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SUPPLEMENTAL METHODS 
 
The supplemental methods section is presented below. 
 
Data sources (Step 1-2) 

Selection of GWAS  
The GWAS were predominantly meta-analyses of case-control and population-based cohort studies, 
including males and females. Genotyping was conducted using different DNA microarrays and exome-
sequencing platforms. Our quality control procedures included updating the genomic reference to 
GRCh38 coordinates, effect and reference allele harmonization, and filtering indels and variants with 
an alternative allele frequency < 0.1%. We restricted the analyses to GWAS of European ancestry 
populations to reduce potential bias from population stratification. The exception was the Cystatin C-
based estimated glomerular filtration rate (eGFR) GWAS that included a small subset (~16 %) of non-
European ancestry individuals (Table 1). We chose studies with the largest effective sample sizes for 
outcomes. Here, one exception was the type 2 diabetes GWAS, where an earlier study (1), was given 
priority over a later study (2), due to a higher degree of SNP overlap between the exposure and outcome 
GWAS. For cardiometabolic risk factors, we selected GWAS based on the sample size while also 
considering if the exposure was measured on a clinically interpretable scale (for example, mmol/L was 
prioritized over standard deviations [s.d.] when possible). Supplemental Table 1 provides trait 
definitions, EBI GWAS catalog, and UK biobank trait IDs. 
 
Assessment and diagnostic criteria for diseases  
The primary outcomes of this study were CAD, CKD, ischemic stroke, non-alcoholic fatty liver disease 
(NAFLD), and T2D. Prevalent or incident CAD was defined according to the international classification 
of diseases (ICD-9, ICD-10) codes, or hospital registry codes, relating to the diagnosis of, complications, 
and procedures related to myocardial infarction and chronic coronary syndrome (primarily ICD-10 I20-
I25, see reference for details) (3). CKD was defined as hospital inpatient records connected to chronic 
kidney disease (ICD-10 N18.*) (4). NAFLD status was defined according to health registry or hospital 
record ICD-10 codes of fatty liver disease (K76.0), hepatic fibrosis (K74.0 and K74.2), non-alcoholic 
steatohepatitis (NASH; K75.9), or other specified liver disease (K76.9), while excluding cases with 
codes related to a wide range of secondary causes of liver disease, for example, alcoholism or viral 
hepatitis (5). Ascertainment of ischemic stroke in GIGASTROKE included analysis of health registry 
and hospital records corresponding to any cerebral infarction (ICD-10 codes I63.*), according to 
radiographic criteria, and other methods (see reference for further details) (6). T2D definitions included 
health record diagnoses corresponding to T2D (for example, ICD-9 250.*0), Hb1Ac or plasma glucose-
based, WHO criteria, and physician- or patient-reported T2D (1). The UK Biobank outcomes that may 
be associated with abdominal lymphadenopathy were derived from hospital in-patient records. Related 
ICD-10 diagnoses (Supplemental Table 5) were grouped into outcomes using Phecode Map 1.2 (7). 
The FinnGen abdominal lymphadenopathy-associated phenotypes were ascertained through Finnish 
health registries of lymphadenitis (ICD-10: L04.*, ICD-8, 9: 683), acute peritonitis (ICD-10: K65.*, 
ICD-8, 9: 567), intestinal malabsorption (ICD-10: K90.*, ICD-9: 579, ICD-8: 269[1-2]), and other 
noninfective disorders of lymphatic vessels and lymph nodes (ICD-10: I89.*, ICD-8, 9: 457) (8). 

Assessment and definitions for continuous exposures and outcomes 
This study examined the following continuous exposures and outcomes: plasma protein abundance, 
routine clinical chemistry including plasma lipid concentrations (TGs, LDL-C, HDL-C, ApoB, ApoA1, 
Lipoprotein a), systolic and diastolic blood pressure (SBP/DBP), anthropometric traits (Body-mass-
index [BMI], waist-to-hip ratio [WHR], body fat percentage [BFP]), kidney function (cystatin C and 
creatinine-based estimated glomerular filtration rate [eGFR]), magnetic resonance imaging (MRI) 
measurements, and high-throughput nuclear magnetic resonance (NMR) spectroscopy-determined lipid 
metabolite concentrations. Plasma protein abundance was measured using the SomaScan and Olink 
platforms (9, 10). These aptamer- and antibody-binding-based platforms report plasma protein 
abundance in standard deviations (s.d.). The UK biobank quality control and validation procedures of 
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the routine clinical chemistry tests are summarized in (11, 12). SBP/DBP was measured using manual, 
automatic, and ambulatory methods, and reported as untransformed millimeters of mercury (mmHg) 
(13). WHR was defined as the waist measurement divided by hip measurement adjusted by various 
factors as defined by the GIANT consortium protocol (14). BMI was defined as the body weight divided 
by squared height (kg/m2) (14). BFP was determined using bioelectrical impedance analysis (15). eGFR 
measurements were derived from natural log-transformed creatinine and cystatin C, using the CKD-EPI 
or Schwartz formula for creatinine and the Stevens or CKD-EPI formula for cystatin C (16). The 
Metabolomics had been performed using a commercial NMR spectroscopy-based metabolomics 
platform from Nightingale Health Ltd., Helsinki, Finland. Over one hundred plasma metabolite 
parameters are measured on this platform, such as lipoprotein size, subclass lipid contents, and 
composition, but also free fatty acids, and amino acids (17). 

