sampled for day 𝑡 as the 

observed count three days hence to account for the specified reporting lag 𝑙𝑟𝑒𝑝𝑜𝑟𝑡 : 

 𝑦t+𝑙𝑟𝑒𝑝𝑜𝑟𝑡
𝑐𝑎𝑠𝑒,𝑜𝑏𝑠 = 𝑦𝑡

𝑐𝑎𝑠𝑒

𝑦𝑡
𝑐𝑎𝑠𝑒 ∼ Poisson(𝜆𝑡)

ln(𝜆𝑡) = 𝑥𝑡
𝑟𝑒𝑝𝑜𝑟𝑡 + 𝜖𝑡

𝑐𝑎𝑠𝑒 , 𝜖𝑡
𝑐𝑎𝑠𝑒 ∼ N(0, 𝜎2)

𝑥𝑡
𝑟𝑒𝑝𝑜𝑟𝑡

= 𝑥𝑡
𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 + ln(𝐹𝑟𝑒𝑝𝑜𝑟𝑡)

𝑥𝑡
𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 = 𝜇𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 + 𝑥𝑡
𝜇𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 = ln(𝜆‾𝑃)

 (S12) 

for the observed case count 𝑦t+𝑙𝑟𝑒𝑝𝑜𝑟𝑡
𝑐𝑎𝑠𝑒,𝑜𝑏𝑠

 on day 𝑡 + 𝑙𝑟𝑒𝑝𝑜𝑟𝑡. Examples of simulated cases for each of the 

scenarios are displayed in Figure S2, where under-reporting of cases relative to the trend is apparent. 
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Figure S2. Synthetic reported cases simulated across nine scenarios presented on the (a) raw data scale 

of daily case counts and (b) natural log-incidence scale, on which the smooth trend was sampled 
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S5 Indirect Simulation of Wastewater Viral Loads 

 When simulating wastewater measurements, the Gaussian process-sampled trend 𝑥𝑡 corresponds 

to log-viral load—related to the prevalence of actively shedding infections14—but represent log-incident 

infections when simulating case counts. To address this inconsistency, we also simulated wastewater 

viral loads using an indirect approach similar to the case simulation approach based on a consistent log-

incident infections definition of the sampled GP trend. To translate incident infections into viral loads, 

the same daily log-incident infections 𝑥𝑡
𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 on day 𝑡 used in the case simulations were summed over 

an assumed 14-day average fecal shedding duration of the 𝐷𝑠ℎ𝑒𝑑 days preceding each time 𝑡, yielding 

the infection log-prevalence 𝑥𝑡
𝑝𝑟𝑒𝑣

. We specified that 80% of infections shed virus in feces 

(𝐹𝑠ℎ𝑒𝑑 =  0.8) and that the average shedding infection contributed 𝐿 =  105 viral gene copies/day to the 

wastewater viral load (that is, the virus per infection arriving at the sampling location after any dilution 

and loss during transport),15 with a one-day lag 𝑙𝑠ℎ𝑒𝑑  from infection onset for an indirect log10 

wastewater viral load 𝑦t+𝑙𝑠ℎ𝑒𝑑
𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡,𝑜𝑏𝑠

observed on day 𝑡 =  𝑙𝑠ℎ𝑒𝑑: 

 𝑦t+𝑙𝑠ℎ𝑒𝑑
𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡,𝑜𝑏𝑠 = 𝑦𝑡

𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡

𝑦𝑡
𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 = log10(𝑥𝑡

𝑤𝑤) + 𝜖𝑡
𝑤𝑤

𝑥𝑡
𝑤𝑤 = 𝑥𝑡

𝑝𝑟𝑒𝑣 × 𝐹𝑠ℎ𝑒𝑑 × 𝐿

𝑥𝑡
𝑝𝑟𝑒𝑣

= ∑ exp

𝐷𝑠ℎ𝑒𝑑

𝑑=0

(𝑥t−𝑑
𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡)

𝑥𝑡
𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 = 𝜇𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 + 𝑥𝑡
𝜇𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 = ln(𝜆‾𝑃)

