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Abstract 23 

Background: Endometriosis affects 10% of reproductive-age women, and yet, it goes undiagnosed 24 

for 3.6 years on average after symptoms onset. Despite large GWAS meta-analyses (N > 750,000), 25 

only a few dozen causal loci have been identified. We hypothesized that the challenges in 26 

identifying causal genes for endometriosis stem from heterogeneity across clinical and biological 27 

factors underlying endometriosis diagnosis.  28 

Methods: We extracted known endometriosis risk factors, symptoms, and concomitant conditions 29 

from the Penn Medicine Biobank (PMBB) and performed unsupervised spectral clustering on 4,078 30 

women with endometriosis. The 5 clusters were characterized by utilizing additional electronic 31 

health record (EHR) variables, such as endometriosis-related comorbidities and confirmed surgical 32 

phenotypes. From four EHR-linked genetic datasets, PMBB, eMERGE, AOU, and UKBB, we extracted 33 

lead variants and tag variants 39 known endometriosis loci for association testing. We meta-34 

analyzed ancestry-stratified case/control tests for each locus and cluster in addition to a positive 35 

control (Total Nendometriosis cases = 10,108).  36 

Results: We have designated the five subtype clusters as pain comorbidities, uterine disorders, 37 

pregnancy complications, cardiometabolic comorbidities, and EHR-asymptomatic based on 38 

enriched features from each group. One locus, RNLS, surpassed the genome-wide significant 39 

threshold in the positive control. Thirteen more loci reached a Bonferroni threshold of 1.3 x 10-3 40 

(0.05 / 39) in the positive control. The cluster-stratified tests yielded more significant associations 41 

than the positive control for anywhere from 5 to 15 loci depending on the cluster. Bonferroni 42 

significant loci were identified for four out of five clusters, including WNT4 and GREB1 for the 43 

uterine disorders cluster, RNLS for the cardiometabolic cluster, FSHB for the pregnancy 44 

complications cluster, and SYNE1 and CDKN2B-AS1 for the EHR-asymptomatic cluster. This study 45 

enhances our understanding of the clinical presentation patterns of endometriosis subtypes, 46 

showcasing the innovative approach employed to investigate this complex disease.  47 
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Abbreviations 48 

AOU  All of Us Biobank 49 

eMERGE electronic medical record and genomics network 50 

EHR  electronic health record 51 

GWAS  genome-wide association study 52 

ICD  international classification of diseases 53 

PMBB  Penn Medicine biobank 54 

UKBB  United Kingdom biobank 55 

Introduction 56 

Endometriosis, a complex gynecological condition affects 10% of women of reproductive 57 

age globally and more than 50% of women with infertility (1), yet it often goes either undiagnosed 58 

or misdiagnosed, leading to delayed diagnoses and delivery of effective therapy (2,3). 59 

Endometriosis is primarily characterized by the presence of endometrial-like tissue outside of the 60 

uterus. For managing the condition without surgery, the main treatments include pain relief and 61 

hormone-based therapies, neither of which are curative. A notable number of women with 62 

endometriosis receive opioids for pain management, despite the need for more sustainable and 63 

effective treatment options  (4,5). On the other hand, hormonal therapies may have limitations to 64 

utilization due to severe side effects or a desire to become pregnant. Typically, the treatment for 65 

endometriosis often includes both medical and surgical approaches, however 30-50% of patients 66 

with severe endometriosis may require a second surgery within 3-5 years (6). The most 67 

comprehensive surgical management involves a hysterectomy with bilateral salpingoophorectomy 68 

(7).Treatment and health care visits accumulate many direct and indirect costs for women with 69 

endometriosis. The estimated economic cost of endometriosis in the US is ~$10k per patient which 70 

is ~14% higher than that of diabetes (8), and does not include the costs patients incur by having to 71 
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miss work days because of their symptoms. In total, endometriosis presents a high economic 72 

burden that exceeds $22 billion in the U.S. alone (9).  The condition not only imposes significant 73 

costs but also involves severe symptoms, delayed diagnosis, limited treatment options, and 74 

financial strain:  challenges that could be significantly mitigated with a more detailed 75 

understanding of the disease.  76 

Electronic Health Records (EHRs) represent a rich, yet underutilized, data source for 77 

capturing the phenotypic spectrum of endometriosis (10). Although the symptoms for 78 

endometriosis  can be quite severe, including chronic debilitating pain, dyspareunia, and infertility, 79 

the average time to diagnosis is 4.5 years (11), in part because the only way to definitively diagnose 80 

endometriosis is by surgical observation of endometrial lesions growing outside of the uterus (e.g. 81 

abdominal cavity, pelvis, ovaries, etc.) (12). The variability in symptoms and disease presentation 82 

adds to the difficulty of diagnosis and hinders the optimal use of electronic health records (EHRs) in 83 

research for accurately identifying affected individuals and control subjects (13–15), which is 84 

critical for understanding the disease and advancing treatment strategies. The depth and breadth of 85 

