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Supplementary Methods

1. SPARK dataset preparation

1.1. Exome Sequencing and phenotypic data

We downloaded the Simons Foundation Powering Autism Research for Knowledge
(SPARK) integrated whole-exome sequencing data’ release version 2 through Globus.? This
release (jointly called VCF v2.2023 01, Deep Variant/GLNexus) encompassed 106,744
samples from five sequencing batches (WES1: 27,177 samples, WES2: 15,671, WESS3:
16,476, WES4: 11,340, WES5: 36,080), sequenced using two capture systems (WES1-4: IDT,
WESS5: TWIST). The dataset included 44,304 autistic individuals (33,335 males and 10,969
females) and 62,440 individuals without an autism diagnosis (24,783 males and 37,657
females), including 27,775 father-child-pairs (19,977 autistic individuals) and 46,343 mother-
child pairs (34,011 autistic individuals). These formed 25,386 trios (18,172 autistic individuals),
23,346 samples with one sequenced parent (17,644 autistic individuals), and 58,012 samples
without parental WES (8,488 autistic individuals). The phenotypic data for the autistic
individuals were downloaded from SFARI's Genotypes and Phenotypes in Families (GPF)
database.® These phenotypic data were available for 40,346 autistic individuals with WES

data.

1.2. Variant annotation

The provided dataset included 10,202,547 sites (11,236,834 after splitting multiallelic
sites). These sites were annotated using Variant Effect Predictor* (VEP) Ensembl release 108.
The following annotations were added: consequences on Ensembl genes and transcripts,
exon/intron numbers, allele frequencies based on gnomAD exomes (r2.1.1) and gnomAD
genomes (r3), MPC scores, Loftee predictions, NMD plugin predictions.®> The consequences
were annotated on ‘MANE Plus Clinical’ transcripts (Matched Annotation between NCBI and
Ensembl v1). For variants with consequences on more than one MANE transcript, one
consequence was prioritized based on the severity of the predicted effects or gene constraint.
We produced a working dataset in which we split multiallelic sites, set any variants with depth
zero to missing, and filtered for variants that were in the exonic regions or the adjacent splice

regions of MANE/Clinical transcripts.



1.3. Ancestry inference

SPARK provided ancestry labels based on the 1000 Genomes super-populations
(Africans [AFR], Admixed Americans [AMR], East Asians [EAS], Europeans [EUR], and South
Asians [SAS]), along with subpopulation labels, and probabilities for being assigned to these
sub-populations. A group of 2,783 samples were labeled as having an unknown super-
population (Table S1). To confirm these labels and to classify the samples in the ‘Unknown’
group to the nearest population when possible, we projected SPARK iIWES2 samples onto a
principal components (PCs) space based on 2,536 samples from the 1000 Genomes Project®
calculated using PLINK.” PC analysis of the 1000 Genomes reference data (10 PCs)
leveraged 8,718 pruned variants with allele frequency > 1% that are present in at least one
sample in SPARK samples, limited to exonic regions of protein coding transcripts described
above. SPARK samples were then projected into the 1000 Genomes PC space. The clustering
of these samples was contrasted with the pre-defined ancestry labels. We reclassified the
samples where the superpopulation was labeled as ‘unknown’ to one of the 1000 Genomes
superpopulations if these had a probability exceeding 0.8 of belonging to that group
(calculated as the sum of probabilities of belonging to the sub-populations under that group,
provided by SPARK), or clustered with that group on each of the first four PCs. Last, we
defined a group of admixed individuals that did not cluster closely with their corresponding
groups on PC1-4 (Table S2 and Figure S1).

1.4. Sex inference

To infer the ploidy of sex chromosomes from sequencing data, we evaluated the depth
and genotypes in the hemizygous regions of chrX and chrY, namely, (1) the read depth in
chrX normalized by the median chrX depth in samples labeled as males, (2) the read depth in
chrY normalized by the median chrY depth in samples labeled as males, (3) the fraction of
missing calls on chrY, and (4) the F statistic (the difference between the expected and
observed heterozygosity in the hemizygous region of chrX; PLINK). Male sex was inferred for
samples with normalized chrY depth between 0.5 and 2, fraction of missing genotypes in chrY
< 50%, normalized chrX depth < 2, and F statistic > 0.8. Female sex was inferred for samples
with normalized chrX depth between 1 and 3, F statistic > -0.6 and < 0.6, normalized chrY
depth < 0.15, and fraction of missing genotypes on chrY > 50%. 122 male and 88 female
samples were classified as having ambiguous inferred sex or having a mismatch between

reported and inferred sex, and were removed from the burden analyses.
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Figure S1. Population labels validation.

Principal component analysis (PCA) was used to check the validity of the pre-assigned
population labels from SPARK against the top principal components projected on the 1000
Genomes space (reference samples not shown). Most samples clustered as expected (a).
Samples with unknown labels and those not clustering with their respective pre-assigned

groups (b) were re-classified (c¢). See section 1.3. ‘Ancestry Inference’ and Tables S1 & S2

for details.



1.5. Relatedness inference

The provided meta-data indicated the presence of 27,775 father-child-pairs and 46,343
mother-child pairs (25,386 complete trios). To verify the parental relationships, kinship was
estimated using PLINK based on KING's robust algorithm.® We required the parent-child pairs
to have a kinship estimate between 0.3 and 0.1 and a proportion of SNPs with Identity By
State (IBS) sharing < 5x10°°. Ten parent-child pairs could not be verified based on kinship. A
set of maximally unrelated probands (N=39,020) was selected by incrementally removing the
samples with the highest number of related autistic individuals (kinship > 0.0884) while
prioritizing those with sequenced parents and females in that order. Ties were resolved by
retaining the sample with the older identifier. Similar sets of unrelated individuals were defined
for the siblings (N=15,056) and parents (N=47,525). We estimated the allele frequencies,
Hardy Weinberg Equilibrium p-values, and Excess Heterozygosity p-values separately in
these three sets of unrelated samples (per population) and used the largest p-value (i.e. the

least significant) as an input for variant quality control (QC).

1.6. Variant QC

A Random Forest was trained to identify low quality variant call sites. It was applied
separately on SNVs and INDELs and the ftraining sites were selected from variants
heterozygous in one or more samples. Before running the variant QC, we applied basic
genotype filtering by setting the genotypes that had any of the following to missing: (1) depth
equal to zero, (2) genotype quality (GQ) equal to zero, (3) a conflict between the called
genotype and the phred-scaled genotype likelihood, or (4) a p-value from a binomial test for
allele balance less that 1x107'° (for heterozygous calls). Negative training sites were then
defined as those that met one of the following criteria, excluding multi-allelic sites: (1) more
than 50% of the samples with non-reference (heterozygous or homozygous) genotypes that
had GQ < 20, (2) more than 50% of samples with a heterozygous genotype had variant allele
fraction (VAF) below 0.2, or (3) the Hardy-Weinberg Equilibrium test p-value (calculated for
separately for unrelated parents, siblings and probands per population, taking the largest
estimate across all populations) was lower than 10-°. The positive training sites were the high
confidence sites from the Broad bundle resource for (SNVs: Omni, Axiom, HapMap; Indels:
Axiom, Mills) used in the Genome Analysis Toolkit (GATK) best practices®). Since these sites
are enriched for common variants, we annotated an equal number of randomly selected high
confidence transmitted singleton variants (seen in a single child-parent pair, with Allele Quality
> 35) as positive training sites. To balance the number of positive (SNVs: 388,268; INDELs:
17,732) and negative (SNVs: 98,676; INDELs: 3,961) training sites, the positive training set



was down-sampled to match the size of the negative training set, resulting in a balanced set
of 205,274 variants (SNV = 197,352, 2.8% of all SNVs, INDEL=7,922, 2.3% of all INDELSs).
The remaining sites were annotated as test sites (SNVs= 6,731,744, INDELs= 310,362).

We used the ranger package'® in R 4.1.0 to train random forest models on SNVs
and INDELs separately, with 500 trees and probabilities as an output. The features used to
train the random forest, and their relative importance, are depicted in Figure S2a. The training
sites did not include any missing values in these features, and missing values among the test
sites were set to the median of the respective feature across all sites of similar type (SNV or
INDEL). The random forest model was then applied on all training and test sites to obtain
probabilistic scores (range 0-1) indicating the probability of being a truly variable site. These
scores were scaled to the range 0-100. The performance of the random forest was evaluated
using precision and recall against the training sites using the caret package' in R. We then
examined the fraction of retained sites from the total dataset and the transmission ratio of
synonymous variants with incremental random forest cut-offs. Random Forest score cut-offs
of 97 for SNVs (recall = 0.97, precision = 1) and 92 for indels (recall = 0.975, precision = 1.0)
were selected, and sites with scores higher than these were retained. The
transmitted/untransmitted ratio of autosomal synonymous variants was 0.5 (Figure S2b). Next,
the variants were filtered to those with a minimum genotyping rate (per sequencing batch;
across five sequencing batches) exceeding 95%. After this QC, 6,345,636 out of 7,273,162
sites were retained (12.8% filtered). These variants spanned 18,959 MANE-Plus transcripts

(18,902 protein coding genes; including 57 genes with two transcripts).

1.7. Genotype filtering

We applied genotype filters based on genotype quality, allele depth, variant allele
fraction, by setting the genotypes to missing if they were not consistent with the observed
phred-scaled genotype likelihoods (PLs), had GQ < 10, had DP < 10, were reference
genotypes with VAF > 0.25, were homozygous with VAF < 0.75, or were heterozygous with
VAF < 0.2 or>0.8.
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Figure S2. Assigning variant quality scores using Random Forest.

A Random Forest was trained using 12 features (a) to assign a variant-level quality score
between 0 (lowest quality) and 100 (highest quality). The average genotype quality per variant
(all genotypes) and mean allele balance per variant (heterozygous genotypes) had the highest
relative importance (y-axis). The fraction of the transmitted (T) alleles from the total transmitted
& untransmitted (T+U) parental synonymous variants achieved after filtering with increasing
stringency (higher Random Forest scores) is shown in b. Single Nucleotide Variants (SNVs)
with scores > 97 (dotted line) and Insertions-Deletions (Indels) with scores > 92 were retained.