 (S13) 

 Because the GP-sampled trend 𝑥𝑡 corresponds to incident infections for the indirectly simulated 

wastewater observations, the true trend in wastewater viral loads must also be calculated from the 

cumulative infections over the specified shedding duration and its first derivative is no longer known 

exactly. Compared with directly simulated viral load trends and observations, the scale of the indirect 

wastewater trends is notably compressed, relative to the variance of the synthetic observations, while 

maintaining the same shape (Figure S3). 
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Figure S3. Comparison of wastewater trends and observations across nine simulation scenarios for (a) 

viral loads simulated directly from the GP-sampled trend and (b) indirectly simulated viral loads where 

the GP-sampled trend corresponds to log-incident infections 
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 As our primary aim was to evaluate methods for estimating rates of change in wastewater analyte 

trends—independent of population infection metrics—and we simulated cases only to implement an 

estimation approach drawn from the literature for comparison purposes,16 we used synthetic wastewater 

observations simulated directly from the sampled trend for all analyses. Indirectly simulated wastewater 

observations may be more appropriate for evaluating methods intended to relate wastewater 

measurements with population-level metrics, for example estimating the prevalence of infections or 

illicit drug use in a sewershed population, where the relationship between cases and wastewater is 

crucial and the true rate of change is of secondary interest. Such applications would likely benefit from 

careful consideration of the simulation parameter values assumed (e.g., global mean incidence rate, 

shedding proportion and duration, reporting faction and lag, etc.) to ensure realistic relationships 

between wastewater- and population-based synthetic data.15 
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S6 Analysis Code 

 The R code to conduct both the simulation analysis and to produce rate of change estimates for 

the real-world NC wastewater SARS-CoV-2 viral load monitoring data is available at 

https://doi.org/10.17605/OSF.IO/BPGN4. The custom functions written to implement the analysis are 

provided both in an R script (“roc_functions.R”) that can be sourced for direct use and described in 

detail in an HTML report (“roc_notebook.html”). Additionally, a compressed R project folder 

(“wastewaterRateOfChange.zip”) is provided that contains all the data and code necessary to reproduce 

the HTML report. To do so, download the compressed file to a computer with recent versions (e.g., 

released in mid-2022 or later) of the RStudio integrated development environment (IDE) and the R 

platform installed and unzip it. Within the unzipped directory, open the 

“wastewaterRateOfChange.Rproj” file to launch the project in a new R session in RStudio. Use the 

“Open” dialogue within RStudio to navigate to the “roc_notebook.qmd” Quarto markdown file in the 

“script” subdirectory. Install any missing packages as prompted; the code can now be run interactively 

through the .qmd file or in its entirety using the “render” functionality in RStudio to reproduce the 

HTML report. 

 

https://doi.org/10.17605/OSF.IO/BPGN4


 S15 

S7 Simulation Study Rate of Change Estimates 

 
Figure S4. Mean and 95% CI estimated rates of change by the rolling linear model (purple) and GAM fit to the full dataset (orange) compared 

with the true first derivative of the viral load trend (black) for illustrative realizations of the nine simulation scenarios 
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S8 Estimation Performance by Simulation Scenario 

Table S1. Median (2.5th – 97.5th percentiles) of estimation performance across nine simulation 

scenarios with differing degrees of smoothness (𝜌) and observation noise (𝜎) 

𝝆 𝝈 Method 

RMSE 

[Δlog10 gc/day] 

Mean 95% CI 

Width 

[Δlog10 gc/day] 

95% CI 

Coverage 

[%] 

Sensitivity 

[%] 

Specificity 

[%] 

AUC 

[%] 

90 

Scenario 1: high smoothness, low noise 

0.5 

rolling linear 

model 

0.04 

(0.04, 0.05) 

0.27 

(0.24, 0.29) 

95 

(92, 98) 

58 

(51, 65) 

58 

(51, 65) 

60 

(55, 67) 

multivariate 

imputation 

0.02 

(0.02, 0.03) 

