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Abstract  
Identifying individuals with early stage Alzheimer’s disease (AD) at greater risk of steeper clinical 
decline would allow professionals and loved ones to make better-informed medical, support, and life 
planning decisions. Despite accumulating evidence on the clinical prognostic value of tau PET in 
typical late-onset amnestic AD, its utility in predicting clinical decline in individuals with atypical 
forms of AD remains unclear. In this study, we examined the relationship between baseline tau PET 
signal and the rate of subsequent clinical decline in a sample of 48 A+/T+/N+ patients with mild 
cognitive impairment or mild dementia due to AD with atypical clinical phenotypes (Posterior 
Cortical Atrophy, logopenic variant Primary Progressive Aphasia, and amnestic syndrome with 
multi-domain impairment and age of onset < 65 years). All patients underwent structural magnetic 
resonance imaging (MRI), tau (18F-Flortaucipir) PET, and amyloid (either 18F-Florbetaben or 11C-
Pittsburgh Compound B) PET scans at baseline. Each patient’s longitudinal clinical decline was 
assessed by calculating the annualized change in the Clinical Dementia Rating Sum-of-Boxes (CDR-
SB) scores from baseline to follow-up (mean time interval = 14.55 ± 3.97 months). Our sample of 
early atypical AD patients showed an increase in CDR-SB by 1.18 ± 1.25 points per year: t(47) = 
6.56, p < .001, d = 0.95. These AD patients showed prominent baseline tau burden in posterior 
cortical regions including the major nodes of the default mode network, including the angular gyrus, 
posterior cingulate cortex/precuneus, and lateral temporal cortex. Greater baseline tau in the broader 
default mode network predicted faster clinical decline. Tau in the default mode network was the 
strongest predictor of clinical decline, outperforming baseline clinical impairment, tau in other 
functional networks, and the magnitude of cortical atrophy and amyloid burden in the default mode 
network. Overall, these findings point to the contribution of baseline tau burden within the default 
mode network of the cerebral cortex to predicting the magnitude of clinical decline in a sample of 
atypical early AD patients one year later. This simple measure based on a tau PET scan could aid the 
development of a personalized prognostic, monitoring, and treatment plan tailored to each individual 
patient, which would help clinicians not only predict the natural evolution of the disease but also 
estimate the effect of disease-modifying therapies on slowing subsequent clinical decline given the 
patient’s tau burden while still early in the disease course. 
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Introduction  
Alzheimer’s disease (AD) is defined neuropathologically by the presence of β-amyloid plaques (Aβ) 
and neurofibrillary tangles composed of hyperphosphorylated tau1. The aggregation of these 
pathological proteins is thought to play a pivotal role in a neurodegenerative cascade leading to a 
phenotypically heterogeneous cognitive-behavioral dementia syndrome. With the advent of positron 
emission tomography (PET) radiotracers specifically binding to aggregated Aβ plaques or 
hyperphosphorylated tau, it is now possible to visualize and quantify these neuropathological 
features in living human brains, thus providing in vivo diagnostic confirmation. Tau PET in 
particular has garnered attention in recent years given converging evidence showing that the 
topography of elevated tau PET signal is more closely associated with co-localized 
neurodegeneration and the types and severity of symptoms than amyloid PET across the AD 
syndromic spectrum2–10.  

While the utility of tau PET for diagnosis is established (with FDA approval in 2020), 
evidence has recently begun accruing to demonstrate its clinical prognostic value in early 
symptomatic AD. In patients with typical MCI or mild dementia due to AD, those with relatively 
greater cerebral tau PET signal show a relatively faster decline in cognitive test performance on the 
Mini Mental State Examination11–17, Addenbrooke’s Cognitive Examination18, or neuropsychological 
composite scores11,14,15,19,20. Given the importance of the Clinical Dementia Rating (CDR) scale as a 
clinical outcome measure in therapeutic trials and other studies (capturing both cognitive and 
functional impairment), surprisingly little work has been done on tau-based prognostication of 
longitudinal CDR change. One study of a mixed sample including asymptomatic, early stage AD, 
and moderate stage AD dementia patients showed that relatively greater tau PET signal predicted 
faster decline on the CDR Sum-of-Boxes (CDR-SB)21, while another study of early AD did not find 
a relationship between baseline tau PET and longitudinal CDR-SB change22. Of these studies, those 
that directly compared the prognostic utility of tau PET to that of other imaging (e.g., atrophy, 
amyloid PET) and/or fluid biomarkers of AD at baseline have consistently found that tau PET was 
the strongest predictor of decline on cognitive test measures11–14,16–20. A comparison of the 
prognostic utility of tau PET vs. amyloid PET and atrophy has not yet been performed with CDR-SB 
as an outcome measure. Furthermore, most of these studies have focused on examining individuals 
presenting with typical late-onset amnestic AD, leaving unclear the utility of tau PET as a prognostic 
tool in early symptomatic individuals with atypical features either based on non-amnestic clinical 
phenotype or young age of onset. We and others have shown that the topography of abnormal tau 
accumulation in atypical AD clinical phenotypes is spatially distinct from what is commonly 
observed with typical amnestic AD7,9,10,23–26. This suggests that definitions of regional tau deposition 
commonly used in studies primarily investigating amnestic late-onset AD (e.g., based on the Braak-
staging scheme of tau progression27,28) would not be suitable for atypical AD. 

