Title:

A Case for Estradiol: Younger Brains in Women with Earlier Menarche and Later Menopause

Authors and Affiliations:

 Eileen Luders⁻⁷⁵⁹⁷ | Inger Sundström Poromaa[÷]| Claudia Barth $^{\circ}$ | Christian Gaser $^{\circ\prime\prime\circ}$

 $\begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$ 1 Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden ²Swedish Collegium for Advanced Study (SCAS), Uppsala, Sweden

³School of Psychology, University of Auckland, Auckland, New Zealand

aboratory of Neuro Imaging, School of Medicine, University of Southern California, L ²Swedish Collegium for Advanced Study (SCAS), Uppsala, Sweden Swedish Collegium for Advanced Study, Collegy, Pippenty, Pippenty, Advanced Indian and Study of Neuro Imaging, School of Medicine, University of Southern Cal
Angeles, USA
tment of Psychiatric Research, Diakonhjemmet Hospit ³School of Psychology, University of Auckland, Auckland, New Zealand ry of Neuro Imaging, School of Medicine, University of Southern Califo
Angeles, USA
artment of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norv
ent of Psychiatry and Psychotherapy, Jena University Hospital, Jena, 7 Sum angeles, USA

Summer Hospital, Oslo, Norway

Pepartment of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany

Pepartment of Neurology, Jena University Hospital, Jena, Germany

Pepartment of Neurolog Angeles, 2017
arch, Diakonh
otherapy, Jen
Jena Universi
er for Mental ⁵ Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway Frament of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germ

⁷ Department of Neurology, Jena University Hospital, Jena, Germany

⁸ German Center for Mental Health (DZPG)
 ndence should be addressed t ľ The ⁷Department of Neurology, Jena University Hospital, Jena, Germany

⁸German Center for Mental Health (DZPG)
 Prespondence should be addressed to:
 1998 The Luders, Ph.D.

Thent of Women's and Children's Health, ⁸German Center for Mental Health (DZPG)

*Correspondence should be addressed to:

Eileen Luders, Ph.D.

Matter of Neutral Hostin, Jena, Jena, Andrej Serman Center for Mental Health (DZPG)

Ce should be addressed to:

S, Ph.D.

Women's and Children's Health, Uppsala University, Uppsala, Swed

Reders@uu.se Franch Franch Mental Health (2213)
addressed to:
d Children's Health, Uppsala University, U

Abstract

The risk of dementia increases around menopause and it stands to reason that estradiol (or the
lack thereof) plays a significant role for the development of dementia and other age-related
neuropathologies. Here we investig ack thereof) plays a significant role for the development of dementia and other age-related
neuropathologies. Here we investigated if there is a link between brain aging and estradiol-
associated events, such as menarche a neuropathologies. Here we investigated if there is a link between brain aging and estradiol-
associated events, such as menarche and menopause. For this purpose, we applied a well-
validated machine learning approach in a between menarche and menopause). These effects were evident both cross-sectionally and longitudinally, which supports the notion that estradiol might contribute to brain preservation. $\,$ scanned twice approximately two years apart. We observed less brain aging in women with an
earlier menarche, a later menopause, and a longer reproductive span (i.e., the time interval
between menarche and menopause). These earlier menarche, a later menopause, and a longer reproductive span (i.e., the time interval
between menarche and menopause). These effects were evident both cross-sectionally and
longitudinally, which supports the notion between menarche and menopause). These effects were evident both cross-sectionally and
longitudinally, which supports the notion that estradiol might contribute to brain preservation.
However, more research is required as between menarche and menopause). These enters these enterms are treated in the section of longitudinally, which supports the notion that estradiol might contribute to brain preservation.
However, more research is required longitudinally, which supports the notion that establishing to channote to brain preservation.
However, more research is required as effects were small and no direct measures of estradiol
were obtained in the current study However, more research is required as effects were obtained in the current study.
Were obtained in the current study.
Keywords:

R Keywords:

were obtained in the current study.
Ke<mark>ywords:</mark>
brain age; estradiol; machine learnir brain age; estradiol; machine learning; menarche; MRI; menopause; structural neuroimaging

Introduction

woman¹. Generally speaking, estradiol levels start increasing just before the first menstrual
period (menarche) and then plateau on a high level until they start decreasing during
perimenopause. After the final menstrual woman². Generally speaking, estradiol levels start increasing just before the first menstrual
period (menarche) and then plateau on a high level until they start decreasing during
perimenopause. After the final menstrual perimenopause. After the final menstrual period (i.e., menopause) estradiol levels decrease
further and eventually reach plateauing low levels during postmenopause². The risk for
dementia in women is known to increase ar permant period and the final mental period (i.e., mentaparacy contains to the final further and eventually reach plateauing low levels during postmenopause². The risk for dementia in women is known to increase around men further and eventually reach plateauing low levels during postmenopause^s. The risk for
dementia in women is known to increase around menopause³⁻⁶ and thus it stands to reason
that estradiol plays a significant role for dementia in women is known to increase around menopause³⁰ and thus it stands to reason
that estradiol plays a significant role for the development of dementia and other age-related
neuropathologies. However, scientific s the ureprished on specific phases (e.g., menarche,
pregnancy, menopause) or interventions (oral contraceptives, estrogen modulation therapy,
estrogen replacement therapy) paint a rather complex picture, with no consistent pregnancy, menopause) or interventions (oral contraceptives, estrogen modulation therapy,
estrogen replacement therapy) paint a rather complex picture, with no consistent evidence that
more (estradiol) is always beneficial estrogen replacement therapy) paint a rather complex picture, with no consistent evidence that
more (estradiol) is always beneficial^{4,7-22}. For example, with particular respect to menarche and
menopause, both early onse more (estradiol) is always beneficial^{4,7-22}. For example, with particular respect to menarche and
menopause, both early onset and late onset have been shown to increase the risk for dementia
or to be positively associat

more (estradiol) is always beneficial^{4,7-22}. For example, with particular respect to menarche and
menopause, both early onset and late onset have been shown to increase the risk for dementia
or to be positively associat or to be positively associated with brain aging and cognitive functioning^{4,7-14,18-20}.
To further advance this field of research, the current study set out to determine if there
is a link between a woman's estimated brai or to be positively associated with brain aging and cognitive functioning^{4,7-14,18-20}.
To further advance this field of research, the current study set out to deta
is a link between a woman's estimated brain age (a biolo between a woman's estimated brain age (a biological marker of brain health²³) and the
uctive span (i.e., the interval between menarche and menopause when estradiol levels
h). If a lack of estradiol is among the driving is a link between a woman's estimated brain age (a biological marker of brain health²³) and the
reproductive span (i.e., the interval between menarche and menopause when estradiol levels
are high). If a lack of estradiol reproductive span (i.e., the intervals and the driving factors for diminished brain health later in
life, brain age and reproductive span should be inversely related (negative correlation). To be
able to relate our finding are hife, brain age and reproductive span should be inversely related (negative correlation). To be able to relate our findings to others in the literature⁷⁻⁹ and to provide a frame of reference for future studies, we a able to relate our findings to others in the literature⁷⁻⁹ and to provide a frame of reference for future studies, we additionally investigated if there is a significant link between estimated brain age and the age at me able to relate our findings to others in the literature²⁵³ and to provide a frame of reference for
future studies, we additionally investigated if there is a significant link between estimated brain
age and the age at me age and the age at menarche as well as the age at menopause. Assuming a neuroprotective
effect of estradiol, we expected that a lower brain age would be linked to an earlier menarche
(positive correlation) and to a later m age and the age at memaric as well as a memapped of the linked to an earlier menarche
(positive correlation) and to a later menopause (negative correlation). Importantly, our study
comprises both cross-sectional and longit (positive correlation) and to a later menopause (negative correlation). Importantly, our study comprises both cross-sectional and longitudinal components, with follow-up data acquired approximately two years after the ini (positive correlation) and to a later memopole (negative correlation), importantly, our study
comprises both cross-sectional and longitudinal components, with follow-up data acquired
approximately two years after the initi approximately two years after the initial brain scan. This constitutes a critical extension to
existing studies from the UK biobank with a related focus as those studies are solely cross-
sectional in nature $8,9,11,1718,$ existing studies from the UK biobank with a related focus as those studies are solely cross-
sectional in nature ^{8,9,11,1718,19}. existing studies from the UK biobank with a related focus
sectional in nature ^{8,9,11,1718,19}.
 3 sectional in nature $\frac{8,9,11,17,16,19}{9}$.

The extimated using structural brain images and a well-validated high-dimensional
recognition approach, as detailed elsewhere 24.25 . Briefly, the difference between the
ed brain age and the chronological age yields a so pattern recognition approach, as detailed elsewhere ^{24,25}. Briefly, the difference between the estimated brain age and the chronological age yields a so-called brain age gap estimate (BrainAGE) in years. The BrainAGE ind pattern recognition approach, as detailed elsewhere ^{24,25}. Briefly, the difference between the
estimated brain age and the chronological age yields a so-called brain age gap estimate
(BrainAGE) in years. The BrainAGE ind (BrainAGE) in years. The BrainAGE index is negative if a brain is estimated younger than its chronological age; it is positive if a brain is estimated older than its chronological age. For example, a 50-year-old woman wit chronological age; it is positive if a brain is estimated older than its chronological age. For
example, a 50-year-old woman with a BrainAGE index of -3 years shows the aging pattern of a
47-year-old. The BrainAGE algorit example, a 50-year-old woman with a BrainAGE index of -3 years shows the aging pattern of a
47-year-old. The BrainAGE algorithm has been shown to be robust and reliable across datasets,
age-ranges, and scanner types^{24,26} 47-year-old. The BrainAGE algorithm has been shown to be robust and reliable across datasets,
age-ranges, and scanner types^{24,26}; it has been successfully applied in a wide range of
studies^{24,25,27-29} including those age-ranges, and scanner types^{24,26}; it has been successfully applied in a wide range of
studies^{24,25,27-29} including those capturing hormonal changes in women^{30,31}. Moreover, the
BrainAGE index has been demonstrated studies^{24,25,27-29} including those capturing hormonal changes in women^{30,31}. Moreover, the
BrainAGE index has been demonstrated to work as a predictor of dementia as well as age-
related cognitive decline^{27,32}. studies^{24,25,27-29} including those capturing hormonal changes in women^{39,32}. Moreover, the
BrainAGE index has been demonstrated to work as a predictor of dementia as well as age-
related cognitive decline^{27,32}.
Resul