0.07 

(0.06, 0.08) 

88 

(81, 93) 

64 

(54, 74) 

63 

(54, 74) 

69 

(59, 79) 

univariate 

imputation 

0.01 

(0.01, 0.02) 

0.04 

(0.03, 0.04) 

78 

(66, 89) 

70 

(59, 82) 

70 

(59, 82) 

78 

(67, 87) 

rolling GAM 
0.01 

(0.01, 0.01) 

0.04 

(0.02, 0.05) 

92 

(72, 100) 

76  

(56, 89) 

75 

(54, 88) 

82 

(62, 93) 

global GAM 
0.00 

(0.00, 0.00) 

0.02 

(0.01, 0.02) 

100 

(95, 100) 

93 

(76, 100) 

92 

(75, 100) 

98 

(91, 100) 

Scenario 2: high smoothness, moderate noise 

0.75 

rolling linear 

model 

0.07 

(0.06, 0.08) 

0.40 

(0.36, 0.44) 

95 

(92, 98) 

55 

(49, 62) 

55 

(49, 62) 

57 

(52, 63) 

multivariate 

imputation 

0.03 

(0.03, 0.04) 

0.11 

(0.10, 0.12) 

88 

(82, 93) 

59 

(51, 69) 

59 

(51, 70) 

63 

(55, 73) 

univariate 

imputation 

0.02 

(0.02, 0.02) 

0.06 

(0.05, 0.06) 

84 

(72, 93) 

66 

(55, 78) 

65 

(55, 75) 

72 

(61, 82) 

rolling GAM 
0.01 

(0.01, 0.01) 

0.04 

(0.02, 0.06) 

90 

(64, 99) 

71 

(44, 87) 

71 

(44, 87) 

76 

(51, 90) 

global GAM 
0.00 

(0.00, 0.01) 

0.02 

(0.01, 0.03) 

100 

(83, 100) 

91 

(69, 100) 

91 

(67, 100) 

98 

(85, 100) 

Scenario 3: high smoothness, high noise 

1 

rolling linear 

model 

0.09 

(0.08, 0.10) 

0.53 

(0.47, 0.59) 

95 

(92, 98) 

54 

(48, 61) 

54 

(48, 60) 

55 

(50, 61) 

multivariate 

imputation 

0.04 

(0.04, 0.05) 

0.14 

(0.13, 0.16) 

88 

(83, 93) 

57 

(48, 66) 

57 

(50, 65) 

60 

(53, 68) 

univariate 

imputation 

0.02 

(0.02, 0.03) 

0.07 

(0.07, 0.08) 

87 

(76, 95) 

63 

(52, 73) 

62 

(53, 73) 

68 

(57, 78) 

rolling GAM 
0.01 

(0.01, 0.02) 

0.04 

(0.02, 0.07) 

88 

(57, 99) 

67 

(36, 86) 

67 

(36, 85) 

70 

(41, 87) 

global GAM 
0.00 

(0.00, 0.01) 

0.02 

(0.01, 0.03) 

100 

(62, 100) 

89 

(60, 100) 

90 

(60, 100) 

96 

(77, 100) 

30 

Scenario 4: moderate smoothness, low noise 

0.5 

rolling linear 

model 

0.05 

(0.04, 0.05) 

0.26 

(0.24, 0.29) 

95 

(91, 97) 

68 

(60, 77) 

68 

(60, 76) 

74 

(66, 82) 

multivariate 

imputation 

0.03 

(0.03, 0.04) 

0.08 

(0.07, 0.08) 

74 

(64, 82) 

71 

(62, 79) 

71 

(62, 80) 

78 

(69, 85) 

univariate 

imputation 

0.03 

(0.02, 0.03) 

0.04 

(0.03, 0.04) 

49 

(39, 60) 

75 

(66, 84) 

75 

(65, 84) 

81 

(73, 88) 

rolling GAM 
0.03 

(0.02, 0.04) 

0.12 

(0.08, 0.15) 

93 

(78, 99) 