One potential solution to this problem concerns the characterization of regional tau 
accumulation on the basis of large-scale functional networks of the brain29,30. Converging 
multimodal neuroimaging evidence in humans provides support for the hypothesis that pathological 
tau proteins spread through neuronal network connectivity in the cerebral cortex24,31–36. We have 
recently shown that individuals with atypical AD—across heterogeneous clinical phenotypes—
consistently exhibit abnormal tau accumulation in the posterior nodes of the default mode network, 
including the posterior cingulate cortex (PCC), precuneus, and lateral parietal and temporal cortices 
bilaterally25. This indicates that, while the primary drivers of the earliest symptoms in atypical AD 
phenotypes are observed in other domain-specific networks (e.g., language, visuospatial)24,37, the 
default mode network may be commonly affected across the AD clinical spectrum. As early 
symptomatic AD progresses, tau spreads to prefrontal cortex, including nodes of the default mode 
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network26,38. Thus, one plausible hypothesis is that individuals with atypical AD who exhibit tau 
accumulation that is more widespread and/or larger in magnitude within the default mode network 
would be likely to experience faster clinical decline.  

In the present study, we sought to investigate the utility of in vivo tau pathology measures 
(18F-Flortaucipir [FTP] PET) localized to specific cortical functional networks in predicting 
subsequent clinical decline using the CDR-SB in a sample of patients with MCI and mild dementia 
due to AD (“early AD”) with a variety of clinical phenotypes of atypical AD. We additionally 
assessed in the same sample of patients the utility of regional cortical atrophy and amyloid PET for 
the same purpose, and compared the contributions of these imaging biomarkers to predicting 
cognitive and functional decline relative to that of FTP PET. On the basis of evidence reviewed 
above, we hypothesized that greater tau accumulation within the default mode network at baseline 
would predict faster longitudinal cognitive and functional decline. We also hypothesized that tau 
burden within the default mode network predicts subsequent clinical decline more strongly than 
cortical thickness or amyloid burden.  

 
Materials and methods  
Participants  
The present study included 48 individuals with a clinical diagnosis of MCI or mild dementia due to 
AD with positive amyloid, tau, and neurodegeneration (A+/T+/N+) imaging biomarkers39, all of 
whom were recruited from the Massachusetts General Hospital (MGH) Frontotemporal Disorders 
Unit; see Table 1 for demographic and clinical characteristics of the sample. This sample of early 
AD patients (mean Clinical Dementia Rating scale sum of boxes [CDR-SB] at baseline = 3.5 ± 1.87) 
mostly included atypical clinical phenotypes, consisting of individuals fulfilling diagnostic criteria 
for Posterior Cortical Atrophy40–42 (PCA) (n = 16), logopenic variant Primary Progressive Aphasia43 
(lvPPA) (n = 15), amnestic syndrome with multi-domain impairment including dysexecutive AD (n 
= 17) with young age of onset (< 65 years)44. In addition, we included a sample of amyloid-negative 
(Aβ-) cognitively unimpaired control participants, whose data were used as a reference for 
quantifying elevated FTP uptake and cortical atrophy in our patients. 

All patients received a standard clinical evaluation comprising a structured history obtained 
from both patient and informant to inform clinician scoring on the CDR, comprehensive neurological 
and psychiatric history and exam, and neuropsychological assessment. Clinical diagnostic 
formulation was performed through consensus conference by our multidisciplinary team of 
neurologists, neuropsychologists, and speech and language pathologists, with each patient classified 
based on all available clinical information as having a 3-step diagnostic formulation of mild 
cognitive impairment or dementia (Cognitive Functional Status), a specific Cognitive-Behavioral 
Syndrome, and a likely etiologic neuropathologic diagnosis45. Each patient’s longitudinal clinical 
decline was measured by calculating the annualized change in the CDR-SB scores from baseline to 
approximately one year later. At baseline, all patients underwent neuroimaging sessions involving 
structural MRI, FTP PET, and amyloid (either 18F-Florbetaben [FBB] or 11C-Pittsburgh Compound 
B [PiB]) PET scans. Aβ positivity was determined by a combination of visual read and mean 
amyloid PET signal extracted from a cortical composite region of interest according to previously 
published procedures46–48. Determination of tau and neurodegeneration positivity was conducted by 
visual read using internal methods similar to published work49–51.  

We also included a group of Aβ- cognitively unimpaired individuals, all of whom performed 
within normal limits on neuropsychological testing, had normal brain structure based on MRI, and 
low cerebral amyloid based on quantitative analysis of PiB PET data (FLR DVR < 1.2). This control 
sample was used as a reference for quantifying elevated signal in FTP PET and cortical thickness in 
early AD patients. Individuals were excluded from our patient and control groups if they had a 
primary psychiatric or other neurologic disorder including major cerebrovascular infarct or stroke, 
seizure, brain tumor, hydrocephalus, multiple sclerosis, HIV-associated cognitive impairment, or 
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acute encephalopathy. This work was carried out in accordance with The Code of Ethics of the 
World Medical Association (Declaration of Helsinki) for experiments involving humans. All 
participants and their informants/caregivers provided informed consent in accordance with the 
protocol approved by the MassGeneral Brigham HealthCare System Human Research Committee 
Institutional Review Board in Boston, Massachusetts. 
 
Table 1. Demographic and clinical characteristics of the sample 

    
  AD Aβ- CU 

n 48 24 

Age (years) 64.1 ± 8.16 67.62 ± 4.68 

Sex (M/F) 20/28 12/12 

Education (years) 16.7 ± 2.46 a15.7 ± 2.25 

MMSE at baseline b22.94 ± 4.99 - 
CDR at baseline CDR 0 (n = 3) CDR 0 (n = 24) 
  CDR 0.5 (n = 28)   
  CDR 1 (n = 17)   

CDR-SB at baseline 3.5 ± 1.87 0 

Baseline to follow-up (months) 
14.55 ± 3.97 

- 

Neocortical composite amyloid (CL) 96.32 ± 25.29 2.12 ± 6.48 

      
aData based on n = 13. 
bData based on n = 47; MMSE data were not available for a subset of patients (n = 21) and thus were estimated from their raw MoCA scores using the published 
conversion table52. 
MMSE = Mini-Mental State Examination; CDR = Clinical Dementia Rating; CDR-SB = Clinical Dementia Rating Sum-of-Boxes; CL = Centiloid 

