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Background

Stadler, 2010 derived the probability an individual in-
fectious at time t in the past gives rise to exactly zero
or one observed event (e.g., they are either sequenced
or appear as an occurrence). These probabilities are
key to the calculations from Manceau et al., 2020, in
which they solved a PDE for the probability generating
function (PGF) of the distribution of hidden lineages.
The operations that need to be applied to the PGF to

compute the likelihood are intractable, so in Zarebski
et al., 2022 we constructed a negative binomial approx-
imation to describe the number of descendent lineages
of an infection. As shown by Kendall, 1948, each lin-
eage has a number of descendent lineages which is over-
dispersed for the Poisson distribution, so the sum of all
of these is also over-dispersed. This means that we
never run into problems with the mean being greater
than the variance after conditioning on the population
being a particular size at some point in time. Full de-
tails of the derivation of the negative binomial approx-
imation are given in Zarebski et al., 2022.

Effective reproduction number

In this section we derive a closed form expression for the
effective reproduction number, Re, in the birth-death
process with scheduled sampling events. Let Yt(x) be
the number of infections caused by an individual during
the interval (t, t+x), given they were already infectious
at time t1. The effective reproduction number can be
written as

Re(t) = lim
x→∞

E [Yt(x)] .

In the standard birth-death process, if births (new

1Some authors will require that the individual was newly in-
fected at time t, but since the process is a birth-death process
and has no memory we do not need to consider this.

infections) occur at rate λ and deaths (cessation of
infectiousness) at rate µ, then Re = λ/µ. From the
perspective of an infectious individual in this process
it does not matter if they cease to be infectious be-
cause of a µ (removal without sampling), ψ (sequenced
sampling) or ω (unsequenced sampling) event. The in-
fectious individual only experiences a net birth rate, λ,
a net death rate, µ′ := µ + ψ + ω, and a sequence of
times, tj for j = 0, 1, · · ·, when they may be sampled
with probability pj (i.e. the scheduled sampling times).
Note that these rates may at a sequence of times, sj,
when either the net birth or death rates of the process
change.

Let Tsched = min{tj, sj′} (for the appropriate indices
j and j′) be the time of the next scheduled event and
Tµ′ be the time at which the individual would cease
to be infectious in the absence of scheduled sampling.
Since Tµ′ has an exponential distribution with rate µ′,
we can observe that Pr (Tµ′ < Tsched) = 1−e−µ′(Tsched−t).

To compute Re(t), we write E [Yt(x)] as the sum of
two potential outcomes, whether the infectious individ-
ual is removed before or after Tsched:

E [Yt(x)] =

E [Yt(x) | Tµ′ < Tsched] Pr (Tµ′ < Tsched)+

E [Yt(x) | Tµ′ > Tsched] Pr (Tµ′ > Tsched) .

To compute the first term in the equation, note that
for x ≥ Tsched − t, we have E [Yt(x) | Tµ′ < Tsched] =
E [Yt(Tsched − t) | Tµ′ < Tsched], because there can be no
further infections after the individual has ceased to be
infectious. Given Tµ′ and Tµ′ < Tsched, the number of
infections due to the individual in this period follows a
Poisson process. Therefore,
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E [Yt(x) | Tµ′ < Tsched] Pr (Tµ′ < Tsched) =(
1− e−µ

′(Tsched−t)
)∫ x

0

λτ
µ′e−µ

′τ

1− e−µ′(Tsched−t)︸ ︷︷ ︸
∗

dτ

where ∗ is the conditional density of the time at
which the individual is removed, Tµ′ . In the case
x = Tsched − t this is

λ

µ′

(
1− e−µ

′(Tsched−t)
)
− λ(Tsched − t)e−µ

′(Tsched−t)

which has a nice interpretation: the first term is the
proportion of the total number of infections indepen-
dent of the scheduled sampling and the second term
corrects for the over-counting by removing the expected
number if the infection persisted past the scheduled
sample.
There are two expressions for E [Yt(x) | Tµ′ > Tsched]

depending on if Tsched = tj or Tsched = sj′ . For Tsched =
tj, assume that the probability of being observed (and
hence being removed from the infectious class) as part
of the scheduled sample is p. In this case