71 

(58, 80) 

71 

(58, 81) 

78 

(65, 86) 

global GAM 
0.01 

(0.01, 0.01) 

0.06 

(0.04, 0.07) 

100 

(93, 100) 

90 

(80, 97) 

90 

(79, 97) 

97 

(92, 99) 

Scenario 5: moderate smoothness, moderate noise 

0.75 
rolling linear 

model 

0.07 

(0.06, 0.08) 

0.40 

(0.36, 0.44) 

95 

(91, 97) 

63 

(55, 71) 

63 

(56, 70) 

67 

(60, 75) 
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𝝆 𝝈 Method 

RMSE 

[Δlog10 gc/day] 

Mean 95% CI 

Width 

[Δlog10 gc/day] 

95% CI 

Coverage 

[%] 

Sensitivity 

[%] 

Specificity 

[%] 

AUC 

[%] 

multivariate 

imputation 

0.04 

(0.03, 0.05) 

0.11 

(0.10, 0.12) 

81 

(73, 88) 

67 

(57, 75) 

67 

(57, 75) 

73 

(63, 81) 

univariate 

imputation 

0.03 

(0.02, 0.04) 

0.05 

(0.05, 0.06) 

60 

(48, 72) 

72 

(61, 81) 

71 

(62, 80) 

78 

(69, 86) 

rolling GAM 
0.03 

(0.03, 0.04) 

0.12 

(0.07, 0.18) 

90 

(65, 99) 

65 

(48, 77) 

65 

(47, 76) 

70 

(51, 82) 

global GAM 
0.01 

(0.01, 0.02) 

0.06 

(0.04, 0.08) 

98 

(78, 100) 

86 

(72, 95) 

86 

(72, 95) 

94 

(85, 98) 

Scenario 6: moderate smoothness, high noise 

1 

rolling linear 

model 

0.09 

(0.08, 0.10) 

0.53 

(0.48, 0.59) 

95 

(92, 98) 

60 

(53, 68) 

60 

(53, 67) 

64 

(56, 71) 

multivariate 

imputation 

0.05 

(0.04, 0.06) 

0.15 

(0.13, 0.16) 

84 

(77, 90) 

64 

(55, 73) 

64 

(55, 72) 

69 

(60, 78) 

univariate 

imputation 

0.03 

(0.03, 0.04) 

0.07 

(0.07, 0.08) 

68 

(55, 79) 

69 

(59, 78) 

69 

(59, 78) 

75 

(65, 83) 

rolling GAM 
0.04 

(0.03, 0.05) 

0.13 

(0.06, 0.20) 

88 

(50, 98) 

60 

(40, 73) 

60 

(41, 72) 

63 

(42, 77) 

global GAM 
0.02 

(0.01, 0.02) 

0.07 

(0.03, 0.09) 

94 

(48, 100) 

83 

(64, 94) 

83 

(65, 94) 

91 

(76, 98) 

15 

Scenario 7: low smoothness, low noise 

0.5 

rolling linear 

model 

0.07 

(0.06, 0.08) 

0.27 

(0.24, 0.30) 

89 

(83, 93) 

70 

(62, 77) 

69 

(62, 77) 

76 

(69, 82) 

multivariate 

imputation 

0.08 

(0.06, 0.09) 

0.09 

(0.08, 0.10) 

42 

(34, 52) 

58 

(49, 67) 

58 

(49, 68) 

61 

(52, 70) 

univariate 

imputation 

0.07 

(0.05, 0.08) 

0.04 

(0.04, 0.04) 

23 

(17, 30) 

65 

(57, 73) 

65 

(57, 73) 

68 

(61, 76) 

rolling GAM 
0.06 

(0.05, 0.08) 

0.21 

(0.15, 0.26) 

89 

(75, 95) 

68 

(57, 77) 

68 

(57, 77) 

75 

(63, 83) 

global GAM 
0.03 

(0.02, 0.03) 

0.11 

(0.08, 0.12) 

95 

(82, 99) 

87 

(78, 94) 

87 

(78, 94) 