 
Neuroimaging data acquisition and preprocessing 
All patients underwent structural MRI, FTP PET, and amyloid PET scans at baseline. Structural MRI 
data were acquired from each participant on either a 3 Tesla Siemens Prisma Fit scanner using a T1-
weighted magnetization prepared rapid acquisition sequence (MPRAGE) (repetition time [TR] = 
2300 ms, echo time [TE] = 2.98 ms, flip angle = 9°, slice thickness = 1 mm, field of view [FOV] = 
240 × 256 mm2) or on a 3 Tesla Siemens Tim Trio using a multi-echo MPRAGE sequence (TR = 
2530 ms, TEs = 1.64/3.5/5.36/7.22 ms, flip angle = 7°, slice thickness = 1 mm, FOV = 256 × 256 
mm2). Each participant’s (ME)MPRAGE data underwent intensity normalization, skull stripping, 
and an automated segmentation of cerebral white matter to locate the gray matter/white matter 
boundary via FreeSurfer v6.0 (https://surfer.nmr.mgh.harvard.edu). Defects in the surface topology 
were corrected53, and the gray/white boundary was deformed outward using an algorithm designed to 
obtain an explicit representation of the pial surface. We visually inspected each participant’s cortical 
surface reconstruction for technical accuracy and manually edited it when necessary. Cortical 
thickness was calculated as the closest distance from the gray/white boundary to the gray/CSF 
boundary at each vertex on the tessellated surface54. For the purpose of Centiloid scaling only, we 
additionally processed each patient’s (ME)MPRAGE data via FreeSurfer v7.1 to keep a consistency 
with the current ADNI approach55.  

PET data were acquired using a Siemens (Knoxville, TN) ECAT HR + scanner. Tau PET 
images were acquired from 80 to 100 min after the bolus injection of ~10.0 mCi of FTP (4 × 5 min 
frames). Amyloid PET data were acquired either from 90 to 110 min after the injection of ~8 mCi of 
FBB (4 × 5 min frames) or a 60 min dynamic acquisition after the injection of 8.5 to 10.5 mCi of PiB 
(69 frames; 12 × 15 sec followed by 57 × 60 sec). All PET data were reconstructed and attenuation 
corrected; each frame was evaluated to verify adequate count statistics and interframe head motion 
was corrected. Individual FTP PET frames were aligned to the first via FSL FLIRT56 and were 
averaged. Further processing of FTP PET data were performed via the PetSurfer tools57,58. Each 
participant’s FTP PET data were first rigidly co-registered to their anatomical volume and the 
accuracy of cross-modal spatial registration was confirmed by visual inspection. FTP PET data were 
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then corrected for partial volume effects. Specifically, based on each participant’s high-resolution 
tissue segmentation derived by the standard Desikan-Killiany atlas59, the symmetric geometric 
transfer matrix method was used to correct for spill-in and spill-out effects between adjacent brain 
tissue types, with a point spread function of 6 mm57,58. Using partial volume-corrected data, we 
derived the FTP standard uptake value ratio (SUVR) image per participant with whole cerebellar 
gray matter as a reference region. Finally, FTP SUVR maps were resampled to fsaverage space and 
smoothed geodesically with FWHM of 8 mm. 

 
Calibration of amyloid PET SUVR data to Centiloid units 
In the current patient sample, baseline amyloid deposition was quantified using FBB PET for 21 
patients, whereas PiB PET was used for 27 patients. To harmonize the data across these different 
radioligands, we converted both FBB and PiB SUVR images to Centiloid (CL) units following the 
published guidelines55,60. See Supplementary Methods and Supplementary Fig. 1 for details. 
 
Statistical analysis  
Using individual FTP SUVR maps as inputs, we first constructed a whole-cortex vertex-wise general 
linear model (GLM) using FreeSurfer’s mri_glmfit function to identify areas of the cerebral cortex 
where early AD patients showed greater FTP uptake than the Aβ- control participants. Statistical 
significance was assessed with a vertex-wise threshold of p < 10-8 uncorrected for multiple 
comparisons. To characterize the spatial topography of abnormal FTP signal in early AD with 
respect to large-scale functional networks of the cerebral cortex, we utilized an established 
parcellation with seven spatially non-overlapping networks (visual, somatomotor, dorsal attention, 
ventral attention, limbic, frontoparietal, and default)30. Here, we adhere to the original and 
conventional use of these networks, although we acknowledge that the “default” and “limbic” 
networks are not always distinguished in the literature61 and that both networks contain agranular, 
limbic tissue62,63. Given our a priori hypotheses about the default mode network, we additionally 
characterized FTP uptake separately for each cortical lobar region of interest (ROI) within this 
network (frontal, parietal, medial temporal, and lateral temporal). 

Next, we constructed a vertex-wise GLM to examine the bivariate association between 
baseline FTP uptake and annualized change in CDR-SB across all AD patients. Statistical 
significance was assessed with a vertex-wise threshold of p < .01 uncorrected for multiple 
comparisons. We additionally compared the magnitude of correlation across the four ROIs within the 
default mode network by extracting their mean FTP uptake. We then performed a series of multiple 
linear regression analyses with annualized change in CDR-SB as the outcome variable, while using 
mean FTP uptake in each functional network as the main predictor in separate models (i.e., simple 
network models), while controlling for age, sex, and CDR-SB at baseline as covariates of no interest. 
Performance of regression models was evaluated using adjusted R2 as well as changes in Akaike 
information criterion (AIC) values, where ΔAIC < -2 was considered evidence for significant 
improvement in model fit17,64. Following the examination of simple network models, we investigated 
the complementary contributions of suprathreshold functional networks to predicting CDR-SB 
change via an automated data-driven model selection using the MuMIn package (v1.47.5) run in R 
(v4.2.1)65. This analysis evaluated the performance of models constructed using all possible variable 
combinations and ranking them based on their AIC, with the goal to identify the most parsimonious 
model defined as the one with the fewest predictors within two AIC points from the lowest AIC66. 