Results

$Main Analysis$ Main Analysis

related cognitive decline^{27,32}.
Results
Main Analysis
As shown in Figure 1 (left ייות
י
ג As shown in Figure 1 (left), our closs sectional analyses revealed a significant negative
association between BrainAGE and the reproductive span. In other words, brains of women
with longer reproductive spans were estimat with longer reproductive spans were estimated younger than brains of women with shorter
reproductive spans. As also shown in **Figure 1** (right), there was a significant positive association
between BrainAGE and age at mena reproductive spans. As also shown in **Figure 1** (right), there was a significant positive association
between BrainAGE and age at menarche (i.e., the earlier the menarche, the younger the brain)
and a significant negative reproductive spans. As also shown in Figure 1 (right), there was a significant positive association
between BrainAGE and age at menarche (i.e., the earlier the menarche, the younger the brain)
and a significant negative as and a significant negative association between BrainAGE and age at menopause (i.e., the later
the menopause, the younger the brain). Statistics are provided in **Table 1**, including the slopes
of the regression which indica and a significant negative as a significant rates of change for **Table 1**, including the slopes of the regression which indicate different rates of change for menarche and menopause (0.32 and -0.10, respectively): More spe the menopause, the younger the brain). Statistics are provided in Table 1, including the slopes
of the regression which indicate different rates of change for menarche and menopause (0.32
and -0.10, respectively): More spe and -0.10, respectively): More specifically, for each year younger at menarche, brains are
estimated 0.32 years younger (which corresponds to 3.2 years younger for each 10 years). In
contrast, for each year older at menopa and they repeated, there specifically, for each year younger at menarche, and are
estimated 0.32 years younger (which corresponds to 3.2 years younger for each 10 years). In
contrast, for each year older at menopause, brai contrast, for each year older at menopause, brains are estimated 0.1 year younger (which corresponds to 1 year younger for each 10 years). corresponds to 1 year younger for each 10 years).

4 corresponds to 1 years).

	R^2	Correlation (r)	Significance (p)	Slope
Reproductive Span	0.01	-0.11	< 0.001	-0.11
Age at Menarche	0.02	0.14	< 0.001	0.32
Age at Menopause	0.01	-0.09	< 0.005	-0.10

Table 1. Associations with BrainAGE at the initial brain scan

Figure 1: Correlations with BrainAGE at the initial brain scan. The x-axes show the reproductive span (age, respectively) in years. Of note, age in the UK Biobank has been rounded d to the year, so we added a small random jitter to the x-axes to give a better overview about the e age distribution. The y-axes show the BrainAGE index in years, with negative values mulcating that brains are estimated younger than their chronological age and positive values indicating g that brains are estimated older than their chronological age. Panel A displays a negative link k between the BrainAGE index and the reproductive span (the longer the reproductive span, the e younger the estimated brain age). Panel B displays a positive link between the BrainAGE index and the age at menarche (the earlier the onset of menarche, the younger the estimated brain n age). Panel C displays a negative link between the BrainAGE index and the age at menopause (the later the onset of menopause, the younger the estimated brain age). Hot colors in the density plot indicate a larger overlay of measures; cool colors indicate a smaller overlay. The shaded band is the 95% confidence interval. e e

As shown in Figure 2 and Table 2, our longitudinal midnigs committed closerved cross-sectional relationships. More specifically, ∆ BrainAGE was negatively linked to reproductive span and d menopause, and positively linked to age at menarche. All associations were significant . Moreover, the slopes of the regression are still somewhat different for menarche and d menopause (0.08 and -0.06, respectively), albeit more similar than in the cross-sectiona l analysis: For each year younger at menarche, brains are estimated 0.08 years younger (0.8 8 years over 10 years), whereas for each year older at menopause, brains are estimated 0.06 6 years younger (0.6 years over 10 years).

Table 2. Associations with changes in BrainAGE over 2.35 years

	R^2	Correlation (r)	Significance (p)	Slope
Reproductive Span	0.01	-0.12	< 0.001	-0.07
Age at Menarche	< 0.01	0.06	0.04	0.08
Age at Menopause	0.01	-0.11	< 0.001	-0.06

Figure 2: Correlations with BrainAGE over 2.35 years (∆ BrainAGE). Panel A displays a negative link between the BrainAGE index and reproductive span (the longer the reproductive span, the e e

and the age at menarche (the earlier the onset of menarche, the younger the estimated brain age). Panel C displays a negative link between the BrainAGE index and the age at menopause (the later the onset of menopause, the age). Panel C displays a negative link between the BrainAGE index and the age at menopause
(the later the onset of menopause, the younger the estimated brain age). Hot colors in the
density plot indicate a larger overlay o (the later the onset of menopause, the younger the estimated brain age). Hot colors in the
density plot indicate a larger overlay of measures; cool colors indicate a smaller overlay. The
shaded band is the 95% confidence i (the later of measures; cool colors indicate a smaller overlay. The shaded band is the 95% confidence interval.
Shaded band is the 95% confidence interval.
Sensitivity Analysis
The results described above remained stable w

Sensitivity Analysis

denticate a larger overlay of the measures; control contribution in measure overlay. The shaded band is the 95% confidence interval.
Sensitivity Analysis
The results described above remained stable when removing the varian shaded band is the 55% comidence interval.
Sensitivity Analysis
The results described above remained stable
number of live births, hormone replacemer
body mass index, diastolic and systolic blo The results described above remains during the variable stable with the pumpler of live births, hormone replacement therapy, hysterectomy, bilateral oophorectomy, body mass index, diastolic and systolic blood pressure, dia number of mass index, diastolic and systolic blood pressure, diabetes, education, income, and a
composite lifestyle factor. In other words, when examining the association between BrainAGE
and reproductive span, we observed body mass internal material material process, masters, ematericy, methody matericy, and a
composite lifestyle factor. In other words, when examining the association between BrainAGE
and reproductive span, we observed a neg and reproductive span, we observed a negative association. Likewise, there was a positive
association between BrainAGE and age at menarche and a negative association between
BrainAGE and age at menopause. The effects were and representive span, we can receive a negative arrestment and a negative association between
BrainAGE and age at menopause. The effects were significant both for the cross-sectional
analyses (see Supplemental Table 1) an BrainAGE and age at menopause. The effects were significant both for the cross-sectional
analyses (see Supplemental Table 1) and the longitudinal analyses (see Supplemental Table 2).
Discussion BrainAGE and age at menopause. The effects were significant both for the cross-sectional

Discussion

analyses (see Supplemental Table 1) and the longitudinal analyses (see Supplemental Table 2).
Discussion
Here we assessed links between estimated brain age and milestones in a woman's reproductive life in a well-powered sample of more than a thousand postmenopausal women. We detected
less brain aging in women with longer reproductive spans, earlier menarche, and later
menopause. less brain aging in women with longer reproductive spans, earlier menarche, and later
menopause.
Correspondence with Previous Findings less brain and the symmenopause.
Less brand agency of the correspondence with Previous Findings
The putcomes of other studies suggesting a longer reproductive

Correspondence with Previous Findings

menopause.
Corresponde.
Our findings
span ^{8,10,13}. al)
)
) span 8,10,13 , an earlier menarche^{13,14}, as well as a later menopause $^{4,8,10-12}$ to be associated with a
7 span $\frac{3,13,13}{2}$, an earlier menarche^{13,14}, as well as a later menopause $\frac{3,0,0,12}{2}$ to be associated with a
 $\frac{3}{2}$ that the BrainAGE index is based on the weighted distribution of gray and whiter matter tissue
in the brain, our findings are also in agreement with reports of lower brain volumes as well as
higher rates of brain tissue lo in the brain, our findings are also in agreement with reports of lower brain volumes as well as
higher rates of brain tissue loss during menopause compared to premenopause or in
postmenopausal women compared to premenopaus in the brain, our finality are also in agreement unterspects of the brain volumes as the higher rates of brain tissue loss during menopause compared to premenopause or in
postmenopausal women compared to premenopausal wome postmenopausal women compared to premenopausal women³³⁻³⁵. In addition, our findings
agree with observed effects across the menstrual cycle linking high estradiol levels at ovulation
to lower BrainAGE estimates³⁰. Alto postmenopausal women compared to premenopausal women³³. In addition, our findings
agree with observed effects across the menstrual cycle linking high estradiol levels at ovulation
to lower BrainAGE estimates³⁰. Altoget agree with exercise interesting in mentioning type mining high estimation at obtaining
to lower BrainAGE estimates³⁰. Altogether, the outcomes of our study seem to suggest that
estradiol contributes to brain health, whic to lower BrainAGE estimates³⁰. Altogether, the outcomes of our study seem to suggest that
estradiol contributes to brain health, which is in agreement with other studies reporting
positive effects of estradiol on brain h positive effects of estradiol on brain health and cognition within the framework of aging and/or
menopausal hormone therapy³⁶⁻⁴⁰.
Menarche versus Menopause positive effects of errors.
Positive effects of entire therapy³⁶⁻⁴⁰.
In the present study, both an earlier menarche and a later menopause were significantly