EHR data provide a unique opportunity to apply unsupervised learning techniques for the 86 

identification of distinct phenotypic clusters that may correspond to clinical subtypes of 87 

endometriosis. Such an approach aligns with precision medicine's goal to tailor diagnosis and 88 

treatment strategies to individual patient characteristics, potentially revealing novel insights into 89 

the disease's pathophysiology. 90 

Better understanding of the disease mechanisms of endometriosis could lead to improved 91 

diagnostic practices, reducing costs to the healthcare system and improving quality of life through 92 

treatment and earlier diagnosis for patients. In spite of the prevalence and severity of 93 

endometriosis, etiology of endometriosis is still poorly understood. The pursuit thus far of 94 

biomarkers and drug targets based on genetic contributions of disease in patients with 95 

endometriosis has mainly included genome-wide association studies to identify genetic variants 96 
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contributing to the disease (16,17). Twin studies have estimated the heritability of endometriosis to 97 

be 47.5% (18), and common variants are estimated to contributed 26% of phenotypic variance 98 

(19), but the largest GWAS to-date (N > 750,000, 60,674 cases) has only explained 9% of the 99 

phenotypic variance (17). Although these recent advances in genomic studies have promised 100 

insights into the underlying genetic mechanisms of endometriosis, yet the heterogeneity of the 101 

disease presentation has consistently complicated these efforts. Traditional genetic association 102 

studies have struggled to untangle the intricate web of genotypic and phenotypic diversity within 103 

endometriosis patients, leading to a critical need for innovative approaches to dissect the disease's 104 

complexity. 105 

We hypothesized that underlying clinical heterogeneity is obscuring the genetic 106 

mechanisms and preventing large-scale genetic studies from explaining more of the heritability. 107 

Endometriosis causes a wide range of symptoms and concomitant conditions, including severe 108 

chronic pain, gastrointestinal inflammation, and infertility. Additionally, many symptoms of 109 

endometriosis are shared between other gynecological diseases such as primary dysmenorrhea, 110 

ovarian cysts, and pelvic inflammatory disease; making symptom-based diagnosis challenging 111 

(20,21). Recent studies have highlighted the importance of complex disease subtyping in improving 112 

our understanding of the genetic mechanisms underlying endometriosis. For example, a recent 113 

study on polycystic ovary syndrome (PCOS) used unsupervised clustering to identify three 114 

subtypes of PCOS based on lab and biometric values before conducting genome-wide association 115 

study for each subtype (22). This approach allowed for a more nuanced understanding of the 116 

genetic basis of PCOS and could be applied to endometriosis to identify subtypes with distinct 117 

genetic mechanisms. Building on the premise that a more nuanced understanding of endometriosis 118 

subtypes could unlock new genetic associations, our study leverages unsupervised, phenotypic 119 

clustering analysis of EHR data to systematically identify and characterize clinical subtypes of 120 

endometriosis. By dissecting the heterogeneity inherent in the disease, we aim to increase the 121 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 22, 2024. ; https://doi.org/10.1101/2024.04.22.24306092doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.22.24306092


6 

power of genetic association analyses, facilitating the identification of subtype-specific disease 122 

mechanisms. This approach not only promises to enhance our understanding of endometriosis 123 

genetics but also to refine diagnostic criteria and inform more targeted and effective treatment 124 

strategies. 125 

In conclusion, the complex nature of endometriosis, with its diverse symptoms and 126 

overlapping features with other gynecological diseases, presents challenges for understanding its 127 

genetic mechanisms. In this manuscript, we detail the methodology and findings of our study, which 128 

integrates unsupervised phenotypic clustering with subsequent genetic association analyses for 129 

each identified endometriosis subtype. By doing so, we aim to bridge the gap between clinical 130 

observations and genetic research in endometriosis, providing a roadmap for future studies to 131 

explore the genetic underpinnings of this complex disease with renewed clarity and precision. This 132 

deeper understanding may pave the way for more targeted and personalized approaches to 133 

diagnosis, treatment, and management of this debilitating condition. Further research and large-134 

scale genetic studies are needed to fully elucidate the genetic architecture of endometriosis and its 135 

subtypes, ultimately leading to improved outcomes for affected individuals. 136 

Methods 137 

Datasets Used for Sub-phenotyping and Genetic Association 138 

The Penn Medicine Biobank (PMBB) is the University of Pennsylvania’s health system-139 

based biobank which consists of about 250,000 consented participants, with 43,624 of those having 140 

imputed genotype data (imputed to TOPMED reference panel) linked with their electronic health 141 

record (EHR) history. The PMBB is an electronic health record (EHR)-linked biobank that integrates 142 

a wide variety of health-related information, including diagnosis codes, laboratory measurements, 143 

imaging data, and lifestyle information, with genomic and biomarker data. The PMBB is one of the 144 
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most diverse medical biobanks, with approximately 30% of participants being of non-European 145 

ancestry. This diversity is crucial for ensuring that research findings are applicable to a broad range 146 

of populations. The biobank also benefits from a median of seven years of longitudinal data in the 147 