Having established the specific role of tau in the default mode network in predicting future 
clinical decline, we next investigated the extent to which other major elements of AD 
neuropathologic features (i.e., cortical atrophy and amyloid burden) have complementary roles in 
prognostication. To this end, we first examined baseline maps of cortical thickness and amyloid PET 
using vertex-wise GLMs to identify areas of abnormal signal as well as the topography and 
magnitude of association with annualized CDR-SB change in early AD patients. We then constructed 
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a series of multiple linear regression models to assess complementary contributions of tau, cortical 
thickness, and amyloid in the default mode network to predicting CDR-SB change. Finally, as a first 
step toward developing a tool for individualized risk stratification, we conducted an exploratory 
analysis to see whether a subset of patients exhibiting faster clinical decline with the rest of the 
patient sample (i.e., CDR-SB change >1 SD greater than the group mean) would differ on baseline 
tau burden, cortical thickness, or amyloid burden. Unless otherwise specified, statistical significance 
for group-level statistical analyses was assessed at p < .05. 

 
Results  
Early AD is characterized by cortical tau deposition in multiple cerebral functional networks 
A vertex-wise comparison of FTP uptake between AD patients and Aβ- control participants revealed 
elevated signal predominantly in posterior cortical regions with modest lateral prefrontal 
involvement. These regions overlapped substantially with the major nodes of the default mode 
network, including the angular gyrus, posterior cingulate cortex/precuneus, and lateral temporal 
cortex, with lesser involvement of the medial temporal lobe (Fig. 1A). To further characterize the 
spatial topography of cortical tau deposition, we calculated the mean FTP SUVR across all vertices 
falling within the boundaries of each of the seven canonical functional networks30 as well as four 
lobar regions within the default mode network. Within the default mode network, the largest effect 
size of between-group differences was observed in the lateral temporal areas, followed by the 
parietal areas (Fig. 1B). Among the rest of the canonical functional networks, the dorsal attention 
network showed the largest effect size of group differences in mean FTP uptake, with all the other 
networks showing smaller effect sizes than the default mode network (Fig. 1C). 
 
Greater tau burden in the default mode network at baseline predicts faster clinical decline in early 
AD 
We used the CDR-SB to measure approximately 1-year clinical progression in these early AD 
patients. Each patient’s longitudinal clinical decline was assessed by calculating the annualized 
change in the CDR-SB scores from baseline to a follow-up visit (mean time interval = 14.55 ± 3.97 
months). To control for individual variability in clinical follow-up, we computed the annualized 
change in CDR-SB scores in each patient ([CDR-SB at follow-up – CDR-SB at baseline]/time 
interval in years). Our early AD patients showed an increase in CDR-SB by 1.18 ± 1.25 points per 
year (t[47] = 6.56, p < .001, d = 0.95). We then performed a vertex-wise bivariate correlation 
analysis to examine the relationship between baseline FTP uptake and annualized change in CDR-SB 
across patients. This analysis revealed that baseline tau deposition in widespread areas of the cerebral 
cortex—which substantially overlapped with the default mode network—is associated with the 
magnitude of clinical decline over time (Fig. 2A). Unlike the analysis of group differences in 
baseline FTP uptake, the association between baseline FTP uptake and annualized CDR-SB increase 
was comparably strong across different lobar ROIs within this network (Fig. 2B). Based on this 
observation, our subsequent regression analyses focused on FTP uptake and other imaging biomarker 
data extracted from the whole network level. 
 
Baseline tau burden in the default mode network is a stronger predictor of clinical decline than that 
in other functional networks 
Table 2 summarizes the results of simple network models where we used FTP uptake in each 
functional network as the main predictor of annualized change in CDR-SB, while account for the 
effect of age, sex, and baseline CDR-SB as covariates. The basic model with age, sex, and CDR-SB 
at baseline revealed that higher CDR-SB scores at baseline predicted greater change in CDR-SB (β = 
0.32, SE = 0.14, p ≤ .027). Controlling for these baseline measures, the inclusion of FTP uptake in 
the default mode network as a predictor in the model significantly improved fit (F(1,43) = 13.30, p < 
.001, ΔAIC = -10.94, ΔR2 = .20), such that greater FTP uptake in this network predicted greater 
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change in CDR-SB (β = 0.54, SE = 0.15, p < .001). In addition, we found that modeling FTP uptake 
in several other functional networks resulted in significantly improved fit, including the 
frontoparietal (F(1,43) = 7.77, p ≤ .0023, ΔAIC = -8.54, ΔR2 = .16), limbic (F(1,43) = 6.68, p ≤ .013, 
ΔAIC = -4.93, ΔR2 = .11), ventral attention (F(1,43) = 5.63, p ≤ .022, ΔAIC = -3.91, ΔR2 = .09), and 
visual (F(1,43) = 4.76, p ≤ .035, ΔAIC = -3.04, ΔR2 = .07) networks. However, the model with FTP 
uptake in the default mode network was the strongest predictor of CDR-SB change compared with 
all the other simple network models. In general, baseline CDR-SB was a weaker predictor of CDR-
SB change and was in many cases statistically insignificant (p > .05) when modeled with network-
specific FTP uptake. 
 