See section 1.6. (Variant QC) for further details.

1.8. Sample QC

We calculated the following sample-level metrics: total number of SNVs, total number
of INDELs, total number of private variants (seen in one family), transition-transversion ratio,
insertion-deletion ratio, and heterozygous-homozygous variants ratio. We regressed these on
the population label, four principal components and the number of sequenced samples per
family, to account for the population structure and the differences in variant-calling sensitivity
in related individuals. We filtered all samples that were more than six standard deviations from
the mean of the residuals for any metric, removing 275 samples (AFR: 180, EUR: 55, AMR:
22, EAS: 3, SAS: 6, Unknown/Admixed: 9). Parents with autism and parents and siblings with
motor delay or cognitive impairment were filtered (see 1.9). Subsequently, sets of maximally
unrelated probands and siblings were selected. Note that this unrelated dataset of probands
and siblings was used for the formal analysis of rare variant enrichment, and is prepared
independently from the unrelated set presented in section 1.5, which was used to estimate the
allele frequency for variant QC. Table S3 shows the sample size per population group after

the sample QC.



1.9. Motor delay and cognitive impairment

We used the following phenotypic data fields to stratify the samples based on the
presence of a motor developmental disorder, cognitive impairment or an intellectual disability
diagnosis:

» ‘cognitive_impairment_at_enrollment’ and ‘cognitive_impairment_latest’: provided
information on cognitive impairment diagnosis (identical values). Probands with a diagnosis
were coded as “True” and those without diagnosis were coded as “False”. Missing values
were coded as “-".

» 'dev_id' and 'dev_motor". provided information on cognitive impairment (Intellectual
disability, cognitive impairment, global developmental delay, or borderline intellectual
functioning, reported professional diagnosis) and motor development (Motor delay, e.g.,
delay in walking, or developmental coordination disorder; reported professional diagnosis).
Diagnoses were coded as “1”. Typical development and missing values were coded as “-".
» ‘cog_test score’ and the ‘reported_cog_test score’: provided binned full-scale IQ

measurements (identical values). Missing values were coded as “-”.

We classified the autistic individuals in three phenotypic groups:
1. Autism with motor delay or cognitive impairment:
‘Cognitive_impairment_at_enrollment’, or
‘Cognitive_impairment_latest’ = “True”, or
‘dev_motor’ or ‘dev_id’ =1, or
‘Cog_test score’, or
‘reported_cog_test score’ = ‘24 below’,'25 39’, ‘40 _54’, ‘55 69’, or ‘70_79'.
2. Autism without motor or cognitive impairment:
‘Cognitive_impairment_at_enrollment’, and
‘Cognitive_impairment_latest’ = “False”, and
IQ bin equivalent to an 1Q >= 80 or missing 1Q data, and
missing values in the ‘dev_motor’ field, and

missing values in the ‘dev_id’ field.

The remaining probands with missing values in all fields were considered unclassified.
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2. De novo and rare inherited variants in trios

As introduced in the main text, de novo mutations (DNMs) were studied in a total of
30,274 trios from the two cohorts by comparing DNM rates in 21,501 autistics (ASC: 8,028;
SPARK: 13,473) to those seen in 8,773 siblings (ASC: 2,460; SPARK: 6,763). Over-
transmission analysis of rare inherited variants was performed by evaluating the counts of rare
parental alleles transmitted to 21,043 autistic individuals (ASC: 7,570; SPARK: 13,473) versus
untransmitted alleles. This section outlines the curation of DNMs and inherited alleles in each

cohort.

2.1. ASC

DNMs in this dataset were obtained from previous ASC studies (see ‘Methods: ASC
cohort’). These were curated in 9,929 trios (7,570 autistics, 2,359 siblings) as described in
detail in the Supplementary Note of Ref.'? Briefly, the de novo () function from Hail 0.2
python library™ was used to identify candidate DNMs, with priors from population allele
frequencies. These candidates were then filtered for rare alleles with internal (within ASC
dataset) and external (gnomAD) allele frequencies < 0.1%, with additional filtering on
genotype depth (allele balance and parent/child depth ratio), variant quality (‘ExcessHet’ filter
and GATK variant quality score log-odds), as well as the number of candidate DNMs per
sample. Additional published DNMs were included, bringing the total sample size to 10,488
trios (8,028 autistics, 2,460 siblings). Transmitted and untransmitted rare parental alleles were

counted in 7,570 trios (autistic probands) with available exome data.

2.2. SPARK

Following the variant, genotype and sample QC described in section 1 above (see
‘SPARK dataset preparation’), we evaluated the genotypes of 20,236 trios (13,473 autistics
and 6,763 siblings) for potential DNMs (see counts for probands and siblings in Table S3). We
first filtered for candidate DNMs based on the parental genotypes and used the ‘trio-dnm2’

plugin from bcftools™ 1.17 to estimate the error probability of de novo inheritance based
on allele depth (adDNM) and genotype likelihoods (pIDNM). Then for each candidate DNM,

we transformed the probabilities of it being a de novo mutation based on these two methods

to a phred-scaled error probability (-10*10g;, (minimum (p1DNM, adDNM) ). We then defined

putative DNMs as those with phred-scaled error probability < 60 having internal & gnomAD



MAF < 0.1%, with an Allele Quality (AQ) score = 30, and that had GQ = 30 in all members of
the trio. Finally, we selected one DNM per gene (worst consequence) per individual. This
resulted in a dataset of 23,332 DNMs in 13,664 individuals (68% trios with DNMs, average

rate of 1.15 DNMs per individual). Between 20% and 22% of the probands and siblings carried

rare synonymous DNMs, compared to 23%-25% in the previous analysis of SPARK'? (WES1),
suggesting that our DNM callset was of similar quality to the published one. To ensure that
the sensitivity to identify DNMs was not biased by sample sex, we calculated the odds ratio of
carrying a rare de novo synonymous (all autosomal genes) or protein-truncating DNM (most-
constrained LOEUF decile) among male versus female siblings, and found that it did not differ
significantly from one (Figure S3b).

We also evaluated the transmission of rare variants (MAF < 0.1% in SPARK parents
and gnomAD) in the same set of trio-sequenced autistic individuals. Similar to DNMs, we
considered variants remaining after basic variant, genotype and sample QC. In instances
where a single gene had multiple variants, the variant with the worst consequence was
retained. We then filtered for heterozygous variants seen in one parent that had a GQ > 25 in
all three samples in the trio to ensure the transmission ratio of synonymous variants was not

significantly different from 1.

2.3. Additional filtering of de novo mutations in SPARK

De novo mutations, especially damaging ones, are typically ultra-rare, usually seen in
a few individuals or not seen at all in the general population. DNM calling from genotypes (see
‘2.2 SPARK’ above) does not leverage allele frequencies as priors, and is best coupled with
stringent allele frequency filtering by removing DNMs seen in more than a few individuals in
the dataset or in the general population. Given that the ASC DNM dataset was prepared using
a different pipeline and filtered for rare alleles (MAF < 0.1%), we adopted a similar cutoff in
SPARK to have comparable call sets, thus facilitating fixed-effect meta-analysis of risk ratios.
We then performed an additional analysis of ultra-rare DNMs in SPARK to ensure that the

conclusions are the same in a call-set of high-confidence DNMs.
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Figure S3. Odds of carrying a rare synonymous and damaging protein-truncating de novo
mutation in SPARK trio-sequenced individuals.

Among 20,236 trios, about 20%-22% of the siblings had a synonymous de novo mutation

(DNM), and less than 1% had a damaging protein-truncating DNM (a). There was no sex



difference (measured using odds ratios as shown in b) in the sensitivity of detecting
synonymous and protein-truncating DNMs among the siblings. The percentage of DNM
carriers among the probands is shown for comparison. Autistic females without cognitive
impairment had a slightly higher percentage of synonymous DNM carriers compared to autistic

males in the same group. See the Supplementary Results (section 4.1.3) for more details.

To define ultra-rare DNMs, we further dropped DNMs if the individual had more than

one DNM in the same gene, those seen as de novo in more than 3 individuals in SPARK,
DNMs with MAF = 0.005% in SPARK parents or gnomAD, and DNMs seen in gnomAD and
two of the three SPARK cohorts of unrelated individuals used for estimating allele frequency
(probands, siblings, parents). This final dataset included 15,072 ultra-rare DNMs, with an

average rate of 0.74 ultra-rare DNMs per sample.

2.4. Matching samples on principal components

As presented in the main text (Figure 2) and Supplementary Results (Figure S13;
section 4.1.3), de novo synonymous mutations showed a spurious association with autism
when comparing autistic females without motor or cognitive impairment to sex-matched
probands with motor or cognitive impairment or when compared to female siblings. This likely
reflects the greater diversity among autistic females without motor or cognitive impairment
(69% of samples with European genetic ancestry) relative to the other two groups (75% of
samples with European genetic ancestry in each; see Table S3 in section 1.8, ‘Sample QC’).
We performed an additional sensitivity analysis of rare and ultra-rare de novo mutation
enrichment in a stringently matched set of samples to ensure that the results obtained for
protein-truncating DNMs were not biased. Starting with 1,008 autistic females without
cognitive impairment (P) and 2,596 female siblings (S) of European genetic ancestry (Table
S3), we calculated the distance between all pairs of probands and siblings in the first four

principal components (see section 1.3). Specifically, we subtracted the first four PCA

eigenvectors for each proband p in P from the eigenvectors of each sibling s in s, then used
the norm (type="2") function in R to calculate a Euclidean-type spectral norm representing
the distance between the two samples in the PC space. We then took the minimum value for
each sample in P and s, which represents the nearest neighboring sample from the opposite
cohort. Samples with large values don’t have any neighboring samples from the other group

and are likely to be poorly-matched on ancestry. We excluded the outliers on this distance



metric from the probands and siblings (> 2 median absolute deviations), leaving 868 autistic
females and 2,235 siblings. See section 4.1.3 of the Supplementary Results for the outcomes

of DNM enrichment analysis in this subset.