Menarche versus Menopause

menopausal hormone therapy³⁰⁴⁴⁰.
M*enarche versus Menopause*
In the present study, both an ea
associated with less brain aging. H $\frac{1}{1}$ In the present study, team an earlier mental in a later mentapause mere significantly,
associated with less brain aging. However, aside from the mere direction of the relationship,
menarche and menopause also differ with r menarche and menopause also differ with respect to the strength of their relationship with age
(which is reflected in the correlation coefficient) and their rate of change with age (which is
reflected in the slope of the r (which is reflected in the correlation coefficient) and their rate of change with age (which is
reflected in the slope of the regression line). This might indicate somewhat different underlying
biological mechanisms and/or (which is reflected in the slope of the regression line). This might indicate somewhat different underlying
biological mechanisms and/or confounds. For example, during menopause, in addition to
decreasing levels of estradi biological mechanisms and/or confounds. For example, during menopause, in addition to
decreasing levels of estradiol, increasing levels of follicle-stimulating hormones may cause an
accelerated deposition of amyloid- β biological mechanisms are invisible. The content of extraction, increasing levels of follicle-stimulating hormones may cause an accelerated deposition of amyloid- β and Tau⁴¹, which enhances brain atrophy. Moreover, m α accelerated deposition of amyloid- β and Tau⁴¹, which enhances brain atrophy. Moreover,
menopause is marked by disadvantageous alterations in cytokine and T cell profiles⁴², which
are linked to an enhanced infl accelerated deposition of amyloid-β and Tau⁺⁺, which enhances brain atrophy. Moreover,
menopause is marked by disadvantageous alterations in cytokine and T cell profiles⁴², which
are linked to an enhanced inflammation menopause is marked by disadvantageous alterations in cytokine and T cell profiles²² , which
are linked to an enhanced inflammation.
8

Possible Implications

menopause, our findings may explain why the risk for dementia in women is known to increase
around menopause³⁻⁶ and why there is an increased age-independent prevalence of
Alzheimer's disease in women compared to men⁴⁰ menopause³⁻⁶ and why there is an increased age-independent prevalence of
Alzheimer's disease in women compared to men⁴⁰. Moreover, our findings seem to support to
the concept of the "window of opportunity", spanning th around menopause³⁻⁶ and why there is an increased age-independent prevalence of
Alzheimer's disease in women compared to men⁴⁰. Moreover, our findings seem to support to
the concept of the "window of opportunity", span Alzheimer's disease in women compared to men⁴⁰. Moreover, our findings seem to support to
the concept of the "window of opportunity", spanning the years leading up to menopause to
the years immediately after menopause, w the years immediately after menopause, where health interventions (e.g., menopausal
hormone treatment) may combat the increased risk for Alzheimer's disease in some women^{5,43-}
⁴⁵. However, at this point, all of this is the increased risk for Alzheimer's disease in some women^{5,43-}
Affer Mondeley, at this point, all of this is conjecture. In fact, several large-scale projects have
investigated the effects of menopausal hormone treatment hormone treatment) may combat the increased risk for Alzheimer's disease in some women^{3,43-}
⁴⁵. However, at this point, all of this is conjecture. In fact, several large-scale projects have
investigated the effects of 45 . However, at this point, all of this is conjecture. In fact, several large-scale projects have
investigated the effects of menopausal hormone treatment on cognitive function and
Alzheimer's risk, but results are in Alzheimer's risk, but results are inconclusive (potentially relevant modulators of treatment
outcomes are discussed here^{36,46-51}).
A Word of Caution Alzheimer's risk, but results are inconclusive (potentially relevant modulators of treatment
outcomes are discussed here^{36,46-51}).
A *Word of Caution*
Our findings seem promising in the framework of prevention and interv

A Word of Caution

outcomes are discussed here^{36,46-51}).
A *Word of Caution*
Our findings seem promising in the
effect sizes for the observed associal ノ(りょう our first sizes for the observed associations between estimated brain age and reproductive span,
age at menarche, and age at menopause were small. This raises the question of whether the
apparent impact of estradiol is cli age at menarche, and age at menopause were small. This raises the question of whether the
apparent impact of estradiol is clinically meaningful. Perhaps, equally relevant, we wish to
emphasize that the study did not measur apparent impact of estradiol is clinically meaningful. Perhaps, equally relevant, we wish to
emphasize that the study did not measure estradiol directly. Therefore, further research is
required, the more so as links betwee emphasize that the study did not measure estradiol directly. Therefore, further research is
required, the more so as links between estradiol and brain aging are rather complex as
indicated by the outcomes of other studies. required, the more so as links between estradiol and brain aging are rather complex as
indicated by the outcomes of other studies. For example, it was reported that, compared to no
exposure or no dose, exposure to low conc indicated by the outcomes of other studies. For example, it was reported that, compared to no
exposure or no dose, exposure to low concentrations of estradiol or low doses of estrogen
aging are rather compared to the compa exposure or no dose, exposure to low concentrations of estradiol or low doses of estrogen
exposure or no dose, exposure to low concentrations of estradiol or low doses of estrogen exposure or no dose, exposure to low concentrations of estradiol or low doses of estrogen

exposure to high concentrations of estradiol as well as high doses of estrogen had the opposite
effect (i.e., negative links)^{21,22}. Another study reported U-shaped curves suggesting that both
early and late menarche are effect (i.e., negative links)^{21,22}. Another study reported U-shaped curves suggesting that both
early and late menarche are associated with an increased risk for dementia (i.e., positive and
negative links)⁸. And yet effect (i.e., negative links)^{22,22}. Another study reported U-shaped curves suggesting that both
early and late menarche are associated with an increased risk for dementia (i.e., positive and
negative links)⁸. And yet a rearly and the study reported either negative links or missing links between
age at menarche and brain aging depending on the potential confounds accounted for⁷.
Interestingly, this latter study also reported that, in c negative links)"
age at menard
Interestingly, th
(APOE e4), high
(positive link). The and brain aging depending on the potential confounds accounted for⁷.
In lis latter study also reported that, in carriers of the apolipoprotein E type 4 allele
In contrast, in non-carriers, higher levels of estradiol age at menarche and brain aging depending on the potential confounds accounted for'
Interestingly, this latter study also reported that, in carriers of the apolipoprotein E type 4 allele
(APOE e4), higher levels of estradi .
ما بعد المعامل المعامل
معامل المعامل المعام (APOE e4), higher levels of estradiol at menopause were associated with increased brain aging
(positive link). In contrast, in non-carriers, higher levels of estradiol at menopause were
associated with decreased brain agi (positive link). In contrast, in non-carriers, higher levels of estradiol at menopause were associated with decreased brain aging (negative link)⁷.
Conclusion (positive link). In the decreased brain aging (negative link)⁷.
1995. In conclusion
1997. Conclusion
1997. In the study revealed less brain aging in women with a larger reproductive span, earlier

Conclusion

associated with decreased brain aging (negative link)'
Conclusion
Our study revealed less brain aging in women v
menarche, and later menopause. Thus, sex hormone .
.
.
. Menarche, and later menopause. Thus, sex hormones – potentially estradiol – may contribute
to brain health. However, follow-up research is required because effects in the current study
were small, estradiol was not directl menarche, and later men-pause many encounters – potentially established and y estimates to brain health. However, follow-up research is required because effects in the current study were small, estradiol was not directly e were small, estradiol was not directly examined, and female brain health may be modulated by
other factors than estradiol^{2,52,53}. Moreover, to paint a more complete picture and expand an
understudied field research, futu other factors than estradiol^{2,52,53}. Moreover, to paint a more complete picture and expand an
understudied field research, future research focussing on specific time frames surrounding
menopause, such as perimenopause (i other factors than estradiol^{2,22,33}. Moreover, to paint a more complete picture and expand an
understudied field research, future research focussing on specific time frames surrounding
menopause, such as perimenopause (i menopause, such as perimenopause (i.e., the time preceding the final menstrual period) or
early postmenopause (e.g., the initial year after menopause) versus late menopause (e.g., ten
years after menopause) would be desira ment periods, such as periment panter (i.e., the time preceding the final mentional period) or
early postmenopause (e.g., the initial year after menopause) versus late menopause (e.g., ten
years after menopause) would be d ears after menopause) would be desirable. Last but not least, the UK Biobank is biased
years after menopause) would be desirable. Last but not least, the UK Biobank is biased years after menopause) would be desirable. Last but not least, the UK Biobank is biased

towards healthy³⁴ and more socioeconomically privileged individuals³⁴ with a predominant
white ethnic background⁵⁴, which affects the generalizability of the findings.
Methods
Sample

Methods

Sample

white ethnic background³⁴, which affects the generalizability of the findings.
M<mark>ethods</mark>
Sa*mple*
The study is based on a carefully selected sample of postmenopausal wo The study is based on a carefully selected sample of position parallel at a children mumber
Biobank (https://www.ukbiobank.ac.uk/) which was accessed under application number
#41655. The UK Biobank is a biomedical database 41655. The UK Biobank is a biomedical database and research resource that contains genetic,
lifestyle and health information from half a million people. In the UK Biobank cohort, 94.6% of
participants are of white ethnicit lifestyle and health information from half a million people. In the UK Biobank cohort, 94.6% of
participants are of white ethnicity⁵⁴. For general ethnic information, see
https://biobank.ctsu.ox.ac.uk/crystal/field.cgi? merticipants are of white ethnicity⁵⁴. For general ethnic information, see
https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=21000; for ethnic information on all women
with available longitudinal data, see **Supplemental** participants are of white ethnicity⁵⁴. For general ethnic information, see
https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=21000; for ethnic information on all women
with available longitudinal data, see **Supplemental** mapproval from the North West Multi-Centre Research Ethics Committee (MREC) and is in
possession of the informed consents. Written informed consent was obtained from all
participants.
Exclusion criteria for the current stu with available longitudinal data, see **Supplemental Table 3.** The OK Biobank holds the ethical
approval from the North West Multi-Centre Research Ethics Committee (MREC) and is in
possession of the informed consents. Writt

possession of the informed consents. Written informed consent was obtained from all
participants.
Exclusion criteria for the current study were pre-existing neurological or psychiatric
diagnoses as per UK Biobank data fiel participants.
Exclusion criteria for the current study were pre-existing neurological or psychiatric
diagnoses as per UK Biobank data fields #41202-0.0 to #41202-0.78. Inclusion criteria for the
current study were women wi participants.
Exclus
diagnoses as
current study
menarche ar
sample, we e Example is as per UK Biobank data fields #41202-0.0 to #41202-0.78. Inclusion criteria for the study were women with available longitudinal data as well as information on age at the and age at menopause. In addition, to f diagnous current study were women with available longitudinal data as well as information on age at
menarche and age at menopause. In addition, to further increase the homogeneity of the
sample, we excluded women whose age menarche and age at menopause. In addition, to further increase the homogeneity of the
sample, we excluded women whose age at menarche was younger than 10 or older than 18, or
whose age at menopause was younger than 45 or sample, we excluded women whose age at menarche was younger than 10 or older than 18, or
whose age at menopause was younger than 45 or older than 60. This resulted in a final sample
size of 1,006 women. Figure 3 summarizes whose age at menopause was younger than 45 or older than 60. This resulted in a final sample
size of 1,006 women. Figure 3 summarizes the steps related to the sample selection; Table 3
provides information on the final sa whose age at memperic many periods. Than 45 or older than 45 or older than 60. This results in a final sample selection; Table 3 provides information on the final sample. size of 1,000 women. Figure 3 summarizes the steps related to the sample selection; Table 3
provides information on the final sample. provides information on the final sample.