E [Yt(x) | Tµ′ > Tsched]

=E [Yt(Tsched − t) | Tµ′ > Tsched] +

(1− p)E [YTsched(x− (Tsched − t))]

=λ(Tsched − t) + (1− p)E [YTsched(x− (Tsched − t))]

where the first term is the expected number of infec-
tions prior to the scheduled sample, and the second
term is the expected number after it. In the related
case where Tsched = sj′ , we have the same expression
but with p = 0 and with an appropriate change in the
parameters.
The expressions above give a recursive definition of

the effective reproduction number. If we assume that
there are only a finite number of scheduled samples and
rate changes this recurrence will terminate. Even in the
case of scheduled sampling continuing without end, we
can use it to compute increasingly accurate values, and
it is possible to use it to bound the true value with this
approximation. As mentioned in the main text, we do
not need to use this expression as there is a convenient
and principled approximation in terms of ω̃.

Extension to sampled ancestors

Observation with possible removal

Consider the situation in which, upon observation,
there is a probability r that the observed individual is

removed from the infectious population, otherwise they
remain in the infectious population and can continue to
infect other individuals. Since this situation can lead
to individuals who are observed but have sequenced
descendants, we refer to them as sampled ancestors.
Since the PDE for the generating function in the like-

lihood assumes there are no observations, this portion
of the likelihood remains the same. The only expres-
sions that change are those involved with adjusting the
generating function for ψ, ω, ρ or ν type observations.
Note that the potential for non-removal complicates

sequenced samples. If r = 1, then every sequenced
sample corresponds to a leaf in the reconstructed tree
(a degree-one node). If r < 1, then there are two pos-
sibilities. The first is a degree-two node, a so-called
sampled ancestor, which occurs when a sequenced indi-
vidual is either sequenced again at a later date or has
a sequenced descendant. The second, is a leaf with a
label to indicate that it was not removed upon sam-
pling but possibly gave rise to subsequent infections or
unsequenced observations.
For unscheduled data, the expressions are the same

as those already given by Manceau et al., 2020, however
we will repeat them here to make it clear how they fit
into our methodology. The relevant expressions for lj
and Mtj(z) for the unscheduled observations, account-
ing for the possibility of non-removal, are as follows:

• for ψ events with removal lj := ψr and Mtj(z) =
M+

tj (z)/M
+
tj (1

−),

• for ψ events without removal (with sequenced
descendents) lj := ψ(1 − r) and Mtj(z) =
M+

tj (z)/M
+
tj (1

−),

• for ψ events without removal (without sequenced
descendents) lj := ψ(1 − r) and Mtj(z) =
zM+

tj (z)/M
+
tj (1

−),

• for ω events with removal lj := ωr d
dz
[M+

tj (z)]
∣∣∣
z=1

and Mtj(z) = (ωr/lj)
d
dz
[M+

tj (z)],

• and for ω events without removal lj := ω(1 −
r)z d

dz
[M+

tj (z)]
∣∣∣
z=1

+ω(1− r)kM+
tj (1) and Mtj(z) =

(ω(1− r)/lj)
{
z d
dz
[M+

tj (z)] + kM+
tj (z)

}
,

The case of scheduled observations is complicated by
the fact that we need to specify how removal works
when multiple individuals have been observed. This
differs from previous work on the problem in which a
single ρ-sample at the present was considered in which
case no distinction was needed.
We will assume that for sequenced samples we know

the removal status of each individual, and for unse-
quenced samples we know the total number that where
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removed during a scheduled sample. Under these as-
sumptions we have been able to derive the relevant ex-
pressions for ρ-sampling, but not ν-sampling (in which
case we have only been able to derive the expressions
for the special cases of r = 0 or 1).