3. Ultra-rare variants

A substantial part of the ASC & SPARK datasets is formed of children with sequence
data from one parent (N=18,816) or without any sequenced parents (N=23,114). Including
these in analyses could potentially increase power. Specifically, they can be leveraged to
study ultra-rare inherited alleles (when one parental exome is available) or the average effect
of a mix of ultra-rare alleles of undetermined origin (case-control analysis), as detailed here.
Similarly, ultra-rare variants ascertained in individuals without sequencing data from their
parents (‘case-control’ cohorts) can be used to study the average effects of damaging de novo

and inherited variants.

3.1. Ultra-rare inherited variants in child-parent pairs in SPARK

To be able to leverage the exome data from parents not sequenced as complete trios
(Table S3B), we studied the transmission of parental alleles in child-parent pairs, treating trios
as two separate pairs rather than following the standard approach of comparing the
transmission of rare variants in trios only. Studying transmission in parent-child pairs when
sequence data is present from one parent only assumes the parents are not consanguineous
(therefore unlikely to carry the same ultra-rare variant), and precludes the analysis of variants
that are low-frequency but not extremely rare (as their transmission status cannot be
determined reliably). Here, we examined ultra-rare parental alleles seen in one parent, in one
family, and not seen in gnomAD. These were filtered for high-confidence calls (GQ > 32) to

balance the transmission rates of synonymous variants.

3.2. Case-control variants in the ASC & SPARK

We evaluated the enrichment & liability of ultra-rare variants in the ASC case-control
dataset as a supplementary analysis. This dataset contained samples from the Danish

iPSYCH cohort™ and Swedish PAGES samples.'® The processing and a previous sex-

averaged analysis of these cohorts is described elsewhere.'? Rare variants in iPSYCH were
defined as those with an allele count < 5 in the combined set of gnomAD non-Finnish

Europeans (nonpsychiatric subset) and iPSYCH data (allele frequency < 0.0043%). Rare



variants in PAGES were defined as those with an allele count < 5 in EXAC r0.3 (nonpsychiatric
subset; allele frequency < 0.0055%) and the autism cohort in Satterstrom (allele frequency <

0.014%).

For SPARK, we analyzed ultra-rare variant enrichment in the remaining individuals
(6,646 probands and 2,436 siblings) who did not have sequence data from any parent (Table
S3C) - and as such were not included in all the previous analyses described above. This
design approximates the case-control analysis in ASC. Whereas the ASC case-control dataset
consisted of unrelated individuals, this SPARK sub-cohort included pairs of probands and
siblings from the same family (like the trio-based analysis). We included variants seen with an
allele frequency < 0.005% (in gnomAD and SPARK unrelated individuals’ cohorts) that are
seen in up to three individuals in the ‘case-control’ cohort of 9,082 individuals remaining after
QC (allele frequency < 0.015%). We dropped 156 individuals with ultra-rare synonymous
variants counts exceeding four median absolute deviations (> 33 variants), and compared the

variant rates in the remaining 8,926 children (6,534 probands versus 2,392 siblings).

4. Measuring rare variant enrichment

In summary, we processed exome sequencing data from autism probands, siblings
and parents from the latest release of SPARK and combined these data with data from the
SSC and other smaller cohorts previously curated by the ASC. We then evaluated the
enrichment of synonymous, damaging missense and damaging protein-truncating variants in
a total of 131,970 individuals encompassing 47,601 autistic probands or autism cases, 25,593
non-autistic siblings or autism controls, and 59,316 parents (Table S4). Specifically, we
performed these sex-stratified rare variant enrichment analyses:

1. Enrichment of de novo and rare inherited alleles in 20,501 autistic trios (versus
9,223 siblings).

2. A supplementary analysis over-transmission of ultra-rare variants in 13,435
autistic individuals and 5,381 siblings with one sequenced parent.

3. A supplementary case-control analysis of ultra-rare variants in 12,125 autism

cases/probands versus 10,989 controls/siblings.
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4.1. Variant rates

We calculated the de novo and inherited variant rates for synonymous, damaging missense
and protein-truncating variants (most-constrained LOEUF decile) in each cohort (ASC,
SPARK) by dividing the total number of variants by the sample size. The 95% Confidence
Intervals (Cl) were estimated in R as follows:

. #Variants
95% Clpwer = qchisq(0.025,

2 x #Samples

#Variants + 1

95% Clypper = qchisq(0.975, )

2 x #Samples

4.2. Sex-stratified comparisons

4.2.1. De novo mutations

We used the ratio between the rate of DNMs in the probands and the siblings (or female and
male probands in direct comparisons) to evaluate the enrichment of a specific class of DNMs
in a gene set or exome-wide:

#DNM in probands / # probands

DNM rate ratio =
raterato = Ty DNM in siblings / # siblings

To test for significance, we compared the counts DNMs in the probands to the counts in their
siblings in R:

binom.test (x= #DNMs in probands, n= (#DNMs in probands +
#DNMs in siblings), p= #probands/ (#probands + #siblings),

alternative="two.sided”)

We note that the measure used to test the relative enrichment in the binomial test is the
fraction of DNMs in probands among all DNMs.

#DNM in probands #DNM in probands
#DNM in siblings ~ #Total DNMs — # DNMs in probands

It is different from the DNM rate ratio (a risk ratio) between the probands and siblings.

Fraction =

#DNM in probands = # siblings

Rate Ratio =
ate Ratlo = ¥ DNM in siblings * #probands



Here, we report the enrichment as rate ratios as these are easy to interpret and can be used
for DNMs, inherited and case-control variants to express fold-enrichment. It is possible to
convert between the rate ratio and fraction as follows:

#DNM in probands x #siblings
(# Total DNMs — # DNM in probands) = #probands

Rate Ratio =

Rate Ratio

_ #DNM in probands = #siblings
"~ (#Total DNMs = #probands) — (#DNM in probands * # probands)

Rate Ratio

_ (#DNM in probands / # Total DNMs) = #siblings
~ #probands — (# DNM in probands/ # Total DNMs) = #probands

(#DNM in probands / # Total DNMs) = #siblings
(1 — (#DNM inprobands/ #Total DNMs) ) = #probands

Fraction = #siblings

Rate Ratio =

Rate Ratio =

(1 — Fraction) = #probands
Although we calculated the rate ratios directly from the observed counts, the above equation
is useful for estimating the confidence intervals with the same test used to calculate the p-
values; the binomial test returns the upper and lower bounds of the 95% CI of the observed
fraction. We converted these bounds to equivalent rate ratios by plugging them into this
formula:

Fraction Clyinomial test * # Siblings

DNM ratio CI =
ratto (1 — Fraction Clyiomiai test) * # probands

4.2.2. Over-transmission

To assess over-transmission in the probands, we calculated the ratio between transmitted
untransmitted parental alleles:
Transmitted/ Untransmitted ratio

_ #parental alleles transmitted to the probands

#untransmitted parental alleles
We then compared the significance of the difference in the counts of transmitted and
untransmitted alleles:

binom. test (

x=#variants transmitted to probands,

n=#variants transmitted to probands + #untransmitted variants,
p=0.5,

alternative="two.sided”)



We scaled the 95% Cls from the binomial test as follows:

Fraction Clbinomial test

Tr./ Ut.ratio CI = :
1 — Fraction Clyinomiai test

4.2.3. Case-control comparisons

Variants were compared between cases and controls in a similar manner to DNMs, i.e., using
the sample size to derive the expected fraction of variants in the cases. These case-control
comparisons are more sensitive to differences in population architecture than comparisons of
de novo mutations and transmitted-untransmitted alleles. When testing the enrichment of ultra-
rare variants in cases versus controls in a regression framework, synonymous variant counts
can be used as a covariate along with principal components. When using a binomial test, the
expected variant rates can be adjusted for population differences by using the synonymous
variants. Therefore, the damaging variant comparisons were additionally adjusted by the
synonymous variant counts as follows:
Case/Control rate ratio

# damaging variants in cases | # synonymous variants in cases
# damaging variants in controls / # synonymous variants in controls

binom.test (x= #damaging in cases, n= (#damaging in cases +
#damaging in ctrls), p= #syn in cases/ (#syn in cases +
#syn in ctrls), alternative="two.sided”)

Fraction Clyinomial test * #Synonymous in controls

Case/Ctrl CI =
/ (1 — Fraction Clpinomial test) * #Synonymous in cases

4.3. Sex differences in enrichment

Sex differences were assessed by comparing autistic females to autistic males in the same
manner as we compared autistic individuals to their siblings. Rate ratios > 1 indicate higher
variant rates in autistic females compared to autistic males. To test for significant differences
in de novo mutation counts, we compared the DNM counts in females and males:
binom.test (x= #DNMs in females,

n= (#DNMs in males + #DNMs in females),

p= #females/ (#males + #females), alternative="two.sided”)



Fraction Clyinomial test * # Females
(1 — Fraction Clyinomiai test) * # Males

DNM ratio CI =

For inherited variants, we compared the counts of parental alleles transmitted to females and
males:

binom.test (x=#variants transmitted to females,

n= #variants transmitted to males or females,

p= #all parental alleles in females/#all parental alleles,
alternative="two.sided”)

Fraction Clyinomial test * # parental alleles in females

Tr./Ut.ratio Cl =
r./Ut.ratio (1 — Fraction Clpinomiai test ) * #parental alleles in males

Case-control variants were tested in the same manner as DNMs.

4.4. Meta-analysis between ASC & SPARK cohorts

We performed a fixed-effect inverse-variance-weighted meta-analysis of the risk ratios (rate

ratios or transmitted/untransmitted ratios) in ASC & SPARK using metagen function from

meta package' in R:

metagen(sm = "RR",
fixed = TRUE,
studlab = Cohort,
TE = Risk Ratio,
level.ci = 0.95,
lower = Risk Ratio CIL,
upper = Risk Ratio CIU,
pval = Risk Ratio Pval,
method.tau = "PM")

4.5. Correcting for multiple testing

We adjusted the p-values from each experiment (e.g. 54 tests when performing exome-wide
enrichment testing) for the Family-wise (Experiment-wise) Error Rate using Bonferroni
correction. We also performed more lenient adjustment for False Discovery Rate using
Benjamini-Hochberg method. Both were performed in R:

p.adjust (method="'bonferroni')



p.adjust (method="BH"')

5. Measuring effect sizes on the liability scale

We compared the change in trait liability for each variant class to reflect the deviation

from population mean liability that would result from carrying a variant in that class. The relative

differences in variant frequency between the probands and siblings was converted to Z scores

on the liability scale, assuming the liability is normally distributed and centered around zero in

the population. The mathematical derivation is explained in Ref'®. Here, we summarize the

concept behind this procedure for those less familiar with the statistical concepts:

In a Liability Threshold Model assuming additive genetic risk that is normally distributed
in the population, the threshold is the point that forms the boundary of an area under the
normal distribution curve that is equivalent to the trait prevalence (Figure S4). For
example, an autism prevalence of 0.025 indicates that the distance between the
population mean risk and the threshold is 1.96 standardized units, putting 2.5% of the
population in the right tail.