Data-driven model selection confirms the utility of tau in the default mode network in predicting 
clinical decline 
Extending the simple network models reported above, we next sought to investigate complementary 
contributions of FTP uptake in different networks to predicting CDR-SB change.  To this end, we 
conducted an automated data-driven model selection by testing all possible variable combinations 
and ranking the models based on their AIC66. In this analysis, we considered the five networks whose 
simple models provided better fit compared with the basic model, while controlling for age, sex, and 
baseline CDR-SB. Therefore, model selection was performed with a total of 256 models (255 based 
on different combinations of these predictors and the intercept-only model). This analysis revealed 
that the most parsimonious model—defined as the model with the fewest predictors within two AIC 
points from the lowest AIC—was the one with FTP uptake in the default mode network as the sole 
predictor (Table 3). 
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Table 2. Basic and simple network models predicting annualized change in CDR-SB in patients with atypical early AD 
 

Model Age Sex 
Baseline 
CDR-SB Default Frontoparietal Visual Limbic  

Dorsal 
Attention 

Ventral 
Attention Somatomotor 

Adjusted 
R2 p AIC 

Basic -0.07 (.63) 0.46 (.11) 0.32 (.027)* - - - - - - - .10 .051 -1.40 
Full 0.09 (.60) 0.14 (.61) 0.18 (.21) 0.64 (.32) 0.09 (.90) 0.95 (.004)* -0.17 (.54) -1.54 (.012)* 0.97 (.13) -0.24 (.39) .36 .0018* -12.05 
Default mode 0.18 (.21) 0.19 (.46) 0.24 (.062) 0.54 (<.001)* - - - - - - .30 <.001* -12.34 
Frontoparietal 0.22 (.17) 0.14 (.61) 0.24 (.076) - 0.54 (.002)* - - - - - .26 .0017* -9.94 
Visual -0.01 (.96) 0.33 (.24) 0.20 (.17) - - 0.33 (.035)* - - - - .17 .015* -4.44 
Limbic  -0.02 (.87) 0.31 (.26) 0.28 (.042)* - - - 0.35 (.013)* - - - .21 .0072* -6.33 
Dorsal 
Attention 0.09 (.58) 0.29 (.32) 0.26 (.073) - - - - 0.33 (.065) - - .15 .024* -3.24 
Ventral 
Attention 0.15 (.36) 0.25 (.38) 0.30 (.030)* - - - - - 0.40 (.022)* - .19 .011* -5.31 
Somatomotor 0.02 (.90) 0.43 (.13) 0.29 (.046)* - - - - - - 0.20 (.22) .11 .055 -1.12 
 

Predictor values indicate regression coefficients (p values). *P < .05 
The best performing model, defined as having the largest ΔAIC and ΔR2 compared with the basic model, is bolded, where FTP uptake in the default mode network is the only significant predictor. 
CDR-SB = Clinical Dementia Rating Sum-of-Boxes; AIC = Akaike information criterion. 

 
 
Table 3. Selection of the most parsimonious model for predicting annualized change in CDR-SB in patients with atypical early AD 
 

Age Sex Baseline 
CDR-SB 

Default Frontoparietal Limbic Ventral 
Attention 

Visual df logLik AICc delta weight 

- - - 0.72 - - -0.39 - 5 -56.85 125.12 0.00 0.04 
- - 0.22 0.49 - - - - 4 -58.14 125.20 0.08 0.03 
- - - 0.41 - - - - 4 -58.17 125.26 0.14 0.03 
0.18 - 0.23 0.58 - - - - 5 -57.25 125.92 0.80 0.02 
- - 0.17 0.41 - - - - 5 -57.28 125.99 0.86 0.02 
0.18 - - 0.50 - - - - 5 -57.31 126.06 0.93 0.02 
- - - - - 0.35 - 0.37 4 -58.58 126.08 0.96 0.02 
- - - 0.53 - - - - 3 -59.78 126.10 0.98 0.02 
- - 0.13 0.68 - - -0.33 - 6 -56.31 126.67 1.55 0.02 
- - - 0.86 -0.48 - - - 5 -57.63 126.69 1.57 0.02 
0.18 - 0.17 0.50 - - - - 6 -56.33 126.70 1.58 0.02 
- - - 0.57 - 0.19 -0.41 - 6 -56.35 126.75 1.63 0.02 
- - 0.21 0.67 - - -0.21 - 5 -57.73 126.88 1.76 0.01 
0.17 - - 0.61 - - - - 4 -59.05 127.02 1.90 0.01 
0.12 - - 0.73 - - -0.32 0.29 6 -56.50 127.06 1.93 0.01 
- + 0.23 0.45 - - - - 5 -57.82 127.06 1.94 0.01 
- - - 0.27 - 0.16 - 0.28 5 -57.82 127.07 1.95 0.01 
- - 0.23 0.83 -0.36 - - - 5 -57.83 127.10 1.97 0.01 
- - 0.16 - - 0.35 - 0.32 5 -57.84 127.11 1.98 0.01 

 

Predictor values indicate regression coefficients. 
Only the models with ΔAIC < 2 are shown (out of 256 models). The most parsimonious model, as defined by having the fewest predictors within two AIC points from the lowest AIC, is bolded, which has FTP uptake 
in the default mode network as the sole predictor. 
CDR-SB = Clinical Dementia Rating Sum-of-Boxes; logLik = log likelihood; AICc = corrected Akaike information criterion. 
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Complementary contributions of tau and neurodegeneration, but not amyloid, in the default mode 
network to predicting clinical decline 
Following the analysis of FTP PET data, we examined baseline cortical thickness and amyloid PET 
data using vertex-wise GLMs to identify areas of abnormal signal as well as the topography and 
magnitude of association with annualized CDR-SB change in this early AD patient sample. We 
found prominent reduction in thickness (i.e., greater atrophy) that was co-localized with elevated 
FTP uptake in cortical areas including part of the default mode network, although of much lesser 
magnitude and spatial extent. Amyloid PET signal was prominently elevated in more widespread 
areas of the cerebral cortex, particularly in broader heteromodal association areas as well as limbic 
cortices (Supplementary Fig. 2). Again mirroring the pattern observed with FTP uptake, baseline 
cortical thickness in regions including those within the boundaries of the default mode network 
predicted subsequent clinical decline; however, this effect was both smaller in magnitude and 
narrower in spatial extent compared with what we observed with FTP uptake. The magnitude of the 
relationship between baseline amyloid PET signal and subsequent clinical decline was only sparsely 
observed (Fig. 3). 