EHR, providing valuable information on participants' health histories (22). For our study, we 148 

treated the PMBB as two distinct datasets: those without and those with genotype data. EHR data 149 

from the non-genotyped PMBB were used for cluster derivation whereas the genotyped PMBB 150 

cohort was used in the genetic analyses. 151 

The Electronic Medical Records and Genomics (eMERGE) network is a National Human 152 

Genome Research Institute-funded consortium engaged in the development of methods and best 153 

practices for using the electronic medical record as a tool for genomic research.  The eMERGE 154 

network is a publicly-available dataset with contributions from multiple health systems within the 155 

United States which contains about 100,000 participants with linked health records and imputed 156 

genomic data (imputed to HRC reference panel) (23). The eMERGE consortium validated the 157 

hypothesis that clinical data derived from electronic medical records can be used successfully for 158 

complex genomic analysis of disease susceptibility across diverse patient populations (24). The 159 

eMERGE network has shown the efficiency that can result from the use of electronic health record 160 

data. 161 

The All of Us (AOU) Research Program is an initiative created by the NIH to recruit 162 

demographically diverse individuals to the largest US-based biobank to-date. Recruitment began in 163 

2018, and since then, over 400,000 people have signed up and submitted baseline questions (25). 164 

245,388 of them have short-read whole genome sequence data, collectively representing over one 165 

billion genetic variants (26). Participants’ EHRs are contributed to the AOU data processing center 166 

using the Sync for Science platform (27), which works with EHR vendors such as Epic and Cerner to 167 

collate structured patient data for research use (28). 168 
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The UK Biobank (UKBB) is a large and comprehensive dataset that provides valuable 169 

resources for researchers studying a wide range of health-related topics. The UKBB is a population-170 

based publicly available dataset consisting of about 500,000 UK citizens with EHR data, health 171 

survey data, and imputed genotypes. The UK Biobank has performed genome-wide genotyping on 172 

all participants using the UK Biobank Axiom Array (29). This array directly measures 173 

approximately 850,000 variants, and more than 90 million variants are imputed using the 174 

Haplotype Reference Consortium and UK10K + 1000 Genomes reference panels. 175 

All four of the biobanks mentioned above (PMBB, eMERGE, AOU, and UKBB) utilize the 176 

Observational Medical Outcomes Partnership Common Data Model (OMOP-CDM) to represent 177 

structured EHR data in a harmonized format (30). For this study, we utilized women with ICD-178 

diagnosed endometriosis in the non-genotyped PMBB cohort (Nendo = 4,078) as the derivation 179 

dataset for the clinical subtypes. For deeper characterization of our subtypes, we performed chart-180 

reviews on 682 randomly selected endometriosis cases from the genotyped PMBB. Then, we meta-181 

analyzed women from the genotyped PMBB (N = 20,697, Nendo = 1,198), six non-pediatric sites 182 

within the eMERGE network (N = 51,800, Nendo = 2,243), the AOU research program (N = 108,098, 183 

Nendo = 2,126), and UKBB (N = 261,824, Nendo = 4,451) to form our main genetic analysis test set (N = 184 

442,419, Nendo = 10,018).  185 

Each of the biobanks projected their samples onto the thousand genomes reference 186 

population and performed clustering to assign genetically inferred ancestry labels corresponding to 187 

those from the thousand genomes project (31). We restricted our genetic association analyses to 188 

the groups which had substantial sample sizes, which were those with high similarity the AFR and 189 

EUR thousand genomes superpopulations. We will refer to those groups using AFR and EUR from 190 

here on out. 191 
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Extraction of Endometriosis-Related Clinical Features 192 

 Patients with endometriosis have heterogeneous clinical presentations; there are a wide 193 

variety of associated symptoms, risk factors, and comorbidities. We first determined participants’ 194 

case-control status of endometriosis using structured EHR data: ICD-9 and ICD-10 billing codes 617 195 

and N80, respectively. Then for endometriosis cases, we determined whether each individual had a 196 

history of endometriosis-related clinical features. In total, we extracted 39 ICD-based features 197 

(Table S1): 9 ICD-based anatomical subtypes, 14 comorbidities, 8 symptoms, and 8 pregnancy-198 

related phenotypes. We selected only symptoms, comorbidities, and pregnancy-related conditions 199 

for clustering, removing the 9 anatomical subtypes to be used downstream in cluster 200 

characterization. We further restricted these conditions to those with a prevalence amongst 201 

endometriosis cases in the subtype dataset of at least 5%, leaving us with 17 features for the 202 

clustering analysis (Figure S1). 203 

Unsupervised Clustering 204 

 We tested four popular methods for unsupervised clustering: spectral clustering, density-205 

based spatial clustering of applications with noise (DBSCAN), hierarchical agglomerative clustering, 206 

and k-means clustering. Spectral clustering identifies clusters by decomposing a dataset’s affinity 207 

matrix into its eigenvectors and then clustering in the eigenvector space using QR clustering 208 

algorithm (32,33). DBSCAN is an algorithm which identifies dense regions of data points to discover 209 

clusters (34). Hierarchical agglomerative clustering is an unsupervised classification method that 210 

uses a pairwise distance matrix to iteratively merge nearby points together (35). K-means 211 

clustering randomly initializes centroids for each cluster and then alternates between assigning 212 

data points to their nearest centroid and adjusting the centroids until convergence (36).  213 