We can work out the distance (in standardized units) between the population mean (zero,
given how the model is defined) and the threshold using the inverse of the standard
normal cumulative distribution function (®), or ‘norminv' in short. The threshold in the
population equals the average liability in the population (i.e., zero) + norminv(Prevalence)
as shown in Figure S4. The inverse normal function @' is implemented in R using the
function gnorm, which returns the lower tail by default, whereas the prevalence reflects
the upper tail (fraction of individuals above the threshold). We can get the upper tail by
passing an argument to the function (‘qnorm (Prevalence, lower.tail=FALSE)) or
simply by using the complement of the prevalence, gnorm (1 - Prevalence).

Now we move to the carriers of a certain class of variants, for instance damaging PTVs.
The liability in this sub-population can also be approximated by a normal distribution, and
the mean of this distribution will be the average PTV liability. This average variant liability
is a measure of the average effect size of PTVs on the liability scale. PTV carriers who
are autistic will form the upper tail above a certain threshold, and non-autistic PTV carriers
will be in the lower tail (Figure S4).

Whereas the threshold in the population liability distribution reflects the prevalence in the
population, the threshold in the PTV liability distribution will reflect autism prevalence
among PTV carriers in the general population. In accordance with the original derivation

in "7, we refer to this fraction as the ‘penetrance’.



Similar to the prevalence, the penetrance is a cumulative density and as such can be
converted to equivalent standardized units in the PTV liability distribution using the inverse
normal cumulative density distribution function (®'). The threshold here equals the
(unknown) average PTV liability + norminv(Penetrance). We can get this is R using
gnorm(l - Penetrance).
By leveraging the fact that the threshold in both distributions is the same, we can now
estimate the distance between the population mean (zero) and the (unknown) mean
protein-truncating variant liability. As shown in Figure S4, we can write:

threshold = gnorm(1 - Prevalence) = average PTV liability + gnorm(1 -

Penetrance)

The prevalence in the general population is a known parameter. Autism is diagnosed in 1
in 40 male individuals (a prevalence of 2.5% in males), with a 1:4 male-to-female ratio
(prevalence in females = 0.25 x 2.5% = 0.625%). Previous estimates suggested that about
one third of autistic individuals in the population have profound deficits with cognitive
impairment 8%, Among 11,630 autistic individuals in SPARK who could be classified, ~
36% fell in the autism with motor or cognitive impairment group (35% in males & 40% in
females). For estimating liability, we scaled the sex-specific population prevalence using
these percentages, i.e., using a prevalence estimate of 0.88% in males (35% x 2.5%) and
0.25% in females (40% x 0.625%) for liability calculations in the autism with motor or
cognitive impairment group; for the autism without motor or cognitive impairment group,
we used a prevalence of 1.62% in males (2.5% - 0.88%) and 0.38% in females (0.625%
- 0.25%). For directly comparing those with motor or cognitive impairment to those without
these co-occurring difficulties, we used a prevalence of 0.4 in females and 0.35 in males.
The prevalence among PTV carriers, on the other hand, is not known. We can, however,
convert the PTV carrier rates in the study cohort to population estimates, and convert
these population estimates to penetrance estimates. Specifically, the penetrance is the
ratio between PTV rate among autistic individuals and the overall frequency of PTVs in
the population. The overall population frequency of PTVs can, in turn, be estimated from
the study cohort, namely by summing the frequency of PTVs in the probands weighed
(multiplied) by their fraction in the population (trait prevalence) and the frequency of PTVs
in the siblings weighed by their relative fraction as well (1 minus the trait prevalence).
Now that we have the prevalence estimates both in the general population and among
PTV carriers (penetrance), we estimate the average PTV liabilty as gnorm(1 -

Prevalence) - gnorm(l - Penetrance).
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Figure S4: Estimating rare variant liability from population prevalence and carrier rates of

variant groups.

The Liability Threshold Model postulates that risk factors act additively and underlie a normally
distributed liability distribution in the general population (top), where the threshold determines
the trait prevalence. When examining carriers of a group of rare variants (bottom), the average
liability will reflect the effect size of these variants. If the prevalence of the trait among rare
variant carriers is known, the two distributions can be compared to get an estimate of the

distance between their means. See the ‘Variant liability’ section for a detailed description.



e The liability stratified by sex was measured in R using these formulas:
Ratepopyiation = Prevalence * Ratepropanas + (1 — Prevalence) * Rateg;pings

Rate
Penetrance = ——Ltrebands o preyalence

Ratepopulation

Z = qnorm(1 — Prevalence) — qnorm(1 — Penetrance)

e The p-values were those obtained from the binomial tests detailed above. The standard
error, and then the confidence intervals around Z, were estimated from these p-values:

Binomial test P value
2

Q = qnorm(1 —

abs(Z
, _ abs@)
Q
95% Cl =7 + (1.96 x SE)

e The difference between males and females liability estimates was measured as follows:
ZDifference = ZFemales - ZMales
SEDifference = Sqrt(SEzFemales + SEZMales)

_ abS(ZDifference)
QDifference -

SEDifference

PDifference =2x* (1 _pnorm(QDifference))

e The inverse-variance-weighted average from both sexes and its confidence interval was
measured as follows:

Z _ ( ZFemales ZMales . 1 + 1
Both — *
0 SEzFemales SEZMales SEZFemales SEzMales

1
+
SEZFemales SEZMales

95% CIBoth = ZBoth i (1'96* SEBoth)

SEgotn =1 + sqrt( )

e The meta-analysis p-value was obtained using Fisher's method implemented in the

metap package'”:

Ppoen = metap: : sumlog(Premaiess Pmates)

e The p-values for each experiment were corrected for Family-wise Error Rate (Bonferroni
correction) and False Discovery Rate (Benjamini-Hochberg correction), as shown for the

risk ratios.



e We did an additional analysis in which we removed a set of high confidence autism
predisposition genes to assess the residual exome-wide liability in unknown risk genes.
The Simons Foundation Autism Research Initiative (SFARI) database provides curated
scores for 1,172 genes that reflect the strength of evidence linking each gene to autism
risk. There are 3,58 autosomal and 47 X-linked SFARI Category 1 (high-confidence) & S
(syndromic) genes with strong evidence of association with autism (354 autosomal genes
included in the current analysis cohort after QC). We tested the enrichment of DNMs and

rare inherited variants after removing these genes as well as in this gene set only.

6. Gene set enrichment

6.1. Genes with sex-biased expression

Genes with sex-biased expression in the fetal cortex (FDR < 0.1) were obtained from
Supplementary Table S1 of a study by O’Brien and colleagues.?® Autosomal male-biased
genes (n=856) were defined as those with fold-difference (Male/Female) > 1, and female-
biased genes (n=794) as those with fold-difference < 1. Genes with significant sex-biased
expression in the adult human cortex (FDR < 0.05) were obtained from Supplementary Table
S1 of a recent study by Fass and colleagues.?' Autosomal male-biased genes (n=303) were
defined as those with fold-change in the cortex (logFC_Cortex < 1), and female-biased genes
(n=426) as those with fold-difference > 1. We note that the genes were limited to autosomal
genes annotated in our dataset; the FDR cutoffs were those used by the authors in the source
publications.

6.2. Gene set enrichment versus matched genes

For each tested gene set, we selected a matched set (see 6.3) and counted DNMs,
transmitted and untransmitted variants; we repeated this procedure 10,000 times with
replacement and took the average ratio (rate ratio between DNM counts in probands and
siblings or transmitted to untransmitted ratio in the probands); we then used this ratio as the
expected ratio in a binomial test as described above. Specifically, we tested the difference
between the rate of DNMs between probands and siblings against the permutation-averaged
expected ratio for this gene set (instead of the sample size ratio used in the exome-wide
analyses), and similarly tested rare variant over-transmission against the permutation-

averaged expected transmitted-to-untransmitted ratio for the given gene set (instead of 0.5 as



used in the exome-wide analysis). We also used the average variant rates across these
10,000 permutations instead of the rate in siblings to estimate the variant liability attributed to

a gene set in excess of what is expected for matched genes.

6.3. Selecting random sets of matching genes

We followed a procedure similar to that previously used by Ouwenga and Dougherty??
to select sets of control genes for gene set burden analysis. We used a multi-dimensional
kernel density estimator (KDE) from the ks package?® in R to select these control genes. First,
we created a table of features (coding length, brain expression level, and LOEUF bins) and
used it to build a 3D KDE. Next, we used the test gene set to build a density distribution and
evaluated the remaining genes (not in the gene set) on this distribution. We then evaluated
these remaining genes on a density distribution built using all genes rather than the gene set
genes. The ratio of the two estimates was then used as a sampling weight. Here we show the

R code used to implement this:

kde set genes = ks::kde(
x = features set genes,
eval.points = features remaining genes
)

# feature x genes: table gene x length, expr., loeuf

kde all genes = ks::kde(

x = features all genes,

eval.points = features remaining genes

)
kde weights = kde set genesSestimate + kde all genesSestimate
genes random idx = sample (

l:length (remaining genes),
length (set genes),

prob =kde weights

)

genes_randoms = remaining genes[genes random idx]



7.

10.

11.

References

Zhou, X. et al. Integrating de novo and inherited variants in 42,607 autism cases
identifies mutations in new moderate-risk genes. Nat. Genet. 54, 1305-1319 (2022).
Foster, I. Globus Online: Accelerating and Democratizing Science through Cloud-Based
Services. IEEE Internet Comput. 15, 70-73 (2011).