Extending vertex-wise analyses, we next constructed multiple linear regression models to 
predict CDR-SB change to investigate the contribution of individual biomarker data (FTP PET, 
cortical thickness, and amyloid PET) within the default mode network, controlling for age, sex, and 
baseline CDR-SB. We found that including cortical thickness of the default mode network as a 
predictor improved model fit (F(1,43) = 6.03, p ≤ .018, ΔAIC = -4.3, ΔR2 = .10), whereas amyloid 
PET did not (F(1,43) = 0.19, p ≤ .66, ΔAIC = 1.02, ΔR2 = -.01). The model with FTP uptake in the 
default mode network still yielded the largest effect size and lowest AIC value (Table 4). Finally, we 
conducted a data-driven model selection to identify the most parsimonious model given all possible 
variable combinations. This analysis showed that the model with two predictors—FTP uptake in the 
default mode network with either cortical thickness in the same network or baseline CDR-SB 
scores—as being the most parsimonious, with comparable model performance (Table 5). 
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Table 4. Multiple linear regression models predicting annualized change in CDR-SB in patients with atypical early AD by individual imaging biomarkers 

                    

Model Age Sex Baseline CDR-SB FTP Thickness Amyloid Adjusted R2 p AIC 

FTP 0.18 (.21) 0.19 (.46) 0.24 (.062) 0.54 (<.001)* - - .30 <.001* -12.34 

Thickness -0.13 (.34) 0.51 (.064) 0.10 (.52) - -0.39 (.018)* - .20 .0093* -5.70 

Amyloid -0.29 (.19) 0.50 (.099) 0.32 (.027)* - - -0.06 (.66) .09 .096 0.38 

                    

          
Predictor values indicate regression coefficients (p values). 
The best performing model, defined as having the largest ΔAIC and ΔR2 compared with the basic model (see Table 2), is bolded. 
CDR-SB = Clinical Dementia Rating Sum-of-Boxes; FTP = 18F-Flortaucipir PET; AIC = Akaike information criterion. 
 

Table 5. Selection of the most parsimonious multimodal model for predicting annualized change in CDR-SB in patients with atypical early AD 

Age Sex 
Baseline 
CDR-SB FTP Thickness Amyloid df logLik AICc delta weight 

- - - 0.45 -0.27 - 4 -57.51 123.95 0.00 0.15 

- - 0.22 0.49 - - 4 -58.14 125.20 1.26 0.08 

- + - 0.40 -0.30 - 5 -56.92 125.26 1.32 0.08 

- - 0.12 0.44 -0.20 - 5 -57.12 125.67 1.73 0.07 

0.18 - 0.23 0.58 - - 5 -57.25 125.92 1.97 0.06 

 

Predictor values indicate regression coefficients. Only the models with ΔAIC < 2 are shown. 
The most parsimonious models, as defined by having the fewest predictors within two AIC points from the lowest AIC, are bolded, which have FTP uptake in the default mode network along with either cortical 
thickness in the same network or baseline CDR-SB scores as predictors. 
CDR-SB = Clinical Dementia Rating Sum-of-Boxes; logLik = log likelihood; AICc = corrected Akaike information criterion. 
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Finally, we identified a subset of early AD patients (n = 7) exhibiting faster clinical decline 
compared with the rest of the patient sample (i.e., CDR-SB change >1 SD greater than the group 
mean). Consistent with the regression results reported above, comparisons of these two patient 
subgroups revealed that faster clinical decline was associated with higher baseline CDR-SB scores 
(t(46) = 2.38, p ≤ .021) as well as greater FTP uptake (t(46) = 2.58, p ≤ .013) and reduced cortical 
thickness (t(46) = -2.55, p ≤ .014) in the default mode network, whereas the two groups did not differ 
in the composition of sexes (χ2 (1, N = 48) = 2.52, p ≤ .11), age (t(46) = -0.18, p ≤ .86), education 
(t(46) = -1.16, p ≤ .25), or amyloid deposition in this network (t(46) = 0.82, p ≤ .42) 
(Supplementary Table 1 and Supplementary Fig. 2). 
 
Discussion  
Patients at the early clinical stage of AD (MCI or mild dementia) are most commonly targeted in 
clinical trials focusing on the development of disease-modifying therapies, allowing for maximal 
opportunities to modulate the trajectory of cognitive and functional decline before substantial 
irreversible neurodegeneration and clinical impairment is present. Tau PET has already demonstrated 
important therapeutic relevance, as early symptomatic AD patients with relatively higher cortical tau 
accumulation are less likely to benefit from at least one anti-amyloid monoclonal antibody67,68. 
Clarifying the utility of tau burden in predicting future clinical decline would be an important first 
step toward implementing risk stratification strategies to identify patients who are likely to show 
faster vs. slower rates of decline over time. This information in turn has potential to provide 
additional therapeutic insight by estimating the efficacy of disease-modifying therapies to “flatten” 
the slope of decline in each individual patient. 