Drug-target Mendelian randomization analyses (Step 1-2) 

Drug-target MR methodology 
MR is a method of causal inference that uses genetic variants as instrumental variables (IVs) to test the 
effect of an exposure on an outcome. By exploiting the random assignment of alleles at conception, MR 
studies can limit the influence of confounding variables, assuming certain key assumptions are satisfied 
(18). These assumptions include: 1) the genetic variants are reliably associated with the exposure of 
interest, 2) they are not associated with the factors that may confound the relationship between the 
exposure and outcome, and 3) the genetic variants do not influence the outcome, independently of the 
exposure (18).  
 
Drug-target MR analysis is a specific type of MR used to estimate the causal effect of pharmacological 
silencing of a target gene (19). It requires an emphasis on assumptions different from those of traditional 
MR. It is less likely to be influenced by horizontal pleiotropy or reverse causality (for example, when 
the genetic association with the risk factor is secondary to its effect on the outcome, through feedback 
mechanisms, or via cross-generational effects (20)). This is because, in drug-target MR, we restrict the 
selection of genetic IVs to a region surrounding the target gene (2.5 kilobase pairs [Kb] in this paper). 
Additionally, we assume that genetic information travels from DNA to RNA and protein and not the 
other way around (following Cricks’ central dogma of molecular biology). This means that in drug-
target MR, the genetic effect on the outcome is presumed to occur distally to the causal chain of events 
that starts with a variation (the IV) in the target gene that leads to drug-target exposure (the exposure 
being changed target gene expression, increased/decreased protein abundance, or altered protein 
function), making bias from horizontal pleiotropy less probable. Likewise, the influence of horizontal 
pleiotropy is limited because both the variant and exposure (changed target gene expression, 
increased/decreased protein abundance, or altered protein function) are located within the causal chain 
given by Cricks’ central dogma ([DNA – RNA – protein] – mediators – outcome), making bias from 
reverse causality less probable. 
 
Generalized least squares estimator  
 
This study used a Generalized least squares (GLS) inverse-variance weighted (IVW) estimator to 
measure the association between ANGPTL3, ANGPTL4, and APOC3 protein abundance and health-
related outcomes. This method can achieve a more accurate causal estimate using multiple genetic 
variations from a single genomic region, even if these variants are correlated via linkage disequilibrium 
(LD) (21). GLS adjusts the estimated effects and their standard errors to account for between-variant 
correlations caused by LD. To achieve this, the LD correlation matrix is used as weights. The code 
snippet (R programming language v.4.2.1) used for the analyses of this manuscript is provided below 
(modified from (21)).  
 
> # run cis GLS-MR according to equations in DOI:10.1002/sim.6835 
> bx = mr_harmonized$beta.exposure 
> by = mr_harmonized$beta.outcome 
> byse = mr_harmonized$standard_error.outcome 
> rho = LD_correlation_matrix[mr_harmonized$variant_id, mr_harmonized$variant_id] 
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> Omega = byse %o% byse * rho 
> results <- data.frame( 
>  b = solve(t(bx) %*% solve(Omega) %*% bx) * t(bx) %*% solve(Omega) %*% by, 
>  se = sqrt(solve(t(bx) %*% solve(Omega) %*% bx)), 
>  pval = NA, 
> n.snps = nrow(mr_harmonized) 
> ) 
> results$pval = with(results, 2 * pnorm(abs(b/se), lower.tail = FALSE)) 
 
Code snippet legend: ‘mr_harmonized’ is the harmonized data holding the variant IDs (‘variant_id’), the association of the variants 
with the exposure ('beta.exposure’), the association of the variants with the outcome ('beta.outcome’) and its associated standard error 
(‘standard_error.outcome’). 
 