Chorbadijiev, L. et al. The Genotype and Phenotypes in Families (GPF) Platform
Manages the Large and Complex Data at SFARI.
http://biorxiv.org/lookup/doi/10.1101/2024.02.08.579330 (2024)
doi:10.1101/2024.02.08.579330.

McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016).
Genome Aggregation Database Consortium et al. The mutational constraint spectrum
quantified from variation in 141,456 humans. Nature 581, 434—443 (2020).

The 1000 Genomes Project Consortium. A global reference for human genetic variation.
Nature 526, 68-74 (2015).

Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer
datasets. GigaScience 4, 7 (2015).

Manichaikul, A. et al. Robust relationship inference in genome-wide association studies.
Bioinformatics 26, 2867—-2873 (2010).

Van der Auwera, G. A. et al. From FastQ Data to High-Confidence Variant Calls: The
Genome Analysis Toolkit Best Practices Pipeline: The Genome Analysis Toolkit Best
Practices Pipeline. in Current Protocols in Bioinformatics (eds. Bateman, A., Pearson, W.
R., Stein, L. D., Stormo, G. D. & Yates, J. R.) 11.10.1-11.10.33 (John Wiley & Sons, Inc.,
Hoboken, NJ, USA, 2013).

Wright, M. N. & Ziegler, A. ranger : A Fast Implementation of Random Forests for High
Dimensional Data in C++ and R. J. Stat. Softw. 77, (2017).

Kuhn, M. Building Predictive Models in R Using the caret Package. J. Stat. Softw. 28,



12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

(2008).

Fu, J. M. et al. Rare coding variation provides insight into the genetic architecture and
phenotypic context of autism. Nat. Genet. 54, 1320-1331 (2022).

Hail Team. Hail. (2022).

Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience 10, giab008
(2021).

Satterstrom, F. K. et al. Autism spectrum disorder and attention deficit hyperactivity
disorder have a similar burden of rare protein-truncating variants. Nat. Neurosci. 22,
1961-1965 (2019).

Satterstrom, F. K. et al. Large-Scale Exome Sequencing Study Implicates Both
Developmental and Functional Changes in the Neurobiology of Autism. Cell 180, 568-
584.e23 (2020).

Balduzzi, S., Rucker, G. & Schwarzer, G. How to perform a meta-analysis with R: a
practical tutorial. Evid. Based Ment. Health 22, 153-160 (2019).

Dougherty, J. D. et al. Can the “female protective effect” liability threshold model explain
sex differences in autism spectrum disorder? Neuron 110, 3243-3262 (2022).

Zeidan, J. et al. Global prevalence of autism: A systematic review update. Autism Res.
15, 778-790 (2022).

O’Brien, H. E. et al. Sex Differences in Gene Expression in the Human Fetal Brain.
http://biorxiv.org/lookup/doi/10.1101/483636 (2018) doi:10.1101/483636.

Fass, S. B. et al. Relationship between Sex Biases in Gene Expression and Sex Biases
in Autism and Alzheimer’s Disease.
http://medrxiv.org/lookup/doi/10.1101/2023.08.29.23294773 (2023)
doi:10.1101/2023.08.29.23294773.

Ouwenga, R. L. & Dougherty, J. Fmrp targets or not: long, highly brain-expressed genes
tend to be implicated in autism and brain disorders. Mol. Autism 6, 16 (2015).

Duong, T. ks: Kernel Smoothing. R package version 1.14.0. (2022).



Supplementary Results

1. DNM and inherited variant rates

The de novo and rare inherited variant rates observed in the siblings in the current
SPARK release (IWES2) were comparable to, albeit slightly lower than, the variant rates
seen in the ASC cohort (Eigure S5). Small differences are expected given the different de
novo calling pipelines (see section 2 of the Supplementary Methods). The rare inherited
variant rates (MAF<0.1%) in SPARK iWES2 were higher than those seen in the ASC cohort
and this difference was most prominent in damaging missense variants. Average rare
inherited variant counts are sensitive to population differences, partly because different
ancestral groups differ in their demographic histories and hence allele frequency spectra,
and also because of how the variants are filtered based on in-sample frequencies. While the
ASC cohort is predominantly European (composed of the Simons Simplex Collection and
other smaller cohorts), SPARK has more diversity, being only 73% European ancestry in
IWES2 (see Figure S1 in the Supplementary Methods). To have a more informative
comparison unconfounded by potential artifactual differences in processing, we explored the
variant rates in the previously analyzed SPARK cohort (Pilot and first sequencing wave
WES1; 78% European ancestry), which was processed using the same pipeline as the ASC.
The rare inherited variant rates in SPARK Pilot/WES1 were also higher than in ASC (Eigure
S1). This suggests that these differences in rare variant rates are a reflection of the diverse
genetic ancestry of SPARK samples more so than mere technical differences. Ultra-rare
variant rates (i.e. seen in one parent in the dataset, absent from gnomAD) in the remaining

cohorts (one sequenced parent, without sequenced parents) are shown in Figure S6.
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Figure S5: Rare de novo and inherited variant rates in the ASC & SPARK trio-sequenced

cohorts.

a, De novo mutation rates in the probands (prob.) and siblings (sib.) in the Autism

Sequencing Consortium (ASC) cohort and the Simons Foundation Powering Autism
Research for Knowledge (SPARK) cohort. b, Counts of transmitted (T) and untransmitted (U)
parental alleles at rare variants (MAF<0.1%). The ASC and SPARK iWES2 were used for

the enrichment analysis. SPARK Pilot/WES1 is shown for comparison, as it was processed

using the same pipeline used for the ASC. The pedigrees at the top show the sample size

used for calculating de novo rates in each cohort (sample size for inherited variants given

between brackets as some individuals in the ASC cohort did not have information on

inherited alleles). The error bars indicate the 95% confidence intervals of the carrier rates.
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Figure S6 Ultra-rare inherited and case-control variant rates in the remaining cohorts.

a, The transmission rates of ultra-rare parental alleles (seen in one parent and not in
gnomAD) in probands and siblings with exome data from one parent in the Simons
Foundation Powering Autism Research for Knowledge (SPARK) cohort. Transmission rates
of ultra-rare variants in trio-sequenced probands and siblings are shown for comparison. b,
Ultra-rare variants (allele frequency < 0.005%) in autism cases and controls from the Autism
Sequencing Consortium (ASC) case-control cohorts and probands and siblings from SPARK
who did not have parental sequence data. The pedigrees show the sex-stratified sample size
in each cohort. The error bars indicate the 95% confidence intervals of the carrier rates.



2. Sex differences in autism likelihood conferred by

exome-wide rare variants

Here we describe in more detail the results shown in Figure 1.

2.1. De novo mutations

2.1.1 Damaging protein-truncating DNMs

Damaging protein-truncating DNM rates in autistic males were three times higher
than sex-matched siblings, and were comparable in SPARK and ASC; we found a 2.9
fold-enrichment in SPARK (95% CI = 2 - 4.3; p = 2.1x107'°; Bonferroni-corrected p =1.1x10®)
and a 3.1 fold-enrichment in ASC (95% CI = 1.9 - 5.3 ; p = 5.1x10%; Bonferroni-corrected p =
2.8x10). The enrichment in females versus sex-matched siblings was slightly stronger in
SPARK (risk ratio = 3.6; 95% CI = 2.4 - 5.5; p = 4.8x10™'%; Bonferroni-corrected p = 2.6x107'°)
and much more pronounced in the ASC (risk ratio = 6.4, 95% Cl =3.8 - 11.6 ; p = 1.7x107;
Bonferroni-corrected p = 9.4x107%). The most notable sex difference was seen in de novo
damaging PTV rates in the ASC cohort, where DNMs rates in autistic females were 1.8
times higher than autistic males (95% Cl = 1.4 - 2.2; p = 5.1x107; Bonferroni-corrected p =
2.7x10%°). The difference in SPARK was lower (risk ratio = 1.3; 95% CI = 1 - 1.6) and
significant only before correction for multiple testing (p = 0.04).

On the liability scale, de novo damaging PTVs increased the liability by 0.5 standard
deviation units in SPARK - similarly for both sexes (95% CI: 0.3 - 0.6 ; Bonferroni-corrected p
< 3x107%). In the ASC cohort, they also increased the liability by 0.5 units in males (95% Cl =
0.3 - 0.7; Bonferroni-corrected p = 3x107), and caused a larger shift in females (Z = 0.75;
95% CI = 0.6 - 0.9 ; Bonferroni-corrected p = 4.7x107®), albeit not significantly different from
males (p = 0.09). SFARI genes showed the same general patterns of protein-truncating DNM
enrichment with larger effect sizes. Similar patterns were observed when removing these
known autism predisposition genes, with considerably lower effect sizes (Eigure S7a). We

note here that the discovery of SFARI genes was based, in part, on these datasets.

2.1.2 Damaging missense DNMs

Damaging missense mutations showed comparable enrichment in females versus
siblings in SPARK (risk ratio = 2; 95% Cl = 1.5 - 2.6 ; p = 7x10®; Bonferroni-corrected p =
3.8x10%) and ASC (risk ratio = 2.1; 95% CI = 1.4 - 3.1; p = 0.00013; Bonferroni-corrected p =
0.0075). The enrichment in males was slightly higher in the ASC (risk ratio = 2.4; 95% CI =



1.6 - 3.6 ; p = 8x107; Bonferroni-corrected p = 4.3x10°) but considerably lower in SPARK
(risk ratio = 1.2; 95% Cl = 1 - 1.5 ; p = 0.04; not significant after FDR or Bonferroni
correction). In terms of direct comparisons, damaging missense DNMs were slightly more
frequent in autistic females versus autistic males in SPARK (risk ratio = 1.3 ,1.1-1.5;p =
0.0073; FDR-adjusted p = 0.017; FDR-adjusted p = ; Bonferroni-corrected p = 0.39) but did
not show a significant sex difference in ASC (p = 0.45).