While the prognostic utility of tau PET signal in symptomatic stages of AD has been recently 
acknowledged69, there is limited evidence in this regard based on individuals presenting with atypical 
features of the disease, including non-amnestic clinical presentations and/or age of onset younger 
than 65 years. Patients with atypical AD tend to exhibit longitudinal clinical decline at a faster rate 
than those with typical AD70–73, highlighting the need for developing a reliable prognostication tool 
for patients with atypical early AD. In the present study, we investigated the role of tau PET signal 
localized to the default mode network at baseline in predicting clinical decline approximately one 
year later in patients at early clinical stages of atypical AD. We additionally compared the prognostic 
utility of baseline tau burden to that of cortical thickness and amyloid burden, all measured within 
the default mode network at baseline. Consistent with our hypotheses, we found that baseline tau in 
the default mode network was the strongest predictor of subsequent clinical decline, outperforming 
baseline cognitive and functional impairment, tau accumulation in other functional networks of the 
cerebral cortex, and atrophy and amyloid burden in the default mode network. 

At baseline, early AD patients exhibited prominent tau accumulation in posterior cortical 
regions, including the major nodes of the default mode network (e.g., posterior cingulate, precuneus, 
angular gyrus, and lateral temporal cortex), with only modest involvement of the medial temporal 
and frontal regions, compared with Aβ- age-matched cognitively unimpaired control participants. 
These observations are overall consistent with prior work from our group9,10,24,25,46 and others7,26,74 
identifying similar patterns of tau deposition in patients with variants of atypical AD. Aside from the 
default mode network, relatively higher tau signal was also identified in the dorsal attention and 
frontoparietal networks. This may reflect the high number of patients with a clinical diagnosis of 
PCA or amnestic dysexecutive AD in our study sample, where these functional networks are known 
to be particularly vulnerable24,75,76. 

Next, we examined how baseline tau burden would predict subsequent clinical decline, as 
measured by the annualized change in CDR-SB scores from baseline to follow-up. Despite the 
popularity of the CDR scale as a primary endpoint in clinical research and trials for AD, to our 
knowledge there are only two published studies to date that have conducted tau-based 
prognostication of longitudinal clinical decline using this outcome measure. In one study, the authors 
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examined a sample of patients with early AD and moderate AD as well as cognitively unimpaired 
participants and showed that greater baseline tau burden was associated with faster decline on CDR-
SB, regardless of whether tau was defined at the level of whole cortical gray matter, temporal meta 
ROI, or Braak staging ROIs21. In another study of early AD, the authors failed to identify a 
significant relationship between baseline cortical tau and CDR-SB change22. While our patient 
sample and that of La Joie et al.22 are comparable in the level of baseline clinical impairment and the 
magnitude of decline over time, the two studies can be distinguished by the range of FTP PET signal 
(average cortical SUVR from ~1 to ~2.7 in La Joie et al. vs. 1.24 to 6.16 here), which may explain 
this discrepancy. The present study expands on prior findings by providing evidence that network-
specific measures of tau accumulation can be used as a meaningful biomarker for disease progression 
in a clinically heterogeneous sample of patients with atypical early AD. 

Our analysis demonstrated that the spatial topography of baseline tau deposition predicting 
subsequent clinical decline was much more widespread than that of group-average baseline tau 
deposition itself, which showed remarkable spatial overlap with the canonical default mode network. 
Current models of tau propagation in AD emphasize the posterior-to-anterior trajectory, such that as 
symptomatic AD progresses, tau spreads from posterior cortical areas to prefrontal cortex, including 
the nodes of the default mode network26,38. However, we found that the strength of the relationship 
between baseline tau and future clinical decline was comparable across the four lobar ROIs within 
the network. This suggests that tau accumulation in both the posterior nodes (where tau likely 
originates in the network) and anterior nodes (to which tau likely spreads in the network) of the 
default mode network are similarly important in determining the future rate of clinical decline in 
atypical early AD. 

Further underscoring the unique contribution of the default mode network, we found that 
baseline tau burden in this network predicts subsequent clinical decline more strongly than that in 
any other functional network of the cerebral cortex. In fact, simply including baseline tau in the 
default mode network as a covariate in addition to age, sex, and CDR-SB scores at baseline more 
than tripled the amount of explained variance in the data. Moreover, our data-driven model selection 
approach revealed that a model with baseline tau in the default mode network as the sole predictor 
provides fit as good as the best performing model with the lowest AIC. These findings suggest that 
the prognostic utility of tau PET signal is not similar across networks and that the default mode 
network shows maximal sensitivity to predicting future clinical decline in early AD.  

Our analysis of additional imaging biomarkers showed that baseline cortical thickness of the 
default mode network estimated from MRI also predicts subsequent clinical decline, although to a 
lesser extent than baseline tau burden in the same network; amyloid deposition in the default mode 
network did not predict subsequent clinical decline. When these imaging biomarkers were 
considered together in multimodal prediction models, one of the most parsimonious models included 
baseline tau and cortical thickness in the default mode network as the only predictors, suggesting 
complementary contributions of these measures to predicting clinical decline in atypical early AD. 
These findings are in line with previous investigations on biomarker-based prognostication in AD, 
which have provided converging evidence that tau PET is a superior predictor of cognitive decline 
compared with other measures of AD pathology and neurodegeneration including amyloid burden 
and gray matter atrophy in symptomatic AD patients11–14,16–20. This pattern of brain-behavior 
associations is also consistent with prior cross-sectional work by us and others. For example, in a 
recent study of PCA patients we showed that tau burden within the dorsal attention network was 
associated with visuospatial cognitive impairment while controlling for cortical thickness in the same 
network24. Partially independent associations of tau and cortical atrophy with cognition have been 
similarly reported across the syndromic spectrum of AD77–79. In a series of studies, we have also 
demonstrated the utility of cortical thickness as a biomarker of current clinical impairment or future 
clinical decline across AD phenotypes80–83. Although the magnitude of cortical atrophy was less 
prominent than that of tau burden in our patient sample, the present results suggest that modeling 
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cortical thickness in addition to tau helps better predict subsequent clinical decline, likely by 
capturing aspects of early neurodegenerative processes following tau deposition.   