In addition to choosing an algorithm, a common struggle with unsupervised clustering is 214 

choosing a target number of clusters in a non-arbitrary way. We used several empirical metrics for 215 
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this: silhouette score, distortion score, and a metric we developed to represent the “evenness” of 216 

clusters. The silhouette score is a metric which considers both intra- and inter-cluster distances to 217 

assess tightness within a cluster and distance between clusters; higher silhouette scores indicate 218 

better quality clusters. The distortion score is the sum of squared errors with respect to the 219 

centroid of each cluster, thus it is desired to minimize distortion. Our evenness metric, optimized by 220 

minimization, was defined as the fractional difference between the size of the largest and smallest 221 

clusters. We measured these metrics across tests for 2-20 clusters for each of the four clustering 222 

methods (except for DBSCAN which automatically infers the optimal number of clusters). 223 

Characterization of Unsupervised Clusters 224 

 After identifying clinical clusters within our observation dataset, our objective was to 225 

delineate their characteristics. We performed two-population z-score proportion tests (37) to 226 

determine if the rates of input conditions were significantly different on a cluster-vs-other-clusters 227 

basis. For our training set (the non-genotyped PMBB, Nendo = 4,078), we examined two sets of 228 

features for the z-score tests: the 17 input features as well as ICD-based anatomical subtypes of 229 

endometriosis including adenomyosis, endometrioma, superficial lesions, and deep lesions 230 

(Supplementary Table S2). For characterizing our clusters, we also utilized a chart-reviewed 231 

dataset of 682 genotyped PMBB patients with endometriosis ICD codes. The features considered 232 

here were confirmed endometriosis and adenomyosis status and chart-abstracted symptoms, 233 

comorbidities, and surgical phenotypes (Supplementary Table S3). By considering the cluster-234 

specific differences in these EHR-derived features among the two datasets, we could observe 235 

patterns in clinical presentation. Based on these patterns, we assigned labels to each cluster.  236 

Cluster-Stratified Candidate Gene Association Testing 237 

To identify genetic heterogeneity among the varied clinical presentations of endometriosis, 238 

we performed cluster-stratified, ancestry-stratified candidate gene association studies. Using PLINK 239 
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2.0 (38), we extracted single nucleotide polymorphisms (SNPs) in LD (kb distance < 0.5 Mb and R2 > 240 

0.1) with 39 autosomal lead SNPs reported in the most recent endometriosis GWAS(17). LD was 241 

computed based on the thousand genomes reference panel (31). Cluster phenotypes were assigned 242 

for PMBB, eMERGE, and AOU using a K-Nearest neighbors’ classifier (39) with K=3 on the same 17 243 

ICD-based features. For each study, we employed a linear mixed model regression method 244 

employed in SAIGE (40) to test for associations between genotypes and case-control status. Cases 245 

were females with endometriosis from one cluster and controls were biological females with no ICD 246 

history of endometriosis. In the regression models we included the first four principal components, 247 

age, and batch indicators (eMERGE only) as covariates. The ancestry-stratified results of these 248 

studies were then meta-analyzed using Plink 1.9 (41) for each of the cluster-phenotypes. We also 249 

tested a baseline overall endometriosis (cases from all clusters combined) as a positive control to 250 

identify how many known loci we were able to replicate. Because multiple genetic ancestry groups 251 

were included, we chose a random-effects meta-analysis, which is more robust to heterogeneity 252 

(42). 253 

Results 254 

Derivation, Study, and Validation Datasets 255 

This study utilized five datasets to investigate the genetic mechanisms underlying 256 

endometriosis and its subtypes. The datasets used were endometriosis cases in the non-genotyped 257 

PMBB for the derivation of clusters, a chart-reviewed endometriosis cohort to help characterize the 258 

clusters, the genotyped PMBB, six sites within the eMERGE network, AOU, and UKBB for genome-259 

wide association analyses (See Methods). The sample sizes for each cohort, the mean age at 260 

diagnosis, the number of cases and controls, and the mean age at the time of data pull for each 261 

cohort are shown in Table 1. See Methods for details on each of the four datasets. By leveraging 262 
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these datasets, the study aimed to identify endometriosis subtypes and gain insights into the 263 

genetic factors associated with endometriosis and its subtypes. 264 

 265 

  266 
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Table 1: Cohort sample size and average age of cases and controls for the datasets used in this 267 

analysis. Age was considered the age as of when the EHR data were collected. 268 

Dataset Endometriosis N (AFR / EUR) Mean Age (SD) 

Cluster Derivation Set: 

Non-Genotyped PMBB Cases 4,078 (NA) 49.9 (13.3) 

Genetic Association Sets: 

AOU 
Cases 2,126 (542 / 1,584) 52.2 (12.8) 