Females in both ASC and SPARK had comparable variant liability attributed to
damaging missense DNMs (ASC = 0.27; 95% Cl = 0.13 - 0.4; SPARK = 0.25; 95% Cl = 0.16
- 0.24; Bonferroni-corrected p < 0.00044). In males, these missense DNMs showed different
estimates between ASC (Z = 0.38; 95% CI = 0.23 - 0.53) and SPARK (0.09 units; 95% CI =
0.003 - 0.18), and this difference between cohorts was significant (Zpierence = 0.29; 95% CI:
0.12 - 0.46; p = 0.0011). In terms of sex differences, damaging missense DNMs had similar
average liability in ASC but significantly lower liability in males in SPARK (Zpierence = -0.16;
95% CI: -0.28 - 0.034; p = 0.013; FDR-adjusted p = 0.031; Bonferroni-corrected p = 0.70).
However, these sex-stratified estimates were more congruent between males and females
when examining ultra-rare DNMs (see 2.2 below), suggesting that the effect sizes are indeed
similar. This is in line with the findings from meta-analysis, where the estimates were not
significantly different between males and females (Figure 1b). As seen with
protein-truncating PTVs, damaging missense DNMs in SFARI genes and the remaining
autosomal genes showed similar patterns compared to that obtained with exome-wide

analysis, with larger and smaller effect sizes, respectively (Eigure S7).

2.1.3 Synonymous DNMs

We note that rare synonymous DNMs showed a small but significant liability in autistic
females in SPARK (Z = 0.046, 95% CI = 0.01 - 0.082; p = 0.011; FDR-adjusted p = 0.029).
This likely reflects the higher genetic diversity in autistic females (72% individuals of
European genetic ancestry) compared to sex-matched siblings (75% individuals of European
genetic ancestry). This imbalance, however, did not persist after meta-analyzing the two
cohorts (Z = 0.036; 95% CI = 0.0055 - 0.067; p = 0.052). A stringently-defined set of
ultra-rare DNMs in SPARK (allele frequency < 0.005%) showed well-balanced synonymous
mutation counts between female probands and sex-matched siblings while having the same
protein-truncating DNM liability (see 2.1.4 and Figure S8 below). Therefore, it is unlikely that
the meta-analyzed estimates of damaging DNM liability presented in Figure 1 are biased.
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Figure S7. Enrichment of de novo mutations in SFARI genes versus all other genes.

Sex-stratified de novo mutation rate ratios (left) and liability (right) (see Methods) in SFARI

genes (a) and all other genes (b). For sex differences, a rate ratio > 1 indicates that females

show a higher enrichment; a Z score > 0 indicates that females show a higher effect size on

the liability scale.Error bars show 95% confidence intervals. Similar to Figure 1b.

2.1.4 Ultra-rare de novo mutations in SPARK

Almost all protein-truncating DNMs and most damaging missense DNMs were

ultra-rare, whereas only half of the synonymous variants were in this group (Figure S8).

Consequently, the liability of ultra-rare and rare protein-truncating DNMs were similar; the
liability of ultra-rare damaging missense DNMs in males (Z = 0.16; 95% Cl = 0.06 - 0.25; p =
0.0015) was higher than that seen with rare missense DNMs (Z = 0.09; 95% CI = 0.003 -
0.18; p=0.04). There was no significant sex difference in ultra-rare DNM liability (p = 0.065)

in contrast to what is seen with rare DNMs (p = 0.012). Ultra-rare synonyms DNMs were not

enriched in the probands versus siblings, nor did they show a significant sex difference.

All in all, this analysis showed a stronger enrichment in ultra-rare damaging DNMs

along with better-balanced ultra-rare synonymous DNM burden, which suggests that the



imbalance in synonymous DNMs seen in the rare variant analysis is not accompanied by an
inflation of the estimates for damaging mutations particularly protein-truncating mutations,

which showed equal or rather higher risk ratios in ultra-rare DNM compared to rare DNMs.
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Figure S8. Enrichment of ultra-rare de novo mutations in SPARK trio-sequenced individuals.

a, Rates of ultra-rare de novo mutations (DNM) (filled bars) compared to all rare DNMs
(dotted lines). Most damaging protein-truncating and missense de novo mutations (DNMs)
were ultra-rare compared to about half of the synonymous DNMs. b, Ultra-rare DNM rate
ratios between probands and siblings, compared to rare DNMs. ¢, The liability of ultra-rare

and rare DNMs. There was no significant difference in the average liability of ultra-rare



synonymous DNM, in contrast to the difference seen in rare DNMs. Error bars show 95%

confidence intervals.

2.2. Inherited variants

2.2.1. Damaging protein-truncating variants

Damaging PTVs showed evidence of over-transmission from non-autistic parents to
autistic individuals in SPARK only - both to female (transmission ratio = 1.3 ; 95% Cl =1.1 -
1.4; p = 0.00018; Bonferroni-corrected p = 0.0095) and males (T/U = 1.22; 95% Cl = 1.14 -
1.3; p = 3x10°; Bonferroni-corrected p = 1.6x107). Similar to the observed over-transmission
patterns, inherited damaging PTVs conveyed approximately the same liability in males (Z =
0.085 units; 95% CI = 0.057 - 0.11) and females (Z = 0.082; 95% CIl = 0.04 - 0.13).

There was still a significant over-transmission and inherited liability in SPARK when
excluding SFARI genes, suggesting that a substantial portion of the genes driving this
association are not in the SFARI gene set. In particular, females showed significant
over-transmission in the remaining genes rather than SFARI genes, whereas males showed
significant over-transmission in both. In the ASC, only SFARI genes showed significant PTV
over-transmisisonl, both in males and in females. These findings are shown in Figure S9.

Ultra-rare inherited PTVs ascertained in a cohort of autistic probands with sequence
data from a single parent in females (T/U = 1.3; 95% Cl = 1.05 - 0.65 ; p = 0.018;
FDR-adjusted p = 0.14; Bonferroni-corrected p = 0.99) and males (T/U = 1.26; 95% CI =
1.12 - 1.43; p = 0.00016; FDR-adjusted p = 0.0021; Bonferroni-corrected p = 0.0084).
Accordingly, these variants conveyed similar liabilities in females (Z = 0.068; 95% Cl = 0.017
- 0.18) and males (Z = 0.10; 95% CI = 0.048 - 0.15). The effect size of ultra-rare PTVs were

similar in trio-sequenced probands, albeit slightly less prominent in males (Eigure S10a).

2.2.2. Damaging missense variants

Damaging missense variants showed comparable over-transmission to autistic males
but not to females in both cohorts; the transmission ratios were significantly higher than 1 in
autistic males in ASC (T/U = 1.06; 95% CI = 1.02 - 1.09; p = 0.00033; Bonferroni-corrected p
= 0.018) and in SPARK (T/U = 1.04; 95% Cl = 1.02 - 1.06; p = 7.4x10°°; Bonferroni-corrected
p = 0.004) but not in females in both (T/U in ASC = 1.02; 95% CI = 0.96 - 1.09; p = 0.47; T/U
in SPARK = 1.01; 95% CI = 0.98 - 1.04; p = 0.61). Despite this difference in sex-stratified
estimates, there was no statistically significant over-transmission in autistic females when
compared directly to autistic males (T/U in ASC = 0.99; 95% CI = 0.94 - 1.04; p = 0.58; T/U
in SPARK = 0.99; 95% CI = 0.96 - 1.01; p = 0.32).



The cohort-level liability attributed to inherited damaging missense variants mirrored
the over-transmission patterns, where it was significant in males in ASC (Z = 0.023; 95% ClI
= 0.010 - 0.035) and SPARK (Z = ; 95% CI = 0.015 - 0.0077) but not females, without a
significant sex difference (p > 0.093). As noted in the main text, this sex difference was
nominally significant in the meta-analyzed cohort (Figure 1). The liability attributed to
inherited damaging missense variants in SFARI genes did not differ significantly from the
population mean. Consequently, the liability in the remaining genes mirrored that seen

exome-wide (Figure S9).
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Figure S9. Over-transmission of rare inherited variants in SFARI genes.

Over-transmission (left) and liability (right) of rare inherited variants in SFARI genes (a)
versus all other genes (b) (see Methods). Error bars show 95% confidence intervals. Similar

to Figure 1c.

When evaluating ultra-rare variants in the remaining child-parent pairs (Figure S10),
damaging missense variants showed over-transmission to females (T/U = 1.13; 95% CI =



1.013 - 1.26; p = 0.028; FDR-adjusted p = 0.19; Bonferroni-corrected p = 1) but not males
(T/U =1.017; 95% Cl = 0.096 - 1.077; p = 0.57). This was different from ultra-rare variants in
trio-sequenced probands, in whom these variants were over-transmitted to males (T/U =
1.042; 95% CI = 1.0010 - 1.085; p = 0.045; FDR-adjusted p = 0.20; Bonferroni-corrected p =
1) but not females (T/U = 1.030; 95% CI = 0.95 - 1.11; p = 0.46); this was shown above for
rare variants in the same individuals. As a consequence, the liability was significantly higher
than zero in females in the one cohort (Z = 0.043; 95% CI = 0.0046 - 0.081) and in males in
the other (Z = 0.017; 95% CI = 0.00042 - 0.034), but not significantly higher than zero in a
meta-analysis of the two (In males: Z = 0.014; 95% CI = 0.000096 - 0.028; p = 0.12; In
females: Z = 0.021 ; 95% CI = -0.00095 - 0.044; p = 0.07). There was no significant sex
difference in any of these ultra-rare variant comparisons. Siblings showed nominal

under-transmission of PTVs that was not significantly different from zero on the liability scale

(Eigure S10b).
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Figure S10. Over-transmission of ultra-rare inherited variants in SPARK.

Over-transmission of ultra-rare variants (i.e. seen in one parent in the dataset, absent from
gnomAD) was studied in child-parent pairs with one (duos) or two sequenced parents (trios),

then meta-analyzed. This analysis was performed in probands (a) and siblings (b). Error



bars show 95% confidence intervals. See Figure 1c for over-transmission analysis of rare
(MAF<0.1%) variants.