95 

(89, 98) 

Scenario 8: low smoothness, moderate noise 

0.75 

rolling linear 

model 

0.08 

(0.07, 0.09) 

0.40 

(0.36, 0.44) 

92 

(88, 96) 

66 

(58, 73) 

66 

(58, 74) 

71 

(64, 78) 

multivariate 

imputation 

0.08 

(0.06, 0.09) 

0.12 

(0.11, 0.13) 

53 

(44, 63) 

58 

(49, 67) 

58 

(50, 66) 

61 

(52, 70) 

univariate 

imputation 

0.07 

(0.05, 0.08) 

0.06 

(0.05, 0.06) 

31 

(23, 41) 

64 

(55, 73) 

64 

(55, 73) 

68 

(59, 76) 

rolling GAM 
0.07 

(0.06, 0.09) 

0.22 

(0.12, 0.30) 

85 

(58, 95) 

60 

(44, 71) 

60 

(44, 71) 

64 

(45, 77) 

global GAM 
0.04 

(0.03, 0.05) 

0.11 

(0.07, 0.14) 

87 

(57, 98) 

82 

(68, 91) 

82 

(69, 91) 

90 

(79, 96) 

Scenario 9: low smoothness, high noise 

1 

rolling linear 

model 

0.10 

(0.09, 0.12) 

0.53 

(0.48, 0.59) 

93 

(89, 97) 

63 

(56, 71) 

63 

(56, 71) 

67 

(60, 75) 

multivariate 

imputation 

0.08 

(0.07, 0.10) 

0.15 

(0.14, 0.17) 

63 

(52, 73) 

57 

(48, 66) 

58 

(48, 67) 

60 

(51, 69) 

univariate 

imputation 

0.07 

(0.05, 0.08) 

0.07 

(0.07, 0.08) 

40 

(31, 52) 

63 

(54, 72) 

63 

(54, 73) 

67 

(58, 76) 

rolling GAM 
0.08 

(0.06, 0.10) 

0.20 

(0.07, 0.32) 

77 

(31, 95) 

53 

(36, 67) 

53 

(36, 67) 

53 

(35, 70) 

global GAM 
0.05 

(0.03, 0.07) 

0.10 

(0.02, 0.15) 

74 

(15, 95) 

76 

(54, 88) 

76 

(52, 88) 

85 

(58, 94) 
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S9 Plateau Classification by Simulation Scenario 

 Because the simulated true trend and its rate of change are known exactly, there is no directly 

equivalent definition available to classify true plateaus for the simulated trend to evaluate multiclass 

performance. However, applying the standard plateau definition (non-significant slope at a 5% 

significance level) to the simulation study estimates, we observed notable differences between methods 

in the proportion of estimates classified as plateaus, particularly under the less-smooth scenarios (Figure 

S5).  

 
Figure S5. Median and 2.5th – 97.5th percentiles of the percentage of estimates classified as plateau (not 

significantly different from zero at the 5% significance level) by each rate of change estimation method 

across 1000 realizations of each of the nine simulation scenarios. 
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S10 North Carolina Sewershed Characteristics 

Table S2. Characteristics of North Carolina Sewersheds 

Sewershed County 

Population 

Served 

Monitoring 

Start Date 

Days 

Monitoreda 

Samples 

Reported 

Median 

(IQR) 

Daily 

Reported 

Cases  

Median (IQR) 

Per-Capita 

Viral Load,  

million gene 

copies/person/day 

Beaufort Carteret 3500 2021-01-03 871 245 1 (3) 6.7 (18.5) 

Buncombe 

Co. 