statistics provided as mean ± standard deviation

mage Acquisition and Processing

or each woman, one initial brain scan and one follow-up brain scan – appro

part (mean ± SD: 2.35 ± 6.12 years) – were obtained *after* men Fratistics provided as mean = standard deviation
Image Acquisition and Processing
For each woman, one initial brain scan and one fo
apart (mean ± SD: 2.35 ± 6.12 years) – were ob
acquired on a 3 Tesla Siemens Skyra scanner |
|
|
|
| *Image Acquisition and Processing*

For each woman, one initial brain scan and one follow-up brain scan – approximately two years

apart (mean \pm SD: 2.35 \pm 6.12 years) – were obtained *after* menopause. Brain images

implemented in the CAT12 toolbox⁵⁶ (version 12.8) that resulted in bias-corrected, spatially apart (mean ± 3D: 2.35 ± 6.12 years) – were obtained dyter menopause. Brain images were
acquired on a 3 Tesla Siemens Skyra scanner using a 32-channel head coil, as described
elsewhere⁵⁵ (see also: http://biobank.ctsu.o elsewhere⁵⁵ (see also: http://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/bmri_
V4_23092014.pdf). Using the T1-weighted images, we applied a number of processing routines
implemented in the CAT12 toolbox⁵⁶ (version 12.8 elsewhere³⁵ (see also: http://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/bmri_
V4_23092014.pdf). Using the T1-weighted images, we applied a number of proximplemented in the CAT12 toolbox⁵⁶ (version 12.8) that resulted implemented in the CAT12 toolbox⁵⁶ (version 12.8) that resulted in bias-corrected, spatially normalized, and tissue-classified brain images, as detailed elsewhere^{24,31}. The affinely normalized gray and white matter pa implemented in the CAT12 toolbox⁵⁶ (version 12.8) that resulted in bias-corrected, spatially
normalized, and tissue-classified brain images, as detailed elsewhere^{24,31}. The affinely
normalized gray and white matter pa normalized, and tissue-classified brain images, as detailed elsewhere^{24,32}. The affinely
normalized gray and white matter partitions were then smoothed using a 4 and 8 mm full-
width-at-half-maximum (FWHM) Gaussian kerne Process Regression (GPR) that uses a linear covariance function, a constant mean function, and For further data reduction, we applied a principal component analysis (PCA) using singular
value decomposition to all the models using n–1 PCA components (n = minimum of voxel
number or sample size). For the estimation of value decomposition to all the models using n–1 PCA components (n = minimum of voxel
number or sample size). For the estimation of the BrainAGE index, we employed a Gaussian
Process Regression (GPR) that uses a linear cov value decomposition to all the models using the models index, we employed a Gaussian
process Regression (GPR) that uses a linear covariance function, a constant mean function, and
a Gaussian likelihood function; hyperparam Process Regression (GPR) that uses a linear covariance function, a constant mean function, and
a Gaussian likelihood function; hyperparameters were set to 100 for the constant mean
function and to -1 for the likelihood fun a Gaussian likelihood function; hyperparameters were set to 100 for the constant mean
function and to -1 for the likelihood function⁵⁷. As training data, we selected 3,046 individuals
from the UK Biobank where two time p function and to -1 for the likelihood function⁵⁷. As training data, we selected 3,046 individuals
from the UK Biobank where two time points were available and applied a 10-fold validation
approach separately for the init function and to -1 for the likelihood function"'. As training data, we selected 3,046 individuals
from the UK Biobank where two time points were available and applied a 10-fold validation
approach separately for the initia approach separately for the initial and follow-up brain scan. To estimate the individual brain
ages, eight models based on the aforementioned sets of images (i.e., gray matter/white matter,
4 mm/8 mm Gaussian kernel, and ages, eight models based on the aforementioned sets of images (i.e., gray matter/white matter,
4 mm/8 mm Gaussian kernel, and 4 mm/8 mm image resolution) were combined using a
general linear model where the weights of the a mm/8 mm Gaussian kernel, and 4 mm/8 mm image resolution) were combined using a
general linear model where the weights of the models were derived by maximizing the variance
to the parameter of interest (e.g., menopause). Final general linear model where the weights of the models were derived by maximizing the variance
to the parameter of interest (e.g., menopause). The difference between the resulting estimated
brain age and the chronologi general of the parameter of interest (e.g., menopause). The difference between the resulting estimated
brain age and the chronological age was then calculated as the BrainAGE index (in years).
The models was then calculate to the parameter of interest (e.g., menopological age was then calculated as the BrainAGE index (in years).

13 brain age and the chronological age was then calculated as the BrainAGE index (in years).
13

Statistical Analyses
After computing the
removed the linear
two analysis stream
cross-sectional strea The Brain
After computed the linear age trend that is typically seen in BrainAGE estimation. Then, we conducted
two analysis streams using linear regressions, one cross-sectional and one longitudinal. For the
cross-section removed the linear age trend that is typically seen in Brain-Branchell that is typically trend that is typically
two analysis streams using linear regressions, one cross-sectional and one longitudinal. For the
cross-sectio the process-sectional stream, we tested if there is a significant link between the BrainAGE index at the
initial brain scan and the reproductive span. In addition, we tested if there is a significant link
between the Brain initial brain scan and the reproductive span. In addition, we tested if there is a significant link
between the BrainAGE index at the initial brain scan and the age at menarche as well as the age
at menopause. For the lon initial scan and the representive span in addition, to sected in addentural angularity into
between the BrainAGE index at the initial brain scan and the age at menarche as well as the age
at menopause. For the longitudinal at menopause. For the longitudinal stream, we first subtracted the BrainAGE index at the initial
brain scan from the BrainAGE index at the follow-up brain scan, which resulted in a Δ BrainAGE
index for each individual. Th brain scan from the BrainAGE index at the follow-up brain scan, which resulted in a Δ BrainAGE index for each individual. This method, often referred to as "change score" analysis, produces statistical results that are \dot{B}
index for each individual. This method, often referred to as "change score" analysis, produces
statistical results that are comparable to those resulting from a repeated-measures ANOVA
with two time points. Using statistical results that are comparable to those resulting from a repeated-measures ANOVA
with two time points. Using the Δ BrainAGE index, we then tested for significant links with the
reproductive span, the age at men statistical results that are comparable to those resulting from a repeated-measure (measure
with two time points. Using the Δ BrainAGE index, we then tested for significant links with the
reproductive span, the age at with two time points. Using the age at menarche, and the age at menopause. For all analyses, alpha was
set at 0.05 (two-tailed).
Sensitivity Analyses reproductive span, the age at menarche, and the age at menapped on the analyses, alpha was
set at 0.05 (two-tailed).
To determine if our results remain stable and significant when accounting for potential

Sensitivity Analyses

set at the concept.
Sensitivity Analyses
To determine if our r
confounds known to aff $\frac{3}{1}$ confounds known to affect brain health, we repeated the aforementioned cross-sectional and
longitudinal analyses for reproductive span, menarche, and menopause using additional
parameters. More specifically, we removed th longitudinal analyses for reproductive span, menarche, and menopause using additional
parameters. More specifically, we removed the variance associated with the number of live
births⁵⁸ (UK Biobank data field #2734), hor parameters. More specifically, we removed the variance associated with the number of live
births⁵⁸ (UK Biobank data field #2734), hormone replacement therapy⁷ (#2814), hysterectomy⁵⁹
(#3591), bilateral oophorectomy births⁵⁸ (UK Biobank data field #2734), hormone replacement therapy⁷ (#2814), hysterectomy⁵⁹
(#3591), bilateral oophorectomy⁵⁹ (#2834), body mass index⁶⁰ (#21001), diastolic and systolic births³⁸ (UK Biobank data field #2734), hormone replacement therapy' (#2814), hysterectomy³⁹
(#3591), bilateral oophorectomy⁵⁹ (#2834), body mass index⁶⁰ (#21001), diastolic and systolic
14 (#3591), bilateral oophorectomy⁵⁹ (#2834), body mass index⁶⁰ (#21001), diastolic and systolic (#3591), bilateral oophorectomy⁵⁹
14

blood pressure⁶¹ (#4079 and #4080), diabetes⁶² (#2443), education⁶³ (#6138), income⁶⁴ (#738), and a composite lifestyle factor⁶⁵. The latter was expressed as a general lifestyle score that was calculated based o and a composite lifestyle factor⁶⁵. The latter was expressed as a general lifestyle score
calculated based on a number of factors (see **Supplemental Table 4**), known to in
decrease the risk of adverse cardiovascular even crease /
on on all
missing'.
neighbor decrease the risk of adverse cardiovascular events. Since not all women had information on all
potential confounds, we applied an imputation method using the Matlab function 'fillmissing'.
That is, missing entries were rep potential confounds, we applied an imputation method using the Matlab function 'fillmissing'.
That is, missing entries were replaced with the corresponding values from the nearest neighbor
rows, calculated based on the pai potential confounds, we applied an imputation method using the Matlab Function Tammering.
That is, missing entries were replaced with the corresponding values from the nearest neighbor
rows, calculated based on the pairwis That is, missing entries were replaced with the corresponding values with the nearest negative
rows, calculated based on the pairwise Euclidean distance between rows. Imputation was
applied to up to 295 women, depending on rows, capplied to up to 295 women, depending on the potential confound.
Applied to up to 295 women, depending on the potential confound. applied to up to 295 women, depending on the potential conformation \mathcal{P}_1