Controls 108,099 (31,435 / 76,664) 56.8 (16.8) 

eMERGE 
Cases 2,243 (353 / 1,890) 59.9 (14.6) 

Controls 49,557 (9,934 / 39,623) 59.7 (23.4) 

PMBB 
Cases 1,198 (562 / 636) 54.2 (12.9) 

Controls 19,493 (6,524 / 12,969) 60.0 (17.8) 

UKBB 
Cases 4,541 (112 / 4,429) 51.5 (7.5) 

Controls 257,283 (4,524 / 252,759) 56.6 (8.0) 

Meta-Analysis Totals: 

META 
Cases 10,108 (1,569 / 8,539) 53.9 (11.3) 

Controls 434,432 (52,417 / 382,015) 57.1 (13.6) 

Derivation of Unsupervised of Clusters 269 

Unsupervised clustering was performed in non-genotyped PMBB dataset of 4,078 women270 

with EHR-diagnosed endometriosis using 17 clinical features (supplementary figure S2). We tested271 

four methods for unsupervised clustering as well as 19 values for the number of clusters (K=2-20)272 

and measured three metrics to empirically choose a clustering method and number of clusters273 

(Figure 1). 274 

275 

Figure 1: testing various clustering algorithms and K-values to empirically choose an optimal 276 

method. The three metrics shown are (a) Manhattan-distance-based silhouette score, (b) distortion277 
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or sum of squared errors, and (c) evenness represented by the difference in fraction between the 278 

largest and smallest clusters. Based on these tests, we chose spectral clustering with K=5. 279 

 280 

 Based on these tests, we first eliminated DBSCAN because the inferred number of clusters 281 

was 131, a far too complex model to be useful or interpretable. Next, we eliminated hierarchical 282 

clustering because the sizes of the resulting clusters were more uneven than the other methods.  283 

Spectral clustering and k-means clustering were ultimately more difficult to choose between, but 284 

when we focused on the shapes of the distortion curves across the values of K, we observed that k-285 

means lacked an “elbow” to show a clear optimal K value whereas spectral clustering clearly 286 

indicated 5 as an ideal K with a local minimum. Thus, we chose spectral clustering with K=5 as our 287 

unsupervised subtyping model. The sizes of the final clusters were: (1) 441 - 11%, (2) 686 - 17%, 288 

(3) 1,151- 28%, (4) 796 - 20%, and (5) 1,004 - 25%. Figure 2 illustrates the eigenvectors of the 289 

affinity matrix which were used for clustering the data points. 290 
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291 

Figure 2: pairwise scatter plots of the first five eigenvectors of the affinity matrix used for spectral 292 

clustering, colored by cluster. This five-dimensional eigenvector space was used for clustering. The 293 

diagonal shows kernel density estimator plots for each of the five eigenvectors. 294 

  295 

 296 
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Data-Driven Cluster Characterization 297 

 After clustering, we aimed to characterize these clusters by observing patterns in clinical298 

presentation (prevalence) amongst the input features. We performed two sets of z-score299 

proportion tests comparing prevalence of each feature between each cluster and the other four300 

clusters in our training set. The first set of tests was performed on the original cluster derivation301 

cohort, and the features included were the 17 input features (symptoms and comorbidities with302 

prevalence > 5%) as well as ICD-defined anatomical subtypes of endometriosis (Figure 3). 303 

304 

Figure 3: feature tests for the non-genotyped PMBB training set. Shown are (a) z-scores for the 305 

difference in proportion tests, annotated with p-values that are significant and (b) feature 306 

prevalence by cluster to provide context for the z-score tests. 307 

 308 

Among the five clusters identified in the training set, there were many input features and309 

ICD-based anatomical subtypes with significantly different proportions. To identify distinguishing310 
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features between the clusters, we focus on phenotypes which were significantly enriched and had 311 

the highest prevalence in that cluster. Cluster one had the highest rates of (and was significantly 312 

enriched for) dysuria (Z=8.9), migraine (Z=10.6), IBS (Z=10.3), fibromyalgia (Z=15.3), asthma 313 

(10.3), abdominal pelvic pain (Z=13.6), and shortness of breath (Z=13.5). Cluster two had the 314 

highest rates of the following significantly enriched traits: dysmenorrhea (Z=21.9), infertility 315 

(Z=5.9), irregular menstruation (Z=31.75), leiomyoma of uterus (Z=21.9), and uterine 316 

endometriosis defined by ICD-9 617.0* or ICD-10 N80.0* (Z=13.4). Cluster three’s defining features 317 

were high risk pregnancy supervision (Z=7.1), superficial lesions defined by ICD-9 617.3* or ICD-10 318 

N80.3* (Z=7.1), and lower abdominal pain (Z=14.6). Individuals in cluster four had highest 319 

prevalence of abnormal cholesterol (Z=33.1) and hypertension (Z=33.9), while cluster five was only 320 

enriched for unspecified endometriosis defined as ICD-9 617.9* or ICD-10 N80.9* (Z=7.0). 321 