Buncombe, 

Henderson 173000 2021-06-19 704 185 36 (48) 9.9 (11.3) 

Cary 1 Wake 84189 2021-11-16 554 157 13 (23) 12.8 (18.5) 

Cary 2 Wake 74331 2021-11-16 554 156 9 (18) 17.5 (17.9) 

Cary 3 Wake 75886 2021-11-16 554 149 15 (30) 36.8 (44.3) 

Chapel Hill - 

Carrboro Orange 78141 2021-01-06 868 238 11 (17) 6.3 (11.7) 

Charlotte 1 Mecklenburg 68685 2021-01-03 871 226 14 (22) 11.3 (15.3) 

Charlotte 2 Mecklenburg 182501 2021-01-03 871 226 27 (39) 10.0 (14.6) 

Charlotte 3 Mecklenburg 120000 2021-06-01 722 189 25 (38) 17.9 (24.4) 

Durham Durham 108105 2021-01-06 868 240 16 (25) 8.6 (14.5) 

Fayetteville Cumberland 151589 2021-06-19 704 198 33 (49) 10.1 (11.0) 

Greensboro Guilford 135821 2021-06-18 705 193 25 (34) 9.8 (14.0) 

Greenville Pitt 89616 2021-01-03 871 242 17 (26) 7.1 (11.8) 

Jacksonville Onslow 41819 2022-03-19 431 121 5 (9) 5.7 (8.9) 

Laurinburg Scotland 15527 2021-06-17 706 186 3 (6) 6.9 (12.0) 

Marion McDowell 8459 2021-06-17 706 191 2 (4) 5.6 (10.7) 

New 

Hanover Co. New Hanover 67743 2021-01-22 852 235 7 (12) 5.0 (10.5) 

Raleigh 1 Wake 550000 2021-01-06 868 231 100 (146) 7.0 (10.6) 

Raleigh 2 Wake 30655 2021-10-21 580 160 8 (15) 10.8 (15.1) 

Raleigh 3 Wake 7776 2021-10-21 580 158 2 (4) 15.8 (25.8) 

Roanoke 

Rapids 

Halifax, 

Northampton 14320 2021-06-19 704 194 4 (7) 9.3 (14.2) 

Tuckaseigee Jackson 13296 2021-01-03 871 213 2 (3) 4.0 (8.1) 

Wilmington New Hanover 58361 2021-01-05 869 235 9 (15) 3.7 (7.6) 

Wilson Wilson 49384 2021-06-19 704 194 8 (14) 6.2 (12.1) 

Winston-

Salem Forsyth 178000 2021-06-19 704 186 38 (54) 5.3 (6.2) 
a monitoring ended for all sewersheds on 2023-05-24 
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S11 Relative Performance of Estimation Methods in NC Sewersheds 1 

 2 
Figure S6. Comparison of rate of change estimates from local estimation methods to global GAM estimates for SARS-CoV-2 wastewater 3 

viral loads at 25 NC sewersheds. Each blue point corresponds to a sewershed, with the black point and line presenting the median and 2.5th – 4 

97.5th percentiles of the performance metric across sewersheds for a given local estimation method. Vertical dotted lines indicate the target 5 

performance for each metric 6 
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S12 Trend Classifications in NC Sewersheds 7 

Table S3. Percentage of rate of change estimates classified as positive (two class) and increasing, decreasing, or plateau (three class) in North 8 

Carolina sewersheds by estimation method 9 

Sewershed N 

Positive Slope 

(% of estimates) 

Slope Classificationa (% of estimates) 

Global GAM RLM MI UI Rolling GAM 

Global 

GAM RLM MI UI 

Rolling 

GAM   ⎯   ⎯   ⎯   ⎯   ⎯ 

Beaufort 219 51 49 52 52 49 6 6 88 5 3 92 12 10 78 26 26 47 1 2 97 

Buncombe Co. 160 44 51 51 49 48 11 11 79 7 8 86 14 19 67 30 31 39 4 4 92 

Cary 1 133 43 50 44 49 43 11 6 83 5 8 88 12 14 74 29 28 43 5 1 95 

Cary 2 132 34 45 44 42 36 14 5 80 0 5 95 17 20 64 24 36 40 3 2 95 

Cary 3 130 36 44 47 42 42 16 8 76 5 5 89 18 16 66 29 45 26 2 2 96 

Chapel Hill - Carrboro 213 43 47 49 48 46 16 11 72 3 5 92 15 18 67 28 32 39 3 2 95 