Finally, as a first step toward developing a tool for individualized risk stratification, we 
compared baseline characteristics between a subset of our patients exhibiting faster clinical decline 
and the rest of the sample. Consistent with our findings discussed so far, we found that early AD 
patients who went on to show clinical decline at a relatively faster rate had—at baseline—
prominently greater tau burden and cortical atrophy in the default mode network, somewhat greater 
cognitive impairment, and modestly greater amyloid burden in the default mode network. Although 
we were limited in our ability to go beyond this simple analysis due to the sample size, these findings 
set the stage for future prognostic work aimed at providing individualized estimates of the likelihood 
of relatively more rapid clinical decline. This information has profound implications for patients, 
families, and professionals in making better-informed decisions about treatment, caregiving, and life 
planning. 

Our study has some limitations that should be acknowledged, along with possible avenues for 
future research. First, we analyzed only baseline imaging data and clinical decline estimated from 
two time points approximately one year apart. Future work should examine data acquired from more 
time points to reduce the possibility of measurement error. Longitudinal neuroimaging would also be 
useful in more comprehensively characterizing dynamic trajectories of AD-related neuropathologic 
changes, neurodegeneration, clinical decline, and the relationships between these phenomena. 
Second, while we purposefully focused on patients with early AD, we may be able to gain a better 
understanding of the prognostic utility of network-specific tau PET signal by studying samples with 
tighter ranges of clinical impairment at baseline (by focusing solely on MCI, for example). An 
overall larger sample would also be useful in minimizing the risk of model overfitting in future work. 
Third, we used the same ROI mask to define the default mode network in each patient based on an 
established parcellation of the cerebral cortex. While this is a common analytical approach in the 
literature, it is important to acknowledge potential variability in the topography of functional 
networks across individual patients84,85. A recent tau PET study in AD has also demonstrated that 
participant-specific ROIs show greater sensitivity to detecting longitudinal tau spread than group-
level ROIs86. Future work should compare individual-specific and group-based approaches to 
neuroimaging data analyses to see how much this distinction influences clinical prognostication. 

In sum, the present findings support the strong and specific contribution of baseline tau 
burden within the default mode network of the cerebral cortex to predicting the magnitude of clinical 
decline in a sample of atypical early AD patients one year later. This simple measure based on a tau 
PET scan could aid the development of a personalized prognostic, monitoring, and treatment plan 
tailored to each individual patient, which would help clinicians not only predict the natural evolution 
of the disease but also estimate the effect of disease-modifying therapies on slowing subsequent 
clinical decline given the patient’s tau burden while still early in the disease course.  
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Figure Captions 
 
Figure 1. Mean 18F-Flortaucipir PET signal is high across the posterior default mode network 
in early A+/T+/N+ atypical Alzheimer’s disease. (A) Colored vertices on the cortical surface map 
indicate areas where A+T+N+ Alzheimer’s disease (AD) patients (n = 48) had greater 18F-Flortaucipir 
(FTP) SUVR than Aβ- cognitively unimpaired participants (n = 24). Statistical significance was 
assessed at vertex-wise p < 10-8. The default mode network (DMN) is outlined in blue. (B) Bar plot 
represents the mean FTP SUVR values calculated for each cortical lobar region of interest (ROI) part 
of the default mode network as well as the whole network separately for each group. These ROIs 
were defined based on a parcellation of the default mode network from Yeo et al.30. Error bars 
represent one standard error of the mean. Colored circles overlaid on the bar plot represent individual 
participants in each group. Values below x axis labels indicate Cohen’s d effect sizes. All group 
differences are statistically significant at p < .001. (C) Similar to (B) above, the bar plot here 
represents mean FTP SUVR values of the rest of the canonical functional networks of the cerebral 
cortex as defined by Yeo et al.30. All group differences are statistically significant at p < .001. DA = 
dorsal attention; FP = frontoparietal; VA = ventral attention; LIM = limbic; VIS = visual; SM = 
somatomotor. 
 
Figure 2. Greater baseline cerebral 18F-Flortaucipir PET signal in nearly the entire default 
mode network predicts faster subsequent clinical decline in early atypical AD. (A) Colored 
vertices on the cortical surface map indicate areas where greater FTP SUVR at baseline predicted 
faster clinical decline (as measured by the annualized change in CDR-SB scores) in patients with 
early AD (N = 48). Statistical significance was assessed at vertex-wise p < .01. Although the average 
baseline group elevation of tau is localized in the posterior default mode network (DMN) (Fig. 1A), 
this map shows that those individuals with more widespread tau in the DMN—including in not only 
posterior DMN but also anterior regions—progress faster. (B) Scatterplots depict zero-order bivariate 
associations between mean FTP SUVR extracted from lobar ROIs of the DMN as well as the entire 
network and the annualized change in CDR-SB scores. Consistent with vertex-wise results shown in 
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(A), the pattern of associations is overall similar across ROIs, and shows that the overall tau burden 
throughout the DMN at baseline is a strong predictor of the rate of decline in the coming year.  
 
Figure 3. Association between baseline cortical thickness and amyloid deposition and 
subsequent clinical decline in atypical early AD. Colored vertices on the cortical surface maps 
indicate areas where (A) reduced cortical thickness or (B) greater amyloid deposition (expressed in 
Centiloid units) at baseline predicted faster clinical decline (as measured by the annualized change in 
CDR-SB scores) in patients with early AD (N = 48). Statistical significance was assessed at vertex-
wise p < .05.  
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