• For a ρ event at time tj in which there are
∆K1−r

j leaves without removal observed, ∆Kr
j

leaves with removal observed, Aj sampled ances-
tors observed, andKj lineages in the reconstructed
tree just after the event, then, lj = r∆K

r
j (1 −

r)∆K
1−r
j +Ajρ∆K

r
j+∆K1−r

j +Aj(1− ρ)Kj−AjM+
tj (1 − ρ)

and Mtj(z) =M+
tj ((1− ρ)z)/M+

tj (1− ρ),

• and for a ν event at time tj in which there are ∆Hj

cases observed, if all cases are removed, r = 1,
and we can re-use the expressions from the main
text, and if no cases are removed, r = 0, and

lj = ν∆Hj d∆Hj

dz∆Hj

[
zKjM+

tj (z)
] ∣∣∣

z=1−ν
and M+

tj (z) =

l−1
j (zν)∆Hj d∆Hj

dz′∆Hj

[
z′KjM+

tj (z
′)
] ∣∣∣

z′=(1−ν)z
z−Kj .

Calibration study

Figure S1: The number of infected individuals in each
simulation. There is substantial variability between the
prevalence of infection in the simulated epidemics (each
displayed with a transparent black line), but the boom-
bust dynamics are evident from the smoothed values (the
solid red line).

Fig. S1 displays the trajectory of the prevalence in
each of the simulated epidemics along with their aver-
age prevalence. In the main text we displayed the re-
sults of the calibration simulation study with the simu-
lations ordered by their final prevalence. The posterior
uncertainty in the parameter estimates appears to be
smaller for simulations with a greater final prevalence.
We explain this by noting that the final prevalence is
strongly correlated with the total number of confirmed

cases, and hence the amount of data available to inform
the posterior distribution. Fig. S2 shows the correla-
tion between the total number of confirmed cases and
the final prevalence in each of the simulated epidemics
used in the calibration study.

Figure S2: There is a strong correlation between the final
prevalence of infection in the simulated epidemics and the
total number of data points, (measured as total number
of observed cases).

SARS-CoV-2 on the Diamond
Princess cruise

We based our analysis of the Diamond Princess cruise
outbreak on the model from Andréoletti et al., 2022.
Our analysis was implemented in BEAST2 (Bouckaert
et al., 2019) using the Timtam package. The code
for this analysis, the XML files and scripts for post-
processing, are available at https://github.com/

azwaans/timtam-diamond-princess. The MCMC
chain ran in approximately an hour on a mid-range
laptop and the effective sample size of each variable
was > 300.

Data

We used an alignment of 70 SARS-CoV-2 sequences
that were generated by Sekizuka et al., 2020.
One sequence (of the 71) from the initial analysis
by Andréoletti et al., 2022 was not publicly available
and hence was included as an unsequenced case in the
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time series instead. The sequence accession numbers
are given below:

EPI_ISL_416565,EPI_ISL_416566,EPI_ISL_416567,

EPI_ISL_416568,EPI_ISL_416569,EPI_ISL_416570,

EPI_ISL_416571,EPI_ISL_416572,EPI_ISL_416573,

EPI_ISL_416574,EPI_ISL_416575,EPI_ISL_416576,

EPI_ISL_416577,EPI_ISL_416578,EPI_ISL_416579,

EPI_ISL_416580,EPI_ISL_416581,EPI_ISL_416582,

EPI_ISL_416583,EPI_ISL_416584,EPI_ISL_416585,

EPI_ISL_416586,EPI_ISL_416587,EPI_ISL_416588,

EPI_ISL_416589,EPI_ISL_416590,EPI_ISL_416591,

EPI_ISL_416592,EPI_ISL_416593,EPI_ISL_416594,

EPI_ISL_416595,EPI_ISL_416596,EPI_ISL_416597,

EPI_ISL_416598,EPI_ISL_416599,EPI_ISL_416600,

EPI_ISL_416601,EPI_ISL_416602,EPI_ISL_416603,

EPI_ISL_416604,EPI_ISL_416605,EPI_ISL_416606,

EPI_ISL_416607,EPI_ISL_416608,EPI_ISL_416609,

EPI_ISL_416610,EPI_ISL_416611,EPI_ISL_416612,

EPI_ISL_416613,EPI_ISL_416614,EPI_ISL_416615,

EPI_ISL_416616,EPI_ISL_416617,EPI_ISL_416618,

EPI_ISL_416619,EPI_ISL_416620,EPI_ISL_416621,

EPI_ISL_416622,EPI_ISL_416623,EPI_ISL_416624,

EPI_ISL_416625,EPI_ISL_416626,EPI_ISL_416627,

EPI_ISL_416628,EPI_ISL_416629,EPI_ISL_416630,

EPI_ISL_416631,EPI_ISL_416632,EPI_ISL_416633,

EPI_ISL_416634

We gratefully acknowledge the following authors
from the originating laboratories responsible for ob-
taining the specimens, as well as the submitting lab-
oratories where the genome data were generated and
shared via GISAID, on which this research is based.
All submitters of data may be contacted directly via
www.gisaid.org.

Originating Laboratory

Japanese Quarantine Stations

Submitting Laboratory

Pathogen Genomics Center, National Institute of In-
fectious Diseases

Authors

Tsuyoshi Sekizuka, Kentaro Itokawa, Rina Tanaka,
Masanori Hashino, Tsutomu Kageyama, Shinji Saito,
Ikuyo Takayama, Hideki Hasegawa, Takuri Takahashi,
Hajime Kamiya, Takuya Yamagishi, Motoi Suzuki,
Takaji Wakita, Makoto Kuroda

Genetic likelihood and associated priors

Site and clock model

We use an HKY substitution model with a strict clock
and a fixed clock rate of 2.19178 × 10−6 substitu-

tions/site/day. This is equivalent to a rate of 0.0008
substitutions/site/year

Epidemiology and tree distribution

We initialised the analysis with a random starting tree
and the tree is estimated as a model parameter in order
to take phylogenetic uncertainty into account. Table S1
shows the prior distribution used for the parameters
related to the tree likelihood.

The timeline of events and their epidemiological sig-
nificance are outlined in Fig. 5 of the main text. The
origin time of the outbreak is assumed to be 28.9 days
prior to the present (the time of the last sequenced
sample). In calendar time this is the 20th of January.

The birth rate λ is assumed to change once on the
4th of February (14 days prior to the present), when the
outbreak was discovered and interventions started. The
net becoming uninfectious rate σ is assumed to change
on the 4th and the 11th of February, due to changes
in surveillance. We assume a known natural becoming
uninfectious rate (the “death rate” of the birth-death
process) µ of 0.05 days−1. This corresponds to an av-
erage infectious duration of 20 days (in the absence of
any interventions).

We assumed a scheduled unsequenced sample was
taken at midday every day from the 20th of January to
the 27th of February, inclusive (note that four of these
scheduled sampling events failed to collect any positive
samples). The approximate proportion of removals ap-
pearing in the time series pω̃ := ω̃/σ is assumed to be
zero prior to the 4th of February (start of symptomatic
testing) and after that is assumed to change once on
the 11th of February (increased testing).

The proportion of removals that are sequenced pψ :=
ψ/σ is assumed to be non-zero only during the time pe-
riod when sequenced samples were actually collected,
i.e. from the start of the 15th to the end of the 17th
of February. Sequenced samples are uniformly dis-
tributed within the day on which they were collected
(assumed to be the date associated with the sequence
on GISAID). To avoid conflicts due to multiple events
occurring at the same time we (i) schedule all param-
eter change times at midnight, and (ii) if there are an
odd number of sequenced samples on a day, the times
are shifted slightly, so that none fall exactly on midday.