2.2.3. Synonymous variants

Inherited parental allele counts in SPARK were not significantly different from
untransmitted alleles (Figure 1c). There was an imbalance in transmitted and untransmitted
synonymous variants in autistic males in the ASC cohort (Transmitted alleles = 519,579;
Untransmited = 515,406; Rate ratio = 1.0081) corresponding to a small effect size on the
liability scale (Z = 0.0034; 95% CI = 0.0018 - 0.005; p = 4.12x107°; Bonferroni-corrected p =
0.0022). This difference is likely to be due to the greater sensitivity to call rare variants that
are transmitted (i.e. occur at least twice in the dataset) than those that are not transmitted. It
was persistent after meta-analysis across cohorts but was extremely small (Z = 0.0016; 95%
Cl = 0.00070 - 0.0026; p = 0.0001; Bonferroni-corrected p = 0.0056) and thus unlikely to

have major implications for the key conclusions.

2.3. Ultra-rare variants in cases and controls

Case-control cohorts (including individuals recruited in family-based studies but
currently without sequencing data from their parents) form a substantial portion of available
autism cohorts. These constitute valuable independent datasets to study sex differences in
the enrichment of ultra-rare variants. To leverage these data, we compared the enrichment
of ultra-rare variants in 12,125 autistic individuals versus 10,962 controls or siblings not
diagnosed with autism (Eigure S6b). This analysis showed significant enrichment and liability
attributed to damaging PTVs, and to a lesser extent damaging missense variants, without
significant sex differences (Eigure S11). Since the mode of inheritance of alleles in these
cohorts is unknown, this analysis captures the combined effect size of de novo mutations
and inherited variants. On the liability scale, the effect sizes attributed to damaging PTVs in
females (Z=0.21; 95% CI = 0.16 - 0.25; p =3.81x10?'; Bonferroni-corrected p = 1.71x107)
and males (Z=0.28; 95% CI = 0.22 - 0.33; p = 8.03x10°%; Bonferroni-corrected p =
3.61x103*) were not significantly different (Zpierence = -0.072; 95% CI = -0.14 - 0.0018 ; p
=0.056).
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Figure S11. Enrichment of ultra-rare variants the case-control cohorts.

Ultra-rare variant rates in autism cases (ASC) and autistic probands without parental
sequence data (SPARK) were compared to autism controls (ASC) or siblings not diagnosed
with autism (SPARK). The error bars show the 95% confidence intervals of the effect size on
the observed scale (left) and liability scale (left). The enrichment and liability were assessed
relative to the sample size of the case/control cohorts (i.e. assuming that the expected rare
variant burden per sample is similar across cohorts). To account for the differences in
ultra-rare variant counts arising from the differences in ancestry, damaging missense and
protein truncating variants were also compared to the expected rate ratio from synonymous

variants (i.e. normalizing the average variant rates using synonymous variant counts).



3. Exome-wide burden in autistic individuals with

versus without cognitive and motor difficulties

Here, we describe in more detail the findings presented in Figure 2 and related

analysis in the remaining cohorts.
4.1. DNM burden

4.1.1. Damaging protein-truncating DNMs:

The effect size attributed to protein-truncating DNMs in autistic individuals with
co-occurring motor or cognitive impairment was 0.60 in males (95% CI: 0.46 - 0.74; p =
2.3x10""; Bonferroni corrected p = 1.3x10"°) and 0.55 in females (95% Cl =0.40 - 0.71; p =
3.2x10"%; Bonferroni corrected p = 1.1x107'°), without a significant difference (p = 0.67). De
novo protein-truncating mutations increased the liability to autism without cognitive
impairment or motor delay similarly (p = 0.82) in males (Z = 0.32; 95% Cl: 0.16 - 0.47; p =
5.9x10°; Bonferroni corrected p = 0.0032) and females (Z = 0.34; 95% CI: 0.17 - 0.51; p =
6.2x10®; Bonferroni corrected p = 0.0034). When comparing autistic individuals with motor
delay or cognitive impairment to those without these co-occurring difficulties, these DNMs
had similar liabilities (p = 0.66) in males (Z = 0.45; 95% Cl = 0.30 - 0.61; p = 7.3x10%,
Bonferroni-corrected p = 4x107) and females (Z = 0.39; 95% CI = 0.11 - 0.66; p = 0.0053;
FDR-adjusted p = 0.019).

As mentioned in section 2.1, we found that SFARI genes but not the remaining
autosomal genes show significant sex-differences in DNM rate ratios (Eigure S7 in section
2.1 of the supplementary results). Since these genes are known to cause multiple
developmental difficulties with high penetrance including cognitive impairment and motor
delays, this alluded to the sex difference on the observed scale being driven by differences
in the proportions of autistic females and males with these co-occurring difficulties. Indeed,
we find that among autistics with motor and cognitive impairment (Eigure S12),
protein-truncating DNMs were enriched in autistic males (Rate ratio = 23.72; 95% CI = 7.78 -
117.82; p = 6.3x107"%; Bonferroni-corrected p = 1.1x10"°) and females (Rate ratio = 22.04;
95% CI 8.53 - 72.47; p = 2.4x107'; Bonferroni-corrected p = 4.3x107) but not significantly
different between the two sexes (p = 0.79).

Amongst those without these co-occurring conditions, protein-truncating DNMs were
also significantly enriched in autistic males (Rate ratio = 9.43; 95% CI = 3.05 - 47.25; p =
4.4x107; Bonferroni-corrected p = 7.9x10°°) and females (Rate ratio = 7.56; 95% CI = 2.65 -



26.38; p = 1.5x10°%; Bonferroni-corrected p = 0.0027) without a significant difference between
the sexes (p = 0.36). As expected for this these known developmental genes DNMs were
substantially enriched in those with motor or cognitive impairment versus those without
co-occurring difficulties, in males (Rate ratio = 2.51; 95% Cl = 1.73 - 3.68; p = 6.6x107;
Bonferroni-corrected p = 0.00012) and females (Rate ratio = 2.92; 95% Cl = 1.55-5.69; p =
0.00034; FDR-adjusted p = 0.0020; Bonferroni-corrected p = 0.060). These findings are

highlighted in Figure S12.
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Figure S12: Enrichment of de novo mutations and rare inherited in SFARI genes in autistic

individuals with and without motor and cognitive impairment in SPARK.

a, Enrichment in de novo mutations (DNM) in SFARI high-confidence and syndromic genes
in two SPARK sub-cohorts of autistic individuals ascertained to have autism with or without
co-occurring developmental delay or cognitive impairment (versus siblings), and directly
between these two groups. The liability attributed to de novo mutations in these cohorts and
phenotypic groups is shown on the right-hand side. b, Over-transmission analysis and

liability attributed to inherited variants in the same cohorts. Similar tests for the complete



ASC and SPARK cohorts were presented in Figure S7a (DNMs) and Figure S9a (inherited

alleles). Multiple testing correction was done jointly for these tests and those presented in

Figure S16 (180 tests).

4.1.2. Damaging missense DNMs:

Damaging de novo missense mutations increased the liability both in males (Z =
0.17; 95% CI = 0.077 - 0.25; p = 0.00024 ; Bonferroni-corrected p = 0.0016) and in females
with motor or cognitive impairment (Z = 0.27; 95% Cl = 0.16 - 0.34; p = 2.2x10%;
FDR-adjusted p =0.00012) - without a significant difference (p = 0.16). In those without
motor or cognitive impairment, these DNMs significantly increased autism liability in females
(Z = 0.016; 95% CI: 0.05 - 0.27 ; p =0.0043; FDR-adjusted p = 0.018) but not in males (Z =
0.029; 95% CI: -0.07 - 0.13 ; p =0.57), though the difference was not significant (p = 0.081).
In direct comparisons between those with and without these difficulties, damaging missense
DNMs had an increased liability to co-occurring difficulties in males (Z = 0.23; 95% CI = 0.10
- 0.35; p = 0.00032; Bonferroni-corrected p = 0.017) but the liability was not significantly
increased in females (Z = 0.21; 95% CIl = -0.012 - 0.43; p = 0.071). The difference was not
statistically significant (Zpigerence = -0.023; 95% CI = -0.28 - 0.23; p = 0.86). There was no
significant sex difference in DNM enrichment in SFARI genes after accounting for multiple
testing (Figure S12); these DNMs were more enriched in those with motor or cognitive

difficulties versus those without these co-occurring difficulties.

4.1.3 Imbalance of synonymous DNMs

As presented in the main text (Figure 2a), synonymous DNMs were more prevalent
in autistic females without motor or cognitive impairment compared to those with these
co-occurring difficulties as well as sex-matched siblings (Rate ratio = 1.23; 95% Cl = 1.082 -
1.38; p = 0.00099). We examined the burden and liability in ultra-rare DNMs in this
sub-cohort (Figure S13) and found better-balanced DNM counts between the probands and
siblings, yet not completely controlling the spurious association (Rate ratio = 1.22; 95% CI =
1.038 - 1.43; p = 0.015), which is likely to be an artifact of the diverse ancestries included in
the sample.

We then examined whether limiting the analysis to a stringently ancestry-matched set

of 868 autistic females and 2,235 siblings could resolve this issue (see section 2.4 of the

extended methods). This ancestry matching alone resulted in better-balanced DNM counts

between the probands and siblings with some residual imbalance (Rate ratio = 1.17; 95% CI

=1 -1.37; p = 0.047). Next, we combined the two filtering strategies, i.e. by evaluating



ultra-rare DNMs in samples well-matched on genetic ancestry. Here, synonymous DNMs
were not associated with autism (Rate Ratio = 1.09; 95% CI = 0.88 - 1.35; p = 0.42).

Lastly, we turned to protein-truncating DNMs to see whether the estimated
enrichment in protein-truncating DNMs differed with more stringent frequency and ancestry
matching. The rare DNM rate ratio was 2.65 for rare DNMs in the complete cohort (95% CI =
1.61 - 4.37; p = 6.2x10°) versus 2.68 in ancestry-matched samples (95% Cl = 1.47 -4.9; p =
0.00067). The ultra-rare DNM rate ratio was 2.66 in the complete cohort (95% Cl = 1.6 -
4.42; p = 8.4x10°) versus 2.57 in ancestry-matched samples (95% Cl = 1.4 - 4.7; p =
0.0018). Thus, the estimates of protein-truncating DNM enrichment obtained when
examining the full cohort were robust to these differences in genetic ancestry and were

slightly more precise.
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Figure S13: Enrichment of de novo mutations in ancestry-matched subset of autistic females

without cognitive or motor impairment and siblings.