Justification of Genetic IVs used in the phenome-wide MR  
ANGPTL3 rs34483103-1:62604866:AGTTAATGTG>A [, c.*52_*60del] is a 3 prime UTR variant 
associated with reduced circulating ANGPTL3 protein (effect: -0.28 s.d. per allele, 95% CI: -0.30 – -
0.27, P: < 2×10-308) (10). ANGPTL4 p.E40K is a missense variant (2% allele frequency in Europeans) 
that hinders ANGPTL4's ability to inhibit LPL by destabilizing it after secretion (22). ANGPTL4 
p.Cys80fs rs746226153-19:8364556:GC>G [p.Cys80ValfsTer12] is predicted to be a loss-of-function 
variant with high confidence (gnomAD Genome Aggregation Database v.4.0.0, 
https://gnomad.broadinstitute.org). APOC3 c.55+1G>A is a high-confidence predicted loss-of-function 
variant (gnomAD v.4.0.0). The APOC3 c.55+1G>A splice donor loss variant substantially impacted 
plasma APOC3 levels (-2.19 s.d. protein =3.2×10-142, Table 2). APOC3 c.55+1G>A status as a loss-of-
function variant is further supported by the fact that the variant’s estimated effect on plasma triglycerides 
was considerable (-0.86 mmol/L, P=3.4×10-157; Table 2), and comparable to that of other loss-of-
function variants in APOC3 (23). In addition, the literature reports the APOC3 c.55+1G>A splice donor 
loss variant as an APOC3 loss-of-function variant (24, 25). 
 
Validation of the ANGPTL4 p.E40K coding variants’ association with plasma ANGPTL4 protein 
levels 
The p.E40K variant was the only variant qualifying as a cis-pQTL in the ANGPTL4 region. Including 
missense variants in MR studies focusing on protein levels warrants careful consideration due to the 
possibility of epitope-binding artifacts. The association between ANGPTL4 p.E40K coding variant 
carrier status and plasma ANGPTL4 protein levels was confirmed in a separate study by ELISA using 
antibodies that were shown by Western blotting to similarly detect wildtype ANGPTL4 and ANGPTL4 
containing the E40K substitution, indicating that the association was not attributable to epitope-binding 
artifacts.  
The Western blot showing that wild-type human ANGPTL4 protein and the ANGPTL4 E40K protein 
are detected to a similar extent by the antibody used in the ANGPTL4 Elisa (AF3485, R&D Systems) 
is shown in Supplemental Figure 6. 
The association of the ANGPTL4 p.E40K coding variant with plasma ANGPTL4 protein levels as 
measured using the abovementioned ANGPTL4 Elisa was determined in the Erasmus Rucphen Family 
study (26). The study included 106 ANGPTL4 p.E40K carriers and 314 p.E40K non-carriers. The ERF 
study received approval from the medical ethics board of the Erasmus MC Rotterdam, the Netherlands. 
The investigations were conducted in compliance with the Declaration of Helsinki. Genotyping was 
performed using Sequenom iPLEX (MALDITOF, Sequenom Inc. San Diego, USA). To make the scale 
comparable to the Olink and SomaScan assays, the ANGPTL4 concentrations measured by the ELISA 
were log2 transformed and then standardized to have a mean of zero and a standard deviation of one. 
The association was measured using linear regression, including age and sex as covariates. Having one 
copy of the p.E40K coding variant was associated with -0.45 s.d. plasma ANGPTL4 protein (95% CI: -
0.66 – -0.23, P=4.83×10-5). The association was comparable to those measured by the Olink and 
SomaScan GWAS and thus confirms that plasma ANGPTL4 levels are lower in p.E40K carriers, 
irrespective of the method (antibody or single-stranded DNA aptamers) used to measure the plasma 
ANGPTL4 level (Table 2). 
 