The second set of tests was performed on a subset of endometriosis cases (N=682) from the 322 

genotyped PMBB for whom chart reviews were performed by OB-GYN clinical fellows at the 323 

University of Pennsylvania Hospital System. The features tested were gold standard confirmed 324 

diagnoses (endometriosis, adenomyosis, fibroids, and any ICD false positives), surgical subtypes, 325 

hormone use at the time of confirmation procedure, and symptoms identified from a combination 326 

of structured data and notes (Figure 4). 327 
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328 

Figure 4: feature tests for the chart reviewed PMBB dataset. Shown are (a) z-scores for the 329 

difference in proportion tests, annotated with p-values that are significant and (b) feature 330 

prevalence by cluster to provide context for the z-score tests. 331 

 Because the size of our chart-reviewed dataset was limited, there were fewer significant332 

tests. For cluster one, the phenotypes which were most significantly prevalent were interstitia333 

cystitis (Z=3.8) and fibromyalgia (Z=6.9). For cluster two, the defining features were confirmed334 

adenomyosis status (Z=3.7), confirmed uterine fibroids (Z=7.1), and symptomatic bleeding (Z=5.3)335 

Cluster three’s most highly enriched features were pelvic pain (Z=3.5) and hormone use at the time336 

of surgery (Z=4.1).  Considering the enriched features for each cluster among the two sets of tests337 

we defined the following labels for 5 clusters: (1) pain comorbidities, (2) uterine disorders, (3)338 

pregnancy complications, (4) cardiometabolic comorbidities, and (5) EHR-asymptomatic. 339 
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Candidate Gene Association Testing Stratified by Phenotypic Cluster 340 

 We applied the subtype classifications observed in our derivation set to our four genetic 341 

association datasets, PMBB, eMERGE, AOU, and UKBB. We used a K-nearest neighbors model with 342 

the same 17 EHR-derived features to assign endometriosis cases to the five phenotypes (Table 2). 343 

Table 2: counts and proportions of endometriosis cases in each cluster by dataset. 344 

Dataset Pain 

Comorbidities 

Uterine 

Disorders 

Pregnancy 

Complications 

Cardiometabolic 

Comorbidities 

EHR-

Asymptomatic 

Cluster Derivation Set: 

Training 441 (10.8%) 686 (16.8%) 1,151 (28.2%) 796 (19.5%) 1,004 (24.6%) 

Genetic Association Sets: 

AOU 713 (21.8%)  690 (21.1%) 723 (22.1%) 783 (23.9%) 362 (11.1%) 

eMERGE 495 (22.1%) 505 (22.5%) 382 (17.0%) 709 (31.6%) 152 (6.8%) 

PMBB 200 (16.7%) 222 (18.5%) 273 (22.8%) 366 (30.6%) 137 (11.4%) 

UKBB 231 (5.1%) 607 (13.4%) 842 (18.5%) 285 (6.3%) 2,576 (56.7%) 

Meta-Analysis Totals: 

META 1,639 (14.6%)  2,024 (18.0%) 2,220 (19.7%)  2,143 (19.0%) 3,227 (28.7%) 

 345 

 The smallest cluster was the pain comorbidities cluster, with only 14.6% of total 346 

endometriosis cases being assigned to this cluster. The EHR-asymptomatic cluster was the largest 347 

cluster overall.  The other three clusters occurred in relatively even proportions in the overall 348 

meta-analysis group at 18.0% (uterine disorders), 19.7% (pregnancy complications), and 19.0% 349 

(cardiometabolic comorbidities). 350 

 To establish a reference for the expected level of signal replication, we began with a positive 351 

control test. We conducted association tests on 39 established genetic locations (autosomes only) 352 

known to be linked to endometriosis. (Figure 5). 353 
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354 

Figure 5: results for our endometriosis case vs control positive control association tests at each of 355 

the 39 known loci. Shown are the lead SNPs from the Rahmioglu et al 2023 GWAS as well their tag 356 

SNPs in LD (kb distance < 0.5 Mb and R2 > 0.1). X-axis labels are from the known GWAS. 357 

 358 

 Our positive control test resulted in fourteen replicating loci. Only one was genome-wide359 

significant, RNLS/10q23.31 (P = 1.91x10-9, rs792212:T). Thirteen were significant at a Bon Ferroni-360 

corrected threshold of 0.05 / 39: WNT4/1p36.12 (P = 9.12x10-8, rs2235529:T), DNM3/1q24.3 (P =361 

3.54x10-5, rs655853:C), GREB1/2p25.1 (P = 6.55x10-4, rs34532804:A), PDLIM5/4q22.3 (P = 8.58x10362 