Enrichment and liability in ‘All samples’ was tested in 1,464 autistic females without motor or
cognitive impairment and sex-matched siblings from different genetic ancestry groups (see
Table S4). ‘Matched’ indicates comparisons between 868 female probands of European

ancestry and 2,235 ancestry-matched siblings (see Extended Methods section 2.4).

4.3. Over-transmission

4.3.1. Inherited protein-truncating variants:

In autistic individuals with motor or cognitive impairment (Eigure 2b), inherited PTV
liability was increased in males (Z = 0.12; 95% Cl = 0.076 - 0.16; p = 1.1x107;
Bonferroni-corrected p = 6x10°) but not significantly so in females (Z = 0.063; 95% CI =



-0.0060 - 0.13 ; p = 0.073), yet the difference was not significant (Zperence = -0.057; 95% CI =
-0.14 - 0.025; p = 0.17). In the other group (without co-occurring difficulties), inherited PTVs
had comparable effect sizes (p = 0.54) in males (Z = 0.06; 95% CI: 0.25 - 0.10; p = 0.0049;
Bonferroni-corrected p = 0.046) and in females (Z = 0.08; 95% CI: 0.25 - 0.14; p = 0.00085;
FDR-adjusted p = 0.019). Notably, ultra-rare inherited variants ascertained in a separate
cohort of autistic individuals with sequence data from one parent showed similar patterns in
those with motor or cognitive difficulties but not in those without co-occurring difficulties
(Figure S14). Specifically, inherited PTVs conferred significant liability in males with motor or
cognitive co-occurring (Z = 0.13; 95% CI = 0.057 - 0.20; p = 0.00052; Bonferroni-corrected p
= 0.14) but not females (Z = 0.083; 95% CI = -0.048 - 0.21; p = 0.21), yet without a
significant sex difference (p = 0.54), whereas the liability in the other group was not
significantly increased from the population mean in both sexes (p > 0.11). The liability
attributed to inherited PTVs did not differ significantly between those with and without

co-occurring difficulties (p > 0.31).
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Figure S14. Over-transmission of ultra-rare inherited variants in SPARK individuals with one

sequenced parent, stratified by motor and cognitive impairment.

a, The sample size of the different cohorts included in this analysis (note that the
transmission analysis is done in probands only). b, Over-transmission analysis showing the
ratio between rare parental alleles transmitted to autistic individuals with or without motor or
cognitive impairment and untransmitted alleles. Transmission ratios were also compared
between these two groups (see the Methods). ¢, The liability attributable to inherited rare

variants.

4.3.2. Inherited missense variants:

Among those with motor or cognitive impairment (Figure 2c), inherited damaging
missense variants conveyed significant liability in males (Z = 0.015; 95% CI = 0.0030 -
0.027; p = 0.015; FDR-adjusted p = 0.047) but not in females (Z = -0.011; 95% CI =-0.30 -
0.0083; p = 0.27). The difference was significant only before correction for multiple testing (Z
= -0.026; 95% CI =-0.048 - 0.0032; p = 0.025). The liability attributed to inherited damaging
missense variants in females without cognitive impairment was not significantly increased (Z
= 0.00035; 95% CI =-0.13 - 0.02). These variants increased the liability in males (Z = 0.01;
95% CI = 0.0006 - 0.02; p = 0.037) but this did not pass FDR-adjustment (p = 0.11). There
was no significant difference in the average liability of inherited missense variants between
those with and without co-occurring difficulties (p > 0.43). Ultra-rare damaging missense

variants in SPARK individuals with sequence data from one parent did not convey significant

liability (Fiqure S14).

4.4. Ultra-rare variants in the remaining SPARK individuals

without parental sequence data

There were no significant sex differences in the enrichment and liability damaging of
protein-truncating and missense ultra-rare variants among the remaining probands and
siblings from SPARK (Figure S15). The effect size of ultra-rare protein-truncating variants
(adjusted for synonymous variants) was similar in males (Z = 0.27; 95% Cl1 =0.19-0.34; p =
1.4x10"" Bonferroni-corrected p = 6.4x107'°) and females with motor and cognitive difficulties
(Z =0.22; 95% Cl = 0.15 - 0.30; p = 2.2x10%; Bonferroni-corrected p = 1.0x107). Damaging
missense variants had an effect sizes of 0.039 in males (95% CI = 0.0096 - 0.068; p =
0.0094; FDR-adjusted p = 0.033; Bonferroni-corrected p = 0.42) and 0.036 in females with
cognitive impairment or motor delay (95% CI = 0.0020 - 0.069; p = 0.038; FDR-adjusted p =
0.095).



Among those without motor and cognitive difficulties, PTVs had an effect size of 0.16
in males (95% CI =0.074 - 0.24; p = 0.00021; Bonferroni-corrected p = 0.0096) compared to
0.040 in females (95% CIl = -0.056 - 0.42; p = 0.42) although the difference was not
statistically significant (p = 0.068). There was no significant enrichment in damaging
missense variants in autistic individuals without these co-occurring conditions. When the two
groups were compared (with versus without motor or cognitive impairment), the effect size of
PTVs was 0.19 in males (95% CI = 0.089 - 0.29; p = 0.00023; Bonferroni-corrected p =
0.010) and 0.35 in females (95% CI = 0.17 - 0.53; p = 0.00017; Bonferroni-corrected p =
0.0079), and it was not significantly different (p = 0.14). Missense variants had a slightly
higher liability to autism with (vs. without) motor or cognitive impairment in males (Z = 0.048;
95% CI =0.0046 - 0.092; p = 0.03) but the liability did not differ between the two groups after
correction for multiple testing (FDR-adjusted p = 0.08).
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Figure S15. Enrichment of ultra-rare inherited variants in SPARK individuals without

sequenced parents, stratified by motor and cognitive impairment.

The enrichment of ultra-rare variants in a cohort of autistic probands without parental

sequence data in SPARK (a) was examined on the observed scale (b) and liability scale (c).



Variant rates were compared between autistic stratified by co-occurring cognitive or motor
impairment and siblings not diagnosed with autism as well as between the two autism
sub-cohorts (‘with versus without’) . The error bars show the 95% confidence intervals of the
effect sizes. The enrichment and liability were assessed relative to the sample size of the
case/control cohorts (i.e. assuming that the expected rare variant burden per sample is
similar across cohorts). To account for the differences in ultra-rare variant counts arising from
the differences in ancestry, damaging missense and protein truncating variants were also
compared to the expected rate ratio from synonymous variants (i.e. normalizing the average
variant rates using synonymous variant counts). This analysis is related to the analysis

presented in Figure S11.



6. Gene set enrichment relative to matched genes

6.1. High-confidence and syndromic autism predisposition

genes

In the full ASC and SPARK cohorts, the enrichment of damaging protein-truncating
DNMs (rate ratio in autistic females and males versus sex-matched siblings), and the
sex-difference in DNM enrichment (rate ratio in autistic females versus autistic males), were
significantly higher than what is expected from matched genes, i.e, significantly higher that
the rate ratio calculated from random genes of similar LoF-constraint, sex-averaged
expression and coding length profiles (Figure S16a). The sex-difference in SPARK relative to
matched genes was driven by autistic probands who have motor or cognitive impairment,
and was not seen in those co-occurring difficulties. We have shown that males and females
in the ‘motor and cognitive impairment’ group do not show a significant sex difference in
DNM rates per se, i.e. relative to what is expected from the sample size of the cohort (Eigure
S12). This apparent discrepancy may be due to an ascertainment bias in the discovery
cohorts behind some of these genes (more females with cognitive impairment and de novo
protein-truncating mutations). A significant sex-bias in damaging missense DNM enrichment
relative to matched genes was seen in SPARK only, and was driven by DNMs seen in
autistic individuals without motor or cognitive impairment.

These observed sex differences in DNM risk ratios did not translate to a significant
sex-bias on the liability scale, i.e. the ‘excess’ autism liability conferred by these variants on
top of what is expected from matched genes was comparable between males and females
(Eigure S16b). Protein-truncating DNMs in SFARI genes increased the liability to autism with
cognitive and motor impairment by 0.99 units more than a matched gene set in males (95%
Cl = 0.64 - 1.34; p = 2.6x10%; Bonferroni-corrected p = 4.7x10°) and 0.86 units more that
matched genes in females (95% CIl = 0.59 - 1.14; p = 1.1x10?; Bonferroni-corrected p =
2x107), without a significant sex difference (p= 0.58). In the ‘autism without cognitive &
motor impairment’ group, the sex difference between males (0.89; 95% Cl =0.49 - 1.30; p =
1.8x107%; Bonferroni-corrected p = 0.0032) and females (0.52; 95% Cl = 1.7 - 0.86 ; p =
0.0032; FDR-adjusted p= 0.18; Bonferroni-corrected p = 0.58) was also not significant (p =
0.17). Inherited variants did not show significant differences in over-transmission rates and

liability compared to matched genes (Table S14).
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Figure S16. Enrichment and liability of de novo mutations in 354 SFARI genes compared to
matched genes.

a, The enrichment (DNM rate ratio) attributed to de novo mutations in SFARI
high-confidence and syndromic genes, compared to genes matched on LoF-constraint,
sex-averaged expression and coding length. The enrichment was examined in
trio-sequenced individuals from the ASC and SPARK (all individuals), in two SPARK
sub-cohorts of autistic individuals ascertained to have autism with or without co-occurring
developmental delay or cognitive impairment (versus siblings), and finally compared directly
between the latter two groups. b, Liability compared to matched genes. See Table S17 for

over-transmission analysis.



6.2. Genes with male biased expression in the fetal cortex
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Figure S17. Burden and liability of de novo mutations in 856 genes with male-biased

expression in the human fetal cortex relative to matched genes.

This figure presents a complementary analysis to the one shown in Figure 3. Here, de novo
mutation rates are compared to those expected based on matched genes instead of based
on the relative sample size of probands and sex-matched siblings. See Methods and the

legend of Figure 3 for more details and Table S7 for the complete results including inherited

variants.



7. Supplementary Tables

Tables S1-S4 present the sample size before and after QC, and are contained in the
extended methods. Additional extended supplementary tables are provided in a separate
‘XIsx’ file. Tables S5-S20 present the enrichment and liability analysis outcomes presented in

the main and supplementary figures.