Prevalence estimation

We estimated the prevalence onboard each week, start-
ing on the second week of the outbreak (as shown in
Fig. 7 of the main text). To avoid any conflicts with pa-
rameter change times or sample times, these estimates
refer to the prevalence at 9 am on each day of interest
(i.e. date + 0.375).
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Parameter Date Prior
H Jan 20–Feb 24 (weekly) by process
Re Jan 20–Feb 3 lognormal(0.8, 0.5)
Re Feb 4–Feb 10 lognormal(0.8, 0.5)
Re Feb 11–Feb 24 lognormal(0.8, 0.5)
σ Jan 20–Feb 3 0.05
σ Feb 4–Feb 10 lognormal(-4.08, 1.0)
σ Feb 11–Feb 24 lognormal(-2.73, 1.0)
ψ/σ Jan 20–Feb 14 0 (fixed)
ψ/σ Feb 15–Feb 17 0.214 (fixed)
ψ/σ Feb 18–Feb 24 0 (fixed)
ω̃/σ Jan 20–Feb 3 0 (fixed)
ω̃/σ Feb 4–Feb 10 0.786 (fixed)
ω̃/σ Feb 11–Feb 24 1.0 (fixed)

Table S1: Prior distributions for the model parameters
used in the analysis of the Diamond Princess dataset with
the time series parameterization.

Poliomyelitis in Tajikistan

The analysis was implemented in BEAST2 (Bouck-
aert et al., 2019) using the Timtam package. The
code for this analysis, the XML files and scripts
for post-processing, are available at https://github.
com/aezarebski/timtam-tajikistan. The MCMC
chain ran in approximately four days on a mid-range
laptop and the effective sample size of each variable was
> 200.

Data

We used an alignment of 116 sequences (GenBank IDs:
KC880365–KC880521), originally generated and sub-
mitted by Yakovenko et al., 2014, as aligned by Li et
al., 2017. Each sequence is associated with a collection
date.

We gratefully acknowledge the following authors
from the originating laboratories responsible for obtain-
ing the specimens, as well as the submitting laborato-
ries where the genome data were generated: Yakovenko,
M.L., Gmyl, A.P., Ivanova, O.E., Eremeeva, T.P.,
Ivanov, A.P., Prostova, M.A., Baykova, O.Y., Isaeva,
O.V., Gavrilin, E.V., Lipskaya, G.Y., Shakaryan, A.K.,
Kew, O.M., Deshpande, J.M. and Agol, V.I.

Genetic likelihood and priors

Site and clock model

Following Li et al., 2017, we use a K80+Γ substitution
model (implemented by the SSM package (Bouckaert
et al., 2017) with two rate categories) with a strict
clock and a fixed clock rate of 0.00002740 substitu-
tions/site/day. This is equivalent to 0.01 substitu-
tions/site/year.

Epidemiology and tree distribution

As with the Diamond Princess dataset we again ini-
tialised the analysis with a random starting tree and
the tree is estimated as a model parameter. Table S2
shows the prior distributions used for the parameters
related to the tree likelihood.
Figure 8A shows the timing of the events and their

epidemiological significance: the origin time of the out-
break is assumed to be 15 October 2009 (262 days be-
fore the last sequence was collected on 4 July 2010); we
assume that prior to the first sequence on 1 February
2010 (153 days before the last sequence) the probability
of sequencing and observation was zero; we assume the
effective reproduction number changed three times, at
61 days prior to the collection date of the last sequence
(when the first round of vaccinations began on 4 May)
as well as two weeks before and after that date (to allow
for changes in behaviour due to awareness of the out-
break and depletion of susceptibles due to continuing
vaccination).
We chose the prior distribution on Re and the rate

of becoming uninfectious to reflect a broad range of
plausible values (Blake et al., 2014). Since there is ap-
proximately 1 case of poliomyelitis in ≈ 200 primary
infections (Blake et al., 2014)2, and the ratio of se-
quences to time series cases is approximately 1-to-3 we
use the two beta priors in the Table S2 which have ex-
pected values that sum to 1/200 and have a ratio of
1-to-3.