Acknowledgments

Elemily Foundation. The data of the UK Biobank were accessed under application number
#41655. The article was composed using the STROBE cohort checklist⁶⁶.
Funding
CB received funding from the South-Eastern Norway Region

Funding

Family Foundation. The data of the UK Biobank were accessed under application number
#41655. The article was composed using the STROBE cohort checklist⁶⁶.
Funding
CB received funding from the South-Eastern Norway Regio #41655. The article was composed using the STROBE cohort checklist^{oo}.
Funding
CB received funding from the South-Eastern Norway Regional Heal
2022103). CO22103).
Data Availability
Publicly available datasets were analyzed in this study and are available here:
https://www.ukbiobank.ac.uk

Data Availability

2022103).
Data Availability
Publicly available datasets were analyzed in this study and are available here:
https://www.ukbiobank.ac.uk |
|
|
|

Code Availability

Public) available datasets were analyzed in this study, and are available https://www.ukbiobank.ac.uk

Code Availability

The code for processing the data is available here:

https://github.com/ChristianGaser/cat12 Code Availability
The code for processing the da
https://github.com/ChristianG
The eade for estimating PrainA $\begin{array}{c} \n\frac{1}{2} \quad \frac{1}{2} \quad \frac{1$ $\begin{array}{c} 1 \\ \hline 1 \\ \hline 1 \end{array}$

https://github.com/ChristianGaser/cat12
The code for estimating BrainAGE is available here
https://github.com/ChristianGaser/BrainAGE
= https://github.com/ChristianGaser/BrainA
https://github.com/ChristianGaser/BrainA
https://github.com/ChristianGaser/BrainA $\frac{1}{2}$ https://github.com/ChristianGaser/BrainAGE
https://github.com/ChristianGaser/BrainAGE
is available here: https://github.com/ChristianGaser/
Christian
GaserianGaser/BrainAGEE

Supplemental Material

Age at Menopause 0.01 -0.09 <0.01 -0.09
After removing the variance associated with the number of live births, hormone replacer
ysterectomy, bilateral oophorectomy, body mass index, diastolic and systolic blood press
ducat After removing the variance associated with the number of live births, hormone replacem

ysterectomy, bilateral oophorectomy, body mass index, diastolic and systolic blood pressure

ducation, income, and a composite lifest

Supplemental Table 2. Associations with BrainAGE over 2.35 years (adjusted model*)

Age at Menopause 0.01 -0.12 <0.01 -0.07
After removing the variance associated with the number of live births, hormone replacer
ysterectomy, bilateral oophorectomy, body mass index, diastolic and systolic blood press
ducat After removing the variance associated with the number of live births, hormone replacem

ysterectomy, bilateral oophorectomy, body mass index, diastolic and systolic blood pressure

ducation, income, and a composite lifest

Supplemental Table 3. Ethnic background of women with longitudinal MRI data (n=1,598)

White and Black African 0

nformation on ethnicity was collected based on

ssessment Centre. Mortan Black African Mortan Control of the Second Section
Sessment Centre.
Sessment Centre. Information on ethnicity was collected based on self-reports using a touchscreen questionnaire at the UK Biobank Assessment Centre.

References

-
- 1. Increas, W.H. A. Fotter, B.V. The structural biology 137, 27-49 (2013).

1. Barth, C., Crestol, A., de Lange, A.G. & Galea, L.A.M. Sex steroids and the female brain across the

lifespan: insights into risk of depression steroid biochemistry and molecular biology 137, 27-49 (2013).
Barth, C., Crestol, A., de Lange, A.G. & Galea, L.A.M. Sex steroid
lifespan: insights into risk of depression and Alzheimer's disea
926-941 (2023).
Farrer, L.A.
- External insights into risk of depression and Alzheimer's disease. *Lancet Diabetes Endocrinol* 11,

226-941 (2023).

Farrer, L.A., *et al.* Effects of age, sex, and ethnicity on the association between apolipoprotein E

g lifespan: insights into risk of depression and Alzheimer's disease. *Lancet Diabetes Endocrinol* 11,
926-941 (2023).
Farrer, L.A., *et al.* Effects of age, sex, and ethnicity on the association between apolipoprotein E
gen Farrer, L.A., *et al*
genotype and Al
Consortium. JAM
Brinton, R.D., Y
transition state.
Mosconi, L., *et*
longitudinal brai
Rahman, A., *et d*
Neurology 95, e1
de Lange, A.G., *e*
genetic risk for A 3. Farrer, L.A., et al. Effects of age, sex, and ethnicity of the association between apolipoprotein L

genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis

Consortium. *R.D.*, Yao, J.
-
-
- Consortium. JAMA 278, 1349-1356 (1997).
Brinton, R.D., Yao, J., Yin, F., Mack, W.J. & Cadenas, E. Perimenopause as a neurological
transition state. *Nat Rev Endocrinol* 11, 393-405 (2015).
Mosconi, L., *et al.* Increased A Erinton, R.D., Yao, J., Yin, F., Mack, W.J.
Brinton, R.D., Yao, J., Yin, F., Mack, W.J.
transition state. *Nat Rev Endocrinol* 11, 393
Mosconi, L., *et al.* Increased Alzheimer¹
longitudinal brain imaging study. *PLoS On* transition state. *Nat Rev Endocrinol* **11**, 393-405 (2015).

5. Mosconi, L., *et al.* Increased Alzheimer's risk during the menopause transition: A 3-year

longitudinal brain imaging study. *PLoS One* **13**, e0207885 (2018 transition state. Nat Rev Endocrmor 11, 393-405 (2015).
Mosconi, L., et al. Increased Alzheimer's risk during
longitudinal brain imaging study. PLoS One 13, e020788!
Rahman, A., et al. Sex-driven modifiers of Alzheimer ris
-
-
-
- 5. Mosconi, L., et al. Increased Alzheimer's risk during the menopause transition: A 3-year

longitudinal brain imaging study. PLoS One 13, e0207885 (2018).

Rahman, A., et al. Sex-driven modifiers of Alzheimer risk: A mu longitudinal brain imaging study. *F Los One* 13, eozo7885 (2016).
Rahman, A., *et al.* Sex-driven modifiers of Alzheimer risk: A mul
Neurology 95, e166-e178 (2020).
de Lange, A.G., *et al.* Women's brain aging: Effects For all the properties of Alzheimer risk: A multimodality brain imaging study.

Reurology 95, e166-e178 (2020).

7. de Lange, A.G., et al. Women's brain aging: Effects of sex-hormone exposure, pregnancies, and

genetic ris Neurology 33, e100-e178 (2020).

de Lange, A.G., *et al.* Women's b

genetic risk for Alzheimer's diseas

Gong, J., Harris, K., Peters, S.A.E.

dementia: A cohort study of UK B

Jani, M., *et al.* Birth outcomes, p

aging 2. de Lange, A.G., *et al.* Women's brain aging: Effects of sex-hormone exposure, pregnancies, and
genetic risk for Alzheimer's disease. *Hum Brain Mapp* 41, 5141-5150 (2020).
8. Gong, J., Harris, K., Peters, S.A.E. & Wood genetic risk for Alzheimer's disease. *Hum Brain Mapp* **41**, 5141-5150 (2020).
Gong, J., Harris, K., Peters, S.A.E. & Woodward, M. Reproductive factors and
dementia: A cohort study of UK Biobank participants. *PLoS Med* **1** dementia: A cohort study of UK Biobank participants. *PLoS Med* **19**, e1003955 (2022).

9. Jani, M., *et al.* Birth outcomes, puberty onset, and obesity as long-term predictors of biological

aging in young adulthood. *Fro* dani, M., et al. Birth outcomes, puberty onset, and obesity as long-term predictors of aging in young adulthood. Front Nutr 9, 1100237 (2022).
Lindseth, L.R.S., et al. Associations between reproductive history, hormone use 9. Jani, W., et al. Birth outcomes, puberty onset, and obesity as long-term predictors or biological
aging in young adulthood. Front Nutr 9, 1100237 (2022).
10. Lindseth, L.R.S., *et al.* Associations between reproductive aging in young adultiood. From Wdr 3, 1100237 (2022).
Lindseth, L.R.S., *et al.* Associations between reproductiv
genotype and cognition in middle- to older-aged wom
Neurosci 14, 1014605 (2022).
Kuh, D., Cooper, R., Moore, 10. Lindseth, L.R. Neurosci 14, 1014605 (2022).

11. Kuh, D., Cooper, R., Moore, A., Richards, M. & Hardy, R. Age at menop
-
-
-
-
- genotype and cognition in middle- to older-aged women from the OK Biobank. From Aging
Reviews: 14, 1014605 (2022).
Kuh, D., Cooper, R., Moore, A., Richards, M. & Hardy, R. Age at menopause and lifetime
cognition: Findings Nuh, D., Cooper, R., Moore,
Compution: Findings from a Brit
McLay, R.N., Maki, P.M. & Ly
decreased cognitive decline. J
Karim, R., et al. Effect of R.
Function in Mid- and Late Life
Ryan, J., Carriere, I., Scali, J
cogniti 11. Cooperation: Findings from a British birth cohort study. Neurology 90, e1673-e1681 (2018).