 

https://gnomad.broadinstitute.org/
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Sensitivity analyses (Step 1-2) 
 
Colocalization analyses 
Drug-target MR substantially relies on the assumption that LD (a phenomenon in which neighboring 
genetic variants are inherited together more frequently than anticipated by chance (27)) does not 
confound the association between variant and outcome. In cases where there are distinct genetic variants 
affecting both the exposure and the outcome, but they are connected through LD, there is a risk of 
making incorrect conclusions (28). To limit this issue, we performed colocalization analyses, which test 
whether two independent association signals in the same gene region are consistent with having a single 
shared causal variant (that is, testing if the association signals are ‘colocalized’) (29). The results were 
presented as the posterior probability, expressed in percentages, of five different hypotheses: H0) no 
genetic association signal for either trait, H1) a signal for the exposure but not the outcome, H2) a signal 
for the outcome but not the exposure, H3) a signal for both the exposure and outcome, but they do not 
share a single causal variant, H4) the exposure and outcome share the same single causal variant. When 
interpreting the results, it is important to bear in mind that the colocalization analysis we applied assumes 
a single causal variant. If there exist several causal variants in the same locus, the estimator will tend to 
favor H3. Prior probabilities were set to p1 = 1 × 10-4, p2 = 1 × 10-4, and p12 = 1 × 10-5, meaning that we 
assumed that the prior probability that any SNP was causal for either trait was 1 in 1000 and that the 
prior probability of any SNP was causal for both traits was 1 in 10,000. 
 
LD matrix sensitivity  
Generalized least squared (GLS)-corrected inverse-variance weighted (IVW) MR can be a powerful 
tool to conduct MR with correlated genetic instruments. However, given how GLS works, the method 
could be sensitive to which LD matrix is used. Therefore, we conducted a sensitivity analysis using an 
LD matrix derived from 337-thousand British ancestry individuals in the UK biobank (30).  We tested 
for substantial heterogeneity by 1) looking at if the effect directionality was discordant, and 2) 
calculating a heterogeneity statistic using the formula below (v), where the resulting Z value was used 
to obtain a P-value from the cumulative distribution function of the normal distribution.  
 

(i)  𝑍 = 	!"#$!"""#	&	!"#$$%&	()
'()!"""#

* 	&	()$%&	()
*

 

 
The analysis indicated that the MR results were not LD matrix sensitive (see Supplemental Table 3) 
 
Sample overlap bias  
There was a small-moderate sample overlap between the exposure and outcome GWAS’ (Supplemental 
Table 4). Assuming weak MR instruments, there will be bias towards a possibly confounded risk factor-
outcome relationship if the samples overlap, and bias towards the null if they do not (31). Even though 
it is less likely that variants positioned close to the protein-encoding gene would violate the relevance 
assumption by weak instrument bias, we conducted risk of bias analyses. We assumed a worst-case 
scenario in which all the participants of the exposure GWAS were also included in the outcome GWAS. 
F-statistics were calculated to determine instrument strength for each MR model. 

Formula (i) was used for the single-variant MRs, where Betaexposure was the genetic association with the 
exposure, and SEexposure was the corresponding standard error.  

(ii) 𝐹 = 	 %
!"#$+,-./01+
()+,-./01+

&
*
 

For multiple variant MRs, another formula was used (ii), where Nsample size denotes the sample size and 
Nvariants denote the number of variants in the MR model. 

(iii) 𝐹 = 	 '+/23-4+	/56+	&	+7215289/	&	,
+7215289/

(	' -*

,&	-*
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The R2 in (ii) was approximated using formula (iii), where ‘MAF’ denotes the minor allele frequency. 

(iv) 𝑅* = 2	𝐵𝑒𝑡𝑎"./0123"* 𝑀𝐴𝐹(1 −𝑀𝐴𝐹) 

Where the R2 was summed together for uncorrelated instruments in (ii). 

For correlated instruments, another formula (iv) was used to approximate the R2, where 𝐵45 was the 
transposed vector of the genetic associations with the exposure, and 𝐶 was the inverse of the LD 
correlation matrix after Cholesky decomposition, as suggested by Burgess and Thompson (32). 

(v) 𝑅* =	∑2(𝐵45 	𝐶)*𝑀𝐴𝐹(1 −𝑀𝐴𝐹) 

The analyses were run using three scenarios of bias of the observational estimate (olsbias) using the 
code originally written by (31). These scenarios were ‘low olsbias’, ‘medium olsbias’, and ‘high 
olsbias’, where the effect magnitude of the biased observational estimate was 10%, 50%, and 100% of 
the MR estimate, respectively. 

The analysis indicated that the risk of bias from sample overlap was minimal (see Supplemental 
Table 4). 
 
Analyses of deleterious variants in the UK Biobank (Step 3-4) 
 
The UK Biobank resource 
 
The UK Biobank is a population-based study with a vast repository of research data comprising health 
record information, genetic information, blood chemistry, and imaging data from approximately 
500,000 participants in the United Kingdom (33). Between 2006 and 2010, participants aged 40-69 were 
recruited, and their blood was drawn upon recruitment. The UK Biobank follows participants, and health 
information is continuously updated from health records, death certificates, and registries.  
 