4, rs1493112:T), EBF1/5q33.3 (P = 7.64x10-4, rs1878936:C), SYNE1/6q25.1 (P = 3.20x10-4363 

rs13206045:C), GDAP1/8q21.11 (P = 4.19x10-7, rs10957712:T), CDKN2B-AS1/9p21.3 (P = 1.75x10-6364 

rs10122243:T), ASTN2/9q33.1 (P = 9.01x10-4, rs62576127:A), ABO/9q34.2 (P = 5.87x10-4365 

rs495828:G), FSHB/11p14.1 (P = 1.17x10-3, rs11031006:A), WT1/11p14.1 (P = 2.85x10-4366 

rs72638188:T), DLEU1/13q14.2 (P = 2.24x10-4, rs9568417:G). 367 

To test whether stratifying by clinical presentation allowed for greater resolution in genetic368 

associations, we performed case-control candidate gene association studies for the five phenotypic369 

clusters by meta-analyzing ancestry-stratified summary statistics from four EHR-linked genetic370 

datasets: PMBB, eMERGE, AOU, and UKBB. We observe 18 / 39 loci (46%) significantly associating371 

with one or more clusters (Figure 6a, 6b). Also, for up to 15 loci, the cluster-stratified phenotypes372 
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yield stronger associations than the positive control despite having smaller sample sizes (Figure373 

6c). 374 

375 

Figure 6: Phenotype-specific association test results. The top panel (a) indicates which known loci 376 

were significantly replicated by the positive control and five clusters. The bottom left panel (b) 377 

shows the number and names of statistically significant associations for each phenotype. The 378 

bottom right panel (c) shows the number of loci for which each phenotype had a more significant 379 

association than the baseline. 380 

 The smallest cluster, cluster one, with high rates of pain comorbidities, was not significantly381 

associated with any known loci, but it was more significantly associated than the positive control382 

for eight loci as shown in Figure 6c. The uterine disorders cluster (two) was significantly associated383 

with four loci, WNT4/1p36.12, DNM3/1q24.3, GREB1/2p25.1, and GDAP1/8q21.11. Out of the seven384 
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loci significantly associated with the pregnancy complications cluster (three), three of them were 385 

not significantly associated with any other clusters or the positive control: KDR/4q12, 7p15.2, and 386 

KCTD9/8p21.2. Cluster four, enriched for cardiometabolic comorbidities, was significantly 387 

associated with one locus, RNLS/10q23.31, the strongest hit from the positive control. RNLS was 388 

also significantly associated with clusters three and five. Eleven loci were significantly associated 389 

with the EHR-asymptomatic cluster, and six of those (BSN/3p21.31, ID4/6p22.3, CD109/6q13, 390 

MLLT10/10p12.31, IGF1/12q23.2, and SKAP1/17q21.32) had no other associations, even with the 391 

positive control. 392 

Discussion 393 

 Endometriosis presents with heterogeneous symptoms ranging from severe pain to 394 

infertility, contributing to varying patient experiences and treatment responses. Several large 395 

genome-wide association studies and meta-analyses have been performed for endometriosis to-396 

date. However, the genomic underpinnings of endometriosis remain incompletely understood, 397 

largely due to the clinical heterogeneity and the limitations of traditional genome-wide association 398 

studies (GWAS) that aggregate all cases into a single analysis pool. This approach may obscure 399 

genetic variations specific to different endometriosis phenotypes, thus necessitating more refined 400 

stratification techniques. There are various approaches to phenotyping participants for these 401 

studies including surgical notes and electronic health records. While there have also been analyses 402 

which account for disease progression (17), there have not been any genome-wide investigations 403 

into the genetics underlying the heterogeneous presentation patterns of endometriosis. 404 

 In this study, we aimed to investigate the genetics of heterogeneity in endometriosis by 405 

defining data-driven subtypes in women from the non-genotyped PMBB endometriosis population 406 

(N=4,078). We extracted clinical features known to be associated with endometriosis and 407 

performed unsupervised spectral clustering, identifying five clusters. Unsupervised clustering was 408 
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an ideal approach for this study because it a way to find patterns in the data without introducing 409 

prior knowledge or bias. We chose spectral clustering with five clusters based on empirical metrics 410 

measured by comparing four different unsupervised clustering methods across a range of K values 411 

(2-20 clusters). This method had the best tradeoff between squared error, silhouette score, and 412 

cluster evenness. 413 

To understand the clinical presentation patterns of each of the clusters, we compared the 414 

rates of the input features, diagnoses, and chart-reviewed phenotypes amongst them. Based on 415 

statistical enrichment testing across the features, the clusters were labeled as (1) pain 416 

comorbidities, (2) uterine disorders, (3) pregnancy complications, (4) cardiometabolic 417 

comorbidities, and (5) EHR-asymptomatic. This nuanced phenotyping, which diverges from 418 

traditional classifications, allows for a deeper understanding of the pathophysiological variations 419 

within endometriosis and highlights the necessity of tailored therapeutic approaches. 420 

 After deriving and characterizing the clusters in the non-genotyped PMBB, we used a k-421 

nearest neighbors’ model to transfer the subtypes to the other four EHR-linked genetic datasets, 422 