12. McLay, R.N., Maki, P.M. & Lyketsos, C.G. Nulliparity and late menopause are associated with

decreased cognitive decline. cognition: Finaligs from a British birth conort study. Mearology 90, e1673-e1601 (2016).
McLay, R.N., Maki, P.M. & Lyketsos, C.G. Nulliparity and late menopause are associat
decreased cognitive decline. J Neuropsychiatry C decreased cognitive decline. *J. Neuropsychiatry Clin Neurosci* **15**, 161-167 (2003).

13. Karim, R., et al. Effect of Reproductive History and Exogenous Hormone Use on Cognitive

Function in Mid- and Late Life. *J. Am Ger* decreased cognitive decline. J Neuropsychlatry Chir Neurosci 15, 161-167 (2003).
Karim, R., et al. Effect of Reproductive History and Exogenous Hormone Us
Function in Mid- and Late Life. J Am Geriatr Soc 64, 2448-2456 (201 13. Karriet of Neurodote History and Local Computer (1807)

Function in Mid-and Late Life. J Am Geriatr Soc 64, 2448-2456 (2016).

Ryan, J., Carriere, I., Scali, J., Ritchie, K. & Ancelin, M.L. Life-time estrogen exposure Function in Mid- and Edde Enc. 5 Am Geriatr Soc 64, 2448-2458 (2010).

Ryan, J., Carriere, I., Scali, J., Ritchie, K. & Ancelin, M.L. Life-time

cognitive functioning in later life. *Psychoneuroendocrinology* 34, 287-2

Br cognitive functioning in later life. *Psychoneuroendocrinology* **34**, 287-298 (2009).

15. Branigan, G.L., Soto, M., Neumayer, L., Rodgers, K. & Brinton, R.D. Association Between

Hormone-Modulating Breast Cancer Therapies cognitive functioning in futer life. Psychoneuroendocrinology 34, 207 250 (2005).
Branigan, G.L., Soto, M., Neumayer, L., Rodgers, K. & Brinton, R.D. Associ
Hormone-Modulating Breast Cancer Therapies and Incidence of Neuro
-
- 16. Branch Modulating Breast Cancer Therapies and Incidence of Neurodegenerative Outcomes

16. Comasco, E., Frokjaer, V.G. & Sundstrom-Poromaa, I. Functional and molecular neuroimaging of

16. Comasco, E., Frokjaer, V.G. & For Women With Breast Cancer. JAMA Netw Open 3, e201541 (2020).

Comasco, E., Frokjaer, V.G. & Sundstrom-Poromaa, I. Functional and molecular neuroimaging of

menopause and hormone replacement therapy. Frontiers in neurosc For Women With Breast cancer. JAMA Netw Open 3, e201541 (2020).
Comasco, E., Frokjaer, V.G. & Sundstrom-Poromaa, I. Functional and i
menopause and hormone replacement therapy. *Frontiers in neuroscie*
Nabulsi, L., *et al.* menopause and hormone replacement therapy. *Frontiers in neuroscience* **8**, 388 (2014).

17. Nabulsi, L., *et al.* Exogenous Sex Hormone Effects on Brain Microstructure in Women: A diffusion

18. Georgakis, M.K., *et al.* menopause and hormone replacement therapy. Fromters in neuroscience 8, 388 (2014).

Nabulsi, L., et al. Exogenous Sex Hormone Effects on Brain Microstructure in Women: A d

(2023).

Georgakis, M.K., et al. Age at menopause
- 17. Nabulsi, L., et al. Exogenous Sex Hormone Effects on Brain Microstructure in Women: A diffusion

18. Georgakis, M.K., et al. Age at menopause and duration of reproductive period in association

18. Georgakis, M.K., et MRI Study in the OK Biobank. *biorial* : the preprint server for biology, 2020.2009.2018.304134
Georgakis, M.K., et al. Age at menopause and duration of reproductive period in association
with dementia and cognitive functi ,
Georgal
with *c
Psychor*
Ambika
history,
Gilsanz,
membe 18. Georgakis, M.K., et al. Reproduction: A systematic review and meta-analysis.

18. Georgae and computer function: A systematic review and meta-analysis.

19. Ambikairajah, A., Tabatabaei-Jafari, H., Hornberger, M. & Che
- Psychoneuroendocrinology **73**, 224-243 (2016).

Ambikairajah, A., Tabatabaei-Jafari, H., Hornberger, M. & Cherbuin, N. Age, menstruation

history, and the brain. *Menopause* **28**, 167-174 (2020).

Gilsanz, P., *et al.* Rep Psychoneuroendocrmology 73, 224-243 (2010).
Ambikairajah, A., Tabatabaei-Jafari, H., Hornl
history, and the brain. *Menopause* 28, 167-174
Gilsanz, P., *et al.* Reproductive period and risk
members. *Neurology* 92, e2005-e
- 19. Ambits and the brain. *Menopause* 28, 167-174 (2020).

20. Gilsanz, P., *et al.* Reproductive period and risk of dementia in a diverse cohort of health care

members. *Neurology* 92, e2005-e2014 (2019).

19 history, and the brain. Menopause 28, 167-174 (2020).
Gilsanz, P., *et al.* Reproductive period and risk of den
members. Neurology **92**, e2005-e2014 (2019).
19 20. Gilsanz, P., et al. Reproductive period and risk of dementia in a diverse cohort of health care
members. Neurology 92, e2005-e2014 (2019).
19 members. Neurology 92, e2005-e2014 (2019).

-
- micronized 17beta-estradiol on C-reactive protein, interleukin-6, and lipids in older women. J

Gerontol A Biol Sci Med Sci 59, 827-832 (2004).

22. Chen, S., Nilsen, J. & Brinton, R.D. Dose and temporal pattern of estroge methem and a stranding on C-reactive protein, interleukin-0, and lipids in older women. J
Gerontol A Biol Sci Med Sci 59, 827-832 (2004).
Chen, S., Nilsen, J. & Brinton, R.D. Dose and temporal pattern of estrogen exposure Gerontor A Biol Sci Med Sci 33, 627-832 (2004).
Chen, S., Nilsen, J. & Brinton, R.D. Dose and ten
neuroprotective outcome in hippocampal neuro
5303-5313 (2006).
Franke, K. & Gaser, C. Ten Years of BrainAGE as
Insights Have
-
- neuroprotective outcome in hippocampal neurons: therapeutic implications. *Endocrinology* 147,

23. Franke, K. & Gaser, C. Ten Years of BrainAGE as a Neuroimaging Biomarker of Brain Aging: What

Insights Have We Gained? Fr neuroprotective outcome in imppocampar neurons: therapeutic impineations. *Endocrminingy* 147, 5303-5313 (2006).
Franke, K. & Gaser, C. Ten Years of BrainAGE as a Neuroimaging Biomarker of Brain Aging: What Insights Have W Franke, K. & Gaser,
Insights Have We G
Franke, K., Ziegler,
weighted MRI sca
Neuroimage 50, 88
Franke, K., Luders,
BrainAGE in childre
Kalc, P., Dahnke, F
learning workflow.
Gaser, C., Franke,
Impaired Patients: 22. Franke, K., Ziegler, G., Kloppel, S., & Gaser, C. Estimating biomation of BrainAGE as a Neuroimage So, 883-892 (2010).

24. Franke, K., Ziegler, G., Kloppel, S. & Gaser, C. Estimating the age of healthy subjects from T Insights Have We Gained: *Hom Weardr 10, 705* (2015).
Franke, K., Ziegler, G., Kloppel, S. & Gaser, C. Estimati
weighted MRI scans using kernel methods: explorin
Neuroimage **50**, 883-892 (2010).
Franke, K., Luders, E., M
-
-
-
- weighted MRI scans using kernel methods: exploring the influence of various parameters.
 Neuroimage 50, 883-892 (2010).

25. Franke, K., Luders, E., May, A., Wilke, M. & Gaser, C. Brain maturation: Predicting individual
 Neuroimage 50, 883-892 (2010).
Franke, K., Luders, E., May, A., Wilke, M. & Gaser, C. Brain maturation: Predicting individual
BrainAGE in children and adolescents using structural MRI. Neuroimage 63, 1305-1312 (2012).
Kalc Neuroimage 50, 883-832 (2010).
Franke, K., Luders, E., May, A.,
BrainAGE in children and adolesc
Kalc, P., Dahnke, R., Hoffstaedt
learning workflow. Hum Brain Mc
Gaser, C., Franke, K., Kloppel,
Impaired Patients: Predictin BrainAGE in children and adolescents using structural MRI. Neuroimage 63, 1305-1312 (2012).

26. Kalc, P., Dahnke, R., Hoffstaedter, F. & Gaser, C. BrainAGE: Revisited and reframed machine

learning workflow. Hum Brain Map BrainAce in children and adolescents using structural MMI. Mearbookyet 63, 1303-1312 (2012).
Raic, P., Dahnke, R., Hoffstaedter, F. & Gaser, C. BrainAGE: Revisited and reframed machin
learning workflow. Hum Brain Mapp 45, 27. Caser, C., Franke, K., Kloppel, S., Koutsouleris, N. & Sauer, H. BrainAGE in Mild Cognitive

27. Gaser, C., Franke, K., Kloppel, S., Koutsouleris, N. & Sauer, H. BrainAGE in Mild Cognitive

28. Franke, K., Ristow, M. & rearning workflow: *Hum Brum Mupp* 45, e26632 (2024).
Gaser, C., Franke, K., Kloppel, S., Koutsouleris, N. &
Impaired Patients: Predicting the Conversion to Alzheim
Franke, K., Ristow, M. & Gaser, C. Gender-specific im
ind 27. Impaired Patients: Predicting the Conversion to Alzheimer's Disease. PloS One 8, e67346 (2013).

28. Franke, K., Ristow, M. & Gaser, C. Gender-specific impact of personal health parameters on individual brain aging in Impaired Patients: Predicting the Conversion to Alzheimer's Disease. *PLoS One* 8, e67346 (2013).
Franke, K., Ristow, M. & Gaser, C. Gender-specific impact of personal health parameters on
individual brain aging in cogniti
- individual brain aging in cognitively unimpaired elderly subjects. *Front Aging Neurosci* 6, 94 (2014).