Parameter Date Prior
H Dec 6–Jul 4 (30 day intervals) by process
Re All intervals Normal(2.0, 2.02)
σ Uniform(0.1, 1.0)
ψ/σ before Feb 1 0 (fixed)
ψ/σ from Feb 1 Beta(2, 1598)
ω̃/σ before Feb 1 0 (fixed)
ω̃/σ from Feb 1 Beta(3, 797)

Table S2: Prior distributions for the model used in the
analysis of the polio dataset from the 2010 outbreak in
Tajikistan with the time series parameterization.

Results

Table S3 contains the point estimates and HPD inter-
vals for the epidemiological parameters: Re, σ, ψ and
ω. Figure S3 shows a comparison of the estimated ef-
fective reproduction through time against the estimates
from Li et al., 2017 of the basic reproduction number in
people aged ≤ 5 and > 5 years of age along with a pop-
ulation weighted average of these values computed from
the number of people in Tajikistan in each of these age

2Centers for Disease Control and Prevention (CDC), 2021 sug-
gests that less than 1% of polio infections result in paralysis.
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ranges in 2013 (1,287,331 and 6,786,935 respectively,)
as reported by the UN (United Nations Statistics Divi-
sion, 2013).

Parameter Estimate (95% HPD interval)
Re (before 20 April) 1.72 (1.57, 1.87)
Re (20 April – 4 May) 1.08 (0.86, 1.30)
Re (4 May – 18 May) 0.75 (0.52, 0.99)
Re (after 18 May) 0.04 (4.08× 10−7, 0.15)
σ 0.11 (0.10, 0.13)
ψ/σ 1.58× 10−3(7.03× 10−4, 2.63× 10−3)
ω̃/σ 4.71× 10−3(2.20× 10−3, 7.82× 10−3)

Table S3: Point estimates of epidemiological parameters
(median value) and 95% HPD intervals.

Figure S3: The posterior distribution of the effective
reproduction number, Re, before and after May 4 along
with estimates from Li et al., 2017 of the basic reproduc-
tion number, R0, in people aged ≤ 5 and > 5 years of age
along with a population weighted average of these values.

Marginal posterior/prior distributions

Figures S4, S5, S6, and S7 show the prior and posterior
marginal distributions of the epidemiological parame-
ters: Re, σ, ψ and ω.

Sensitivity analysis

As a sensitivity analysis we re-ran the analysis with
a slight change to the preprocessing of the time series
data: we did not subtract the number of sequences
from the case count (this was originally done to guard
against double counting these cases), and we computed
the credible intervals using the 2.5% and 97.5% quan-
tiles. As can be seen in Tables S3 and S4, the dif-
ferent preprocessing made almost no difference to the
estimates of Re and only slightly increased the esti-
mates of the rates of observation. This increase is to
be expected since under this preprocessing there are
additional unsequenced cases present.

Parameter Estimate (95% CrI )
Re (before 20 April) 1.62 (1.48, 1.75)
Re (20 April – 4 May) 1.01 (0.83, 1.21)
Re (4 May – 18 May) 0.80 (0.57, 1.00)
Re (after 18 May) 0.04 (1.63× 10−3, 0.19)
σ 0.11 (0.10, 0.14)
ψ/σ 1.76× 10−3(9.17× 10−4, 2.94× 10−3)
ω̃/σ 6.99× 10−3(3.69× 10−3, 0.01)

Table S4: Point estimates of epidemiological parameters
(median value) and 95% credible intervals under the alter-
native preprocessing of the time series where we did not
subtract the number of sequences from the time series.
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Figure S4: The posterior distribution of the effective
reproduction number, Re, in the four time periods. The
prior distribution (described in Table S2) is shown with a
solid black line.

Figure S5: The posterior distribution of the net becom-
ing uninfectious rate, σ. The prior distribution (described
in Table S2) is shown with a solid black line.

Figure S6: The posterior distribution of the proportion of
infections that are sequenced, ψ/σ. The prior distribution
(described in Table S2) is shown with a solid black line.
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Graham Jones, Denise Kühnert, Nicola De Maio,
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