PMBB, eMERGE, AOU, and UKBB. We performed ancestry-stratified candidate gene testing for each 423 

of the clusters using SAIGE and identified eight genome-wide significant signals. The genetic 424 

analysis of these clusters yielded intriguing results. While 46% of previously known GWAS loci 425 

were replicated in our study, significant differences in loci associations across the clusters were 426 

observed. For instance, genes like WNT4 and GREB1 showed specific associations with the uterine 427 

disorders and EHR asymptomatic clusters, suggesting that these genes might play distinct roles in 428 

the pathogenesis of these phenotypic presentations of endometriosis. Conversely, the BSN gene, 429 

although not statistically significant, demonstrated greater significance in the pain and pregnancy 430 

complications clusters, indicating a possible link to neurovascular or inflammatory mechanisms 431 

that could exacerbate these conditions. 432 
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 Renalase (RNLS) is the protein associated with our only genome-wide significant 433 

association from the positive control, RNLS/10q23.31. At the Bonferroni significance threshold, the 434 

association with RNLS was significant for three out of five sub-phenotypes: pregnancy 435 

complications, cardiometabolic comorbidities, and EHR-asymptomatic. It was the only significant 436 

association with the cardiometabolic cluster. RNLS is highly expressed in the heart and contributes 437 

to regulating blood pressure (43). In genetic association studies, RNLS has been previously 438 

associated with type 1 diabetes (44) and smoking initiation (45). Smoking is a known risk factor of 439 

endometriosis. 440 

 Cluster three, with high rates of pregnancy-related complications such as infertility and 441 

high-risk pregnancy, was significantly associated with seven loci including FSHB (P = 1.8 x 10-4). 442 

The FSHB gene codes for the beta-subunit of follicle-stimulating hormone (FSH). FSH is essential for 443 

female fertility and has been shown to regulate myometrial contractile activity (46). FSHB was 444 

significantly associated with the positive control as well, but not with any of the other clusters. 445 

 Cluster five, which was largely asymptomatic in the EHR, was the largest cluster. Over half 446 

(56%) of UKBB endometriosis patients were assigned to this cluster. It is possible that those 447 

assigned to this cluster from any dataset have symptoms that were not recorded in the structured 448 

data which we had access to. Two well-known endometriosis loci from both of the last major 449 

GWASs are SYNE1 and CDKN2B-AS1 (16,17), both of which were significantly associated with the 450 

positive control and the EHR-asymptomatic cluster. Six loci were associated with this cluster and no 451 

other phenotypes:  BSN, ID4, CD109, MLLT10, IGF1, and SKAP1. MLLT10 and BSN have been 452 

previously associated with pain perception and maintenance (17). Serum levels of IGF-1 are 453 

significantly elevated in women with endometriosis (47). Gene expression of ID4 is down-regulated 454 

in eutopic and ectopic endometrial tissue of women with endometriosis (48). CD109I and SKAP1 455 

have been previously associated with endometrial cancers (49,50).  456 

   457 
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 Subtyping complex diseases, like endometriosis, is crucial for advancing precision medicine. 458 

The findings from our study underscore the utility of EHR as a rich resource for disease subtyping 459 

and genetic research. The linkage of detailed clinical data with genetic information enables the 460 

identification of phenotype-genotype correlations that are often diluted in broader GWAS analyses. 461 

Furthermore, the use of spectral clustering helps elucidate the heterogeneity within endometriosis, 462 

providing a framework for understanding the multifaceted nature of the disease and facilitating the 463 

development of personalized medicine.  464 

However, it is essential to acknowledge the limitations of our study. One significant 465 

constraint was the sample size, which was particularly limited for some of the smaller clusters and 466 

for individuals of non-European ancestry. This limitation could potentially introduce bias and affect 467 

the generalizability of our findings. Additionally, our study relies on structured electronic health 468 

data only, which may not capture the full clinical picture and could be subject to inaccuracies or 469 

incomplete records. Lastly, this genetic association analyses in this study only focused on the 470 

candidate genes that are previously known to be associated with endometriosis. This approach 471 

might have restricted our ability to discover novel genetic loci potentially relevant to the specific 472 

clusters identified. Despite these limitations, our study marks a meaningful advancement in 473 

understanding the genetic factors that may contribute to the heterogeneity observed in 474 

endometriosis. By focusing on genetic associations gleaned from electronic health records, we offer 475 

a novel perspective that could be instrumental in future research and treatment approaches. To 476 

expand upon the current findings, future research should aim to perform comprehensive GWAS 477 

across the identified endometriosis subtypes. This will enable the detection of novel loci that could 478 

be crucial for understanding the distinct mechanisms underlying each subtype. Additionally, 479 

integrating multi-omics data (such as transcriptomic, proteomic, and metabolomic data) could 480 

further refine the molecular signatures associated with each cluster, enhancing the biological 481 

interpretability of the genetic associations. Another promising avenue is the longitudinal study of 482 
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these clusters to assess disease progression and treatment outcomes, which could inform more 483 

effective, personalized therapeutic strategies. 484 

In conclusion, our research highlights the importance of subtype-specific studies in 485 

elucidating the genetic basis of endometriosis. By leveraging the capabilities of EHR-linked 486 

biobanks and employing advanced clustering techniques, we pave the way for more targeted and 487 

effective approaches to understanding and managing this complex disease. 488 
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