29. Luders, E., Cherbuin, N. & Gaser, C. Estimating brain age using high-resolution pattern

recognition: Younger bra individual brain aging in cognitively unimpaired elderly subjects. Front Aging Weutosci 6, 94
Luders, E., Cherbuin, N. & Gaser, C. Estimating brain age using high-resolution pattern
recognition: Younger brains in long-term (2016).
Luders,
Luders,
(2016).
Franke,
Luders,
Dostpar
Giannak
hydroce
existing
Goto, N
-
-
- Example 12. Compare trains in long-term meditation practitioners. Neurolmage 134, 508-513

2016).

2016).

2016).

2016 Franke, K., Hagemann, G., Schleussner, E. & Gaser, C. Changes of individual BrainAGE during the

cours recognition: Younger brains in long-term meditation practitioners. Neurolmage 134, 508-513
(2016).
Franke, K., Hagemann, G., Schleussner, E. & Gaser, C. Changes of individual BrainAGE during the
course of the menstrual cyc (2012)
Franke,
Franke,
Luders,
Luders,
Gosto, Nadditior
Goto, Nadditior
Goto, Nadditior 30. Franke, K., Hagemann, G., Schleussner, E. & Gaser, C. Changes of individual BrainAGE during the course of the menstrian cycle. Neurominge 115, 1-0 (2015).
Luders, E., et al. Potential Brain Age Reversal after Pregr
Postpartum. Neuroscience 386, 309-314 (2018).
Giannakopoulos, P., et al. Alzheimer resemblance atrophy 31. Luders, E., et al. 1 otential brain Fig. 109-314 (2018).

31. Giannakopoulos, P., et al. Alzheimer resemblance atrophy index, BrainAGE, and normal pressure

hydrocephalus score in the prediction of subtle cognitive dec Fostpartum. Neuroscience 386, 309-314 (2010).
Giannakopoulos, P., et al. Alzheimer resemblance
hydrocephalus score in the prediction of subt
existing MR imaging markers. *Eur Radiol* (2022).
Goto, M., et al. Accelerated hi
-
-
- 32. Giannakopoulos, P., et al. Alzheimer resemblance atrophy lindex, DramAGE, and normal pressure

existing MR imaging markers. *Eur Radiol* (2022).

33. Goto, M., *et al.* Accelerated hippocampal volume reduction in postexisting MR imaging markers. *Eur Rodiol* (2022).

Goto, M., *et al.* Accelerated hippocampal volume reduction in post-menopausal women: an

additional study with Atlas-based method. *Radiol Phys Technol* **4**, 185-188 (201 existing Wit miaging markers. Eur Nudior (2022).
Goto, M., et al. Accelerated hippocampal volu
additional study with Atlas-based method. Radio
Goto, M., et al. 3 Tesla MRI detects acc
postmenopausal women. J Magn Reson Ima 33. Goto, M., et al. Accelerated impocampal volume reduction in post-menopausal women. Accelerated hippocampal volume reduction in postmenopausal women. *J Magn Reson Imaging* 33, 48-53 (2011).
34. Goto, M., et al. 3 Tesla additional study with Atlas-based method. Radiotechnol 2, 105-106 (2011).

Goto, M., et al. 3 Tesla MRI detects accelerated hippocampal volume

postmenopausal women. J Magn Reson Imaging 33, 48-53 (2011).

Lu, W., et al. G 34. Goto, M., et al. Grey matter differences accelerated impocanties reconstructed in postmenopausal women. *J Magn Reson Imagn associated with age and sex hormone levels between*
premenopausal and perimenopausal women: A postmenopausal women. J Magn Reson Imaging 33, 48-33 (2011).
Lu, W., et al. Grey matter differences associated with age and
premenopausal and perimenopausal women: A voxel-base
Neuroendocrinol 30, e12655 (2018).
Manly, J.J
-
-
-
- 35. Lu, W., et al. Effects of estrogens and Alzheimer's disease among postmenopausal

Neuroendocrinol 30, e12655 (2018).

Manly, J.J., et al. Endogenous estrogen levels and Alzheimer's disease among postmenopausal

women. premenopausal and permenopausal women: A voxel-based morphometry study. J

Nanly, J.J., et al. Endogenous estrogen levels and Alzheimer's disease among postmenopausal

women. Neurology 54, 833-837 (2000).

Boccardi, M., et Nanly, J.J., *et al.* Endogenous estrog
women. *Neurology* 54, 833-837 (200
Boccardi, M., *et al.* Effects of hormon
women: a Voxel-based morphometry
Ghidoni, R., *et al.* Effects of estroge
cerebellum. *Maturitas* 54, 222 Manly, J.J., *et al.* Endogenous estrogen levels and Alzheimer's disease among postmenopausal
women: *Neurology* 54, 833-837 (2000).
Boccardi, M., *et al.* Effects of hormone therapy on brain morphology of healthy postmeno women. Neurology 34, 833-837 (2000).
Boccardi, M., *et al.* Effects of hormone t
women: a Voxel-based morphometry st
Ghidoni, R., *et al.* Effects of estrogens
cerebellum. *Maturitas* 54, 222-228 (200
Kim, T.H., Kim, B., K Solution, W., et al. Effects of estrogens on cognition and brain morphology: involvement of the
cerebellum. Maturitas 54, 222-228 (2006).
Solution, R., et al. Effects of estrogens on cognition and brain morphology: involve women: a Voxel-based morphometry study. *Menopause* 13, 384-591 (2000).
Ghidoni, R., *et al.* Effects of estrogens on cognition and brain morphology:
cerebellum. *Maturitas* 54, 222-228 (2006).
Kim, T.H., Kim, B., Kim, Y.R so. Ghidoni, N., et al. Effects of excepts of experiment and brain interpretorsytement of the
cerebellum. Maturitas 54, 222-228 (2006).
Kim, T.H., Kim, B., Kim, Y.R., Jeong, C.W. & Lee, Y.H. Gray matter differences associa Eerebendin. *Maturitas* 34, 222-228 (2000).
Kim, T.H., Kim, B., Kim, Y.R., Jeong, C.W.
menopausal hormone therapy in menopa
reports **13**, 1401 (2023).
Depypere, H., et al. Menopause hormo
biomarkers of Alzheimer's disease. menopausal hormone therapy in menopausal women: a DARTEL-based VBM study. Scientific
reports 13, 1401 (2023).
40. Depypere, H., et al. Menopause hormone therapy significantly alters pathophysiological
biomarkers of Alzheim
- menopausal hormone therapy in menopausal women: a DARTEL-based VBM study. Scientific
reports 13, 1401 (2023).
Depypere, H., et al. Menopause hormone therapy significantly alters pathophysiological
biomarkers of Alzheimer's reports 13, 1401 (2023).
Depypere, H., *et al.* N
biomarkers of Alzheimer 40. Depypere, H., et al. Menopause hormone therapy sigminantly alters pathophysiological
biomarkers of Alzheimer's disease. Alzheimers Dement 19, 1320-1330 (2023). biomarkers of Alzheimer's disease. *Alzheimers Dement* **19**, 1320-1330 (2023).
20

-
-
-
- 41. Xiong, J., *et al.* FSH blockade improves cognition in mice with Alzheimer's disease. *Nature* 603,
470-476 (2022).
42. Mishra, A. & Brinton, R.D. Inflammation: Bridging Age, Menopause and APOEepsilon4 Genotype
to Alz Mishra, A. & Brit
to Alzheimer's D
Scheyer, O., et
Alzheimers Dis 5,
Davey, D.A. Alzheimers Dis 5,
Davey, D.A. Alzheimidour Mishra, A., et c
implications for Middleton, L.E. 8
1210-1215 (2009
Marder, K. & Sa to Alzheimer's Disease. Front Aging Neurosci 10, 312 (2018).

43. Scheyer, O., et al. Female Sex and Alzheimer's Risk: The Menopause Connection. J Prev

4lzheimers Dis 5, 225-230 (2018).

44. Davey, D.A. Alzheimer's diseas to Alzheimer's Disease. Front Aging Neurosci **10**, 312 (2018).
Scheyer, O., et al. Female Sex and Alzheimer's Risk: Th
Alzheimers Dis **5**, 225-230 (2018).
Davey, D.A. Alzheimer's disease, dementia, mild cognitive
'window o 43. Scheyer, O., et al. Female Sex and Alzheimer's Risk: The Menopause Connection. *J Prev*
Alzheimers Dis 5, 225-230 (2018).
44. Davey, D.A. Alzheimer's disease, dementia, mild cognitive impairment and the menopause: a
' Alzhelmers Dis 3, 223-230 (2010).
Davey, D.A. Alzheimer's disease,
'window of opportunity'? Women.
Mishra, A., et al. A tale of two
implications for Alzheimer's preve
Middleton, L.E. & Yaffe, K. Promis
1210-1215 (2009).
Ma
- 24. Davey, D.A. Alzheimer's disease, dementia, mild cognitive impairment and the menopause: a

45. Mishra, A., et al. A tale of two systems: Lessons learned from female mid-life aging with

implications for Alzheimer's pre 'window of opportunity'? Womens Health (Lond) 9, 279-290 (2013).
Mishra, A., et al. A tale of two systems: Lessons learned from
implications for Alzheimer's prevention & treatment. Ageing Res Rev
Middleton, L.E. & Yaffe, K
- 45. Mishin, A., et al. A tale of two systems. Lessons learned from leminositions for Alzheimer's prevention & treatment. Ageing Res Rev 74, 101542 (2022).

46. Middleton, L.E. & Yaffe, K. Promising strategies for the preve implications for Alzheimer's prevention & treatment. Ageing Res Rev **74**, 101542 (2022).
Middleton, L.E. & Yaffe, K. Promising strategies for the prevention of dementia. Arch Ne
1210-1215 (2009).
Marder, K. & Sano, M. Estr
- 46. Middleton, L.E. a Fairle, K. Fromising strategies for the prevention of dementia. Arch Neurol 66,
1210-1215 (2009).