Charlotte 1 201 48 48 51 48 45 14 11 75 6 5 89 17 13 70 32 35 33 4 13 82 

Charlotte 2 201 45 49 51 48 44 14 12 74 3 2 95 17 19 64 29 35 35 4 6 89 

Charlotte 3 165 49 46 47 48 48 15 13 73 4 5 91 19 22 58 32 38 30 5 6 88 

Durham 216 46 52 48 50 46 15 11 74 7 3 90 12 16 71 28 26 46 4 10 87 

Fayetteville 172 44 47 44 42 40 13 13 74 4 5 91 14 16 70 26 37 37 2 2 97 

Greensboro 167 40 46 45 47 47 9 8 83 8 5 87 10 13 77 23 27 50 2 3 95 

Greenville 217 47 48 49 47 43 18 16 66 6 6 88 18 21 61 29 36 35 7 11 82 

Jacksonville 95 44 45 48 45 45 0 1 99 6 15 79 15 25 60 36 44 20 4 3 93 

Laurinburg 160 45 48 45 48 51 11 10 79 4 4 92 15 15 70 29 35 36 4 4 92 

Marion 165 47 48 49 42 49 12 15 73 4 7 90 9 15 76 30 33 37 4 4 93 

New Hanover Co. 209 44 55 50 45 44 16 6 78 3 2 95 14 15 71 25 27 48 7 2 90 

Raleigh 1 207 48 52 52 51 48 18 14 68 9 6 85 13 21 66 33 33 34 5 5 89 

Raleigh 2 138 41 46 46 46 45 9 14 78 1 12 88 13 20 67 24 36 40 2 4 94 

Raleigh 3 139 41 42 47 49 46 10 11 79 7 4 88 11 17 73 27 31 42 4 4 93 

Roanoke Rapids 170 38 49 44 45 41 12 11 77 4 4 93 8 15 77 18 29 53 0 4 96 

Tuckaseigee 200 50 53 50 56 52 12 10 77 7 6 87 14 10 76 35 26 38 11 6 83 

Wilmington 213 43 50 49 44 43 15 9 75 4 4 92 15 17 67 32 36 32 5 15 81 

Wilson 169 41 45 45 44 43 9 14 77 7 2 91 14 24 62 24 36 41 0 3 97 

Winston-Salem 163 50 48 47 52 50 11 12 77 6 4 90 10 20 70 31 32 37 4 5 91 
a Out of three CDC classes: increasing (), decreasing (), and plateau (⎯) 10 
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S13 Sewershed-Specific Rate of Change Estimates 

 
Figure S7. Measured SARS-CoV-2 wastewater per-capita viral load (green points) and estimated mean 

and 95% CI of the (a) temporal trend and (b) rates of change in the trend for the Beaufort sewershed 
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Figure S8. Measured SARS-CoV-2 wastewater per-capita viral load (green points) and estimated mean 

and 95% CI of the (a) temporal trend and (b) rates of change in the trend for the Buncombe County 

sewershed 
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Figure S9. Measured SARS-CoV-2 wastewater per-capita viral load (green points) and estimated mean 

and 95% CI of the (a) temporal trend and (b) rates of change in the trend for the Cary 1 sewershed 
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Figure S10. Measured SARS-CoV-2 wastewater per-capita viral load (green points) and estimated mean 

and 95% CI of the (a) temporal trend and (b) rates of change in the trend for the Cary 2 sewershed 
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Figure S11. Measured SARS-CoV-2 wastewater per-capita viral load (green points) and estimated mean 

and 95% CI of the (a) temporal trend and (b) rates of change in the trend for the Cary 3 sewershed 
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Figure S12. Measured SARS-CoV-2 wastewater per-capita viral load (green points) and estimated mean 

and 95% CI of the (a) temporal trend and (b) rates of change in the trend for the Chapel Hill – Carrboro 

sewershed 
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Figure S13. Measured SARS-CoV-2 wastewater per-capita viral load (green points) and estimated mean 