Marder, K. & Sano, M. Estrogen to treat Alzheimer's disease: too little, too late? So what's a

woman Tharder, K. & Sano

woman to do? Neu

Resnick, S.M. & He

JAMA 288, 2170-21

Yaffe, K. Estroger

evidence? Ann N Y

Yaffe, K., Haan, M.

evidence of gene-e

Nerattini, M., et al

therapy on risk of A

Barth, C. & de Lang
-
- Marder, K. & Sano, M. Estrogen to treat Alzheimer's disease: too little, too late? So what's a
woman to do? *Neurology* 54, 2035-2037 (2000).
Resnick, S.M. & Henderson, V.W. Hormone therapy and risk of Alzheimer disease: a Woman to do? Neurology 34, 2033-2037 (2000).
Resnick, S.M. & Henderson, V.W. Hormone thera
JAMA 288, 2170-2172 (2002).
Yaffe, K. Estrogens, selective estrogen recep
evidence? Ann N Y Acad Sci 949, 215-222 (2001).
Yaffe, K. 19. Respigning to the Lage State Constrainer and the evidence? Ann N Y Acad Sci 949, 215-222 (2001).

19. Naffe, K. Estrogens, selective estrogen receptor modulators, and dementia: what is the evidence? Ann N Y Acad Sci 94 SAMA 288, 2170-2172 (2002).
Yaffe, K. Estrogens, selective
evidence? Ann N Y Acad Sci 94
Yaffe, K., Haan, M., Byers, A.,
evidence of gene-environment
Nerattini, M., et al. Systematic
therapy on risk of Alzheimer's
Barth, C
-
- evidence? Ann N Y Acad Sci 949, 215-222 (2001).

50. Yaffe, K., Haan, M., Byers, A., Tangen, C. & Kuller, L. Estrogen use, APOE, and cognitive decline:

evidence of gene-environment interaction. Neurology 54, 1949-1954 (20 Paffe, K., Haan, M., Byers, A., Tangen, C. & Kullen
evidence of gene-environment interaction. Neuro
Nerattini, M., et al. Systematic review and meta-
therapy on risk of Alzheimer's disease and demen
Barth, C. & de Lange, A evidence of gene-environment interaction. *Neurology* 54, 1949-1954 (2000).

S1. Nerattini, M., et al. Systematic review and meta-analysis of the effects of menopause hormone

therapy on risk of Alzheimer's disease and dem evidence of gene-environment interaction. Neurology 34, 1949-1934 (2000).
Nerattini, M., et al. Systematic review and meta-analysis of the effects of m
therapy on risk of Alzheimer's disease and dementia. *Front Aging Neur*
-
-
-
-
- S1. Meantain, M., et al. Systematic review and meta-analysis of the effects of menopause formulate the Apple of Alzheimer's disease and demential. Front Aging Neurosci 15, 1260427 (2023).

Barth, C. & de Lange, A.G. Toward therapy on risk of Alzheimer's disease and dementia. *Front Aging Neurosci* **15**, 1260427 (2023).
Barth, C. & de Lange, A.G. Towards an understanding of women's brain aging: the immunolog
of pregnancy and menopause. *Front* 52. Barth, C. & de Lange, A.G. Towards an understanding of women's brain aging: the immunology
of pregnancy and menopause. *Front Neuroendocrino* **58**, 100850 (2020).
Barth, C., Villringer, A. & Sacher, J. Sex hormones af or pregnancy and menopause. From Wettoendocrinol 38, 100850 (2020).
Barth, C., Villringer, A. & Sacher, J. Sex hormones affect neurotransmitte
female brain during hormonal transition periods. Frontiers in neuroscience
Fry, Female brain during hormonal transition periods. Frontiers in neuroscience 9(2015).

Fry, A., et al. Comparison of Sociodemographic and Health-Related Characteristics of UK Biobank

Participants With Those of the General P Fry, A., et al. Comparison of Sociodemographic and Health-Related Characteristics of Participants With Those of the General Population. Am J Epidemiol 186, 1026-1034 (Alfaro-Almagro, F., et al. Image processing and Quality 14. Fry, A., et al. With Those of the General Population. Am J Epidemiol 186, 1026-1034 (2017).

25. Alfaro-Almagro, F., et al. Image processing and Quality Control for the first 10,000 brain imaging

26. Alfaro-Almagro, F Farticipants With Those of the General Population. Am J Epidemiol 186, 1020-1034 (2017).
Alfaro-Almagro, F., et al. Image processing and Quality Control for the first 10,000 brain im
datasets from UK Biobank. *Neurolmage* 55. Almaro-Almagro, F., et al. Booknik. Neurolmage 166, 400-424 (2018).

55. Gaser, C., Dahnke, R., Thompson, P.M., Kurth, F. & Luders, E. CAT – A Computational Anatomy

Toolbox for the Analysis of Structural MRI Data. *bi* datasets from OK Biobank. Neurollinge 100, 400-424 (2010).
Gaser, C., Dahnke, R., Thompson, P.M., Kurth, F. & Luders, E
Toolbox for the Analysis of Structural MRI Data. *bioRxiv* 2022.
Rasmussen, C.E.W., C. K. I. Gaussian
-
- Toolbox for the Analysis of Structural MRI Data. *bioRxiv* **2022.06.11.495736**(2022).

Fasmussen, C.E.W., C. K. I. Gaussian Processes for Machine Learning. *MIT Press* (2006).

de Lange, A.G., *et al.* Population-based neu Toolbox for the Analysis of Structural MRI Data. bioMiv 2022.00.111.495736(2022).

Rasmussen, C.E.W., C. K. I. Gaussian Processes for Machine Learning. *MIT Press* (20

de Lange, A.G., *et al.* Population-based neuroimagin 1997. Rasmussen, C.E.W., C.R. I. Gaussian Processes for Machine Learning. MIT Press (2000).

1998. Rocca, W.A., Grossardt, B.R., Shuster, L.T. & Stewart, E.A. Hysterectomy, oophoestrogen, and the risk of dementia. Neurodeg
-
- So. de Lange, A.G., et al. 1 vparaton-based neuroinaging reveals traces of children in the material
brain. Proc Natl Acad Sci U S A 116, 22341-22346 (2019).

Rocca, W.A., Grossardt, B.R., Shuster, L.T. & Stewart, E.A. Hyst brain. Proc Nutr Acad Sci U S A 116, 22341-22346 (2015).
Rocca, W.A., Grossardt, B.R., Shuster, L.T. & Stewar
estrogen, and the risk of dementia. Neurodegener Dis 10,
Tungler, A., et al. Body mass index but not genetic ris Example 1. The risk of dementia. Neurodegener Dis 10, 175-178 (2012).

50. Tungler, A., et al. Body mass index but not genetic risk is longitudinally associated with altered

structural brain parameters. Scientific reports estrogen, and the risk of dementia. Neurodegener Dis 10, 175-178 (2012).
Tungler, A., et al. Body mass index but not genetic risk is longitudinally a
structural brain parameters. Scientific reports 11, 24246 (2021).
Cherbu
- 60. Tungler, A., et al. Body mass index but not generots 11, 24246 (2021).

61. Cherbuin, N., et al. Optimal Blood Pressure Keeps Our Brains Younger. Front Aging Neurosci 13,

694982 (2021).

62. Antal, B., et al. Type 2 d structural brain parameters. Scientific reports 11, 24246 (2021).
Cherbuin, N., et al. Optimal Blood Pressure Keeps Our Brains Yc
694982 (2021).
Antal, B., et al. Type 2 diabetes mellitus accelerates brain
Complementary fi
- 61. Cherbuin, W., et al. Optimal Blood Pressure Reeps Our Brains Younger. Front Aging Neurosci 13, 694982 (2021).

62. Antal, B., et al. Type 2 diabetes mellitus accelerates brain aging and cognitive decline:

Complementar Antal, B., et a
Complementary
Chan, M.Y., et a
older adult indiv
Busby, N., et
Neurobiology of
- Complementary findings from UK Biobank and meta-analyses. *Elife* 11(2022).

Complementary findings from UK Biobank and meta-analyses. *Elife* 11(2022).

Chan, M.Y., *et al.* Long-term prognosis and educational determinan Chan, M.Y., *et al.* Long-term prognosis and educational determinants of brain older adult individuals. *Nat Aging* **1**, 1053-1067 (2021).
Busby, N., *et al.* Lower socioeconomic status is associated with premi
Neurobiolo
- 63. Chan, M.Y., et al. Long-term prognosis and educational determinants of brain network decline in
older adult individuals. Nat Aging 1, 1053-1067 (2021).
64. Busby, N., et al. Lower socioeconomic status is associated wit blue adult individuals. Nat Aging 1, 1053-1067 (2021).
Busby, N., et al. Lower socioeconomic status is a
Neurobiology of aging 130, 135-140 (2023).
21 64. Busby, N., et al. Lower socioeconomic status is associated with premature brain aging.
Neurobiology of aging 130, 135-140 (2023).
21 Neurobiology of aging 130, 135-140 (2023).

-
- 65. Foster, H.M.E., et al. The effect of socioeconomic depression on the association between an extended measurement of unably lifestyle factors and health outcomes: a prospective analysis of the UK Biobank cohort. *Lance* analysis of the UK Biobank cohort. *Lancet Public Health* **3**, e576-e585 (2018).
von Elm, E., *et al.* The Strengthening the Reporting of Observational Studies in Epidemiology
(STROBE) statement: guidelines for reporting o analysis of the OK Biobank cohort. Lancet Pablic Health 3, e576-e585 (2016).
Von Elm, E., et al. The Strengthening the Reporting of Observational Studies.
(STROBE) statement: guidelines for reporting observational studies. 66. Von Elm, E., et al. The Strengthening the Reporting of Observational Studies in Epidemiology
(STROBE) statement: guidelines for reporting observational studies. *J Clin Epidemiol* 61, 344-349
(2008). (STROBE) statement: guidelines for reporting observational studies. J Clin Epidemiol 61, 344-349
(2008). (200 m)