and 95% CI of the (a) temporal trend and (b) rates of change in the trend for the Charlotte 1 sewershed 
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Figure S14. Measured SARS-CoV-2 wastewater per-capita viral load (green points) and estimated mean 

and 95% CI of the (a) temporal trend and (b) rates of change in the trend for the Charlotte 2 sewershed 
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Figure S15. Measured SARS-CoV-2 wastewater per-capita viral load (green points) and estimated mean 

and 95% CI of the (a) temporal trend and (b) rates of change in the trend for the Charlotte 3 sewershed 
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Figure S16. Measured SARS-CoV-2 wastewater per-capita viral load (green points) and estimated mean 

and 95% CI of the (a) temporal trend and (b) rates of change in the trend for the Durham sewershed 
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Figure S17. Measured SARS-CoV-2 wastewater per-capita viral load (green points) and estimated mean 

and 95% CI of the (a) temporal trend and (b) rates of change in the trend for the Fayetteville sewershed 
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Figure S18. Measured SARS-CoV-2 wastewater per-capita viral load (green points) and estimated mean 

and 95% CI of the (a) temporal trend and (b) rates of change in the trend for the Greensboro sewershed 
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Figure S19. Measured SARS-CoV-2 wastewater per-capita viral load (green points) and estimated mean 

and 95% CI of the (a) temporal trend and (b) rates of change in the trend for the Greenville sewershed 
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Figure S20. Measured SARS-CoV-2 wastewater per-capita viral load (green points) and estimated mean 

and 95% CI of the (a) temporal trend and (b) rates of change in the trend for the Jacksonville sewershed 
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Figure S21. Measured SARS-CoV-2 wastewater per-capita viral load (green points) and estimated mean 

and 95% CI of the (a) temporal trend and (b) rates of change in the trend for the Laurinburg sewershed 
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Figure S22. Measured SARS-CoV-2 wastewater per-capita viral load (green points) and estimated mean 

and 95% CI of the (a) temporal trend and (b) rates of change in the trend for the Marion sewershed 
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Figure S23. Measured SARS-CoV-2 wastewater per-capita viral load (green points) and estimated mean 

and 95% CI of the (a) temporal trend and (b) rates of change in the trend for the New Hanover County 

sewershed 
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Figure S24. Measured SARS-CoV-2 wastewater per-capita viral load (green points) and estimated mean 

and 95% CI of the (a) temporal trend and (b) rates of change in the trend for the Raleigh 1 sewershed 
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Figure S25. Measured SARS-CoV-2 wastewater per-capita viral load (green points) and estimated mean 

and 95% CI of the (a) temporal trend and (b) rates of change in the trend for the Raleigh 2 sewershed 
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Figure S26. Measured SARS-CoV-2 wastewater per-capita viral load (green points) and estimated mean 

and 95% CI of the (a) temporal trend and (b) rates of change in the trend for the Raleigh 3 sewershed 
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Figure S27. Measured SARS-CoV-2 wastewater per-capita viral load (green points) and estimated mean 

and 95% CI of the (a) temporal trend and (b) rates of change in the trend for the Roanoke Rapids 

sewershed 
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Figure S28. Measured SARS-CoV-2 wastewater per-capita viral load (green points) and estimated mean 

and 95% CI of the (a) temporal trend and (b) rates of change in the trend for the Tuckaseigee sewershed 
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Figure S29. Measured SARS-CoV-2 wastewater per-capita viral load (green points) and estimated mean 

and 95% CI of the (a) temporal trend and (b) rates of change in the trend for the Wilmington sewershed 



 45 

 
Figure S30. Measured SARS-CoV-2 wastewater per-capita viral load (green points) and estimated mean 

and 95% CI of the (a) temporal trend and (b) rates of change in the trend for the Wilson sewershed 
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Figure S31. Measured SARS-CoV-2 wastewater per-capita viral load (green points) and estimated mean 

and 95% CI of the (a) temporal trend and (b) rates of change in the trend for the Winston-Salem 

sewershed 
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