Definition of deleterious variants 
 
Variants from the population variant call files were annotated with gnomAD v.4.0.0. Deleterious 
variants were defined as protein-truncating variants and UK Biobank allele frequency <0.05 and 
missense variants with REVEL pathogenicity prediction score ≥0.25 and UK Biobank allele frequency 
<0.00025. Protein-truncating variants included Variant Effect Predictor high impact consequences 
"transcript_ablation", "splice_acceptor_variant", "splice_donor_variant", "stop_gained", 
"frameshift_variant", "stop_lost", "start_lost", "transcript_amplification", "feature_elongation", and 
"feature_truncation". The resulting variants classified as deleterious are listed in the Supplemental 
Table 10. 
 
Quality control of genetic data  
 
We applied quality control filters on the UK Biobank exome sequencing population variant call files 
(UKB data field 23157). First, to avoid batch effects, we filtered variants that did not meet genotype 
depth of coverage (DP) ≥10 or were marked as missing for more than 90% of the population. For single 
nucleotide variants (SNVs), we then filtered variants with DP <10, genotype quality (GQ) <20, and 
binomial test of alternate allele departure from the heterozygous expectation of 0.5 P >1×10-3. For 
insertions and deletions (indels), we applied filters to exclude variants with DP <10 and GQ <20.  
 
Genetic mimicry analyses in the United Kingdom Biobank (Step 3) 
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We conducted genetic mimicry analyses to determine whether the metabolic effects of deleterious and 
common variants adjacent to ANGPTL3, ANGPTL4, and APOC3 were metabolically concordant. For 
the deleterious variant models, we selected unrelated individuals of British ancestry with nuclear 
magnetic resonance spectroscopy (NMR) data available (UKB category 220). Ratios derived from the 
NMR measurements were excluded. The total number of unique metabolites amounted to 167, and the 
total cohort encompassed 181,672 individuals. Left-censored NMR measurements were imputed using 
minimum value imputation. Measurements missing due to citrate peaks, degraded sample, high ethanol, 
isopropyl alcohol contamination, low glutamine or high glutamate, ethanol, polysaccharide, or unknown 
contamination were excluded from further analyses. Each metabolite was standardized to have a mean 
of zero and a standard deviation of one. The effect of each deleterious variant model on the metabolites 
was estimated using linear regression adjusting for age, sex, age * sex interaction, fasting time at 
sampling, and the five first genetic principal components (UKB data fields 21022, 22001, 74, and 
22009). Each association was scaled for its 1-s.d. effect on plasma triglycerides to ease comparability 
with the common variant models. 
For the common variant models, we included variants within 2.5 Kb of the target genes transcription 
start site and transcription termination sites, with an allele frequency > 0.01, significantly associated 
with plasma triglycerides at the genome-wide significance level (P <5×10-8). Genetic associations 
between these variants and the NMR metabolites (category: ‘met-d-…’ .) were extracted through the 
MRC-IEU open GWAS database (https://gwas.mrcieu.ac.uk). The effect of the common variants on 
each metabolite per 1-s.d. change of plasma triglycerides was estimated through drug-target MR of the 
167 NMR metabolites using triglyceride levels as the exposure, and single metabolites as the outcome. 
This means the effect on each metabolite is given per 1-s.d. triglyceride change. Finally, the metabolic 
concordance between the deleterious and common-variant models was estimated using linear regression 
on the association effect estimates (‘betas’). The concordance metric was reported as the coefficient of 
determination (R2). 
 
Association of deleterious variants with coronary artery disease in the United Kingdom Biobank 
(Step 4) 
 
We conducted gene-collapsing analyses in the UK Biobank to measure the association between 
ANGPTL3, ANGPTL4, and APOC3 deleterious variants and coronary artery disease (CAD). Diagnosis 
codes were retrieved from the death register, hospital inpatient health records, algorithmically defined 
myocardial infarction outcomes, and first occurrences data sets (UKB data fields 131271–131423, 
40001, 40002, 41202, 41270, 42001, 42003, 42005). We selected non-related British ancestry UK 
Biobank participants. Cases were defined as positive for ICD-10 diagnosis codes related to ischemic 
heart disease (I20-I25), only excluding subjects with evidence for non-obstructive ischemic heart 
disease. The excluded diagnoses were: I20.1: Angina pectoris with documented spasm, I24.8: Other 
forms of acute ischemic heart disease (which includes I24.81: Acute coronary microvascular 
dysfunction), and I25.4: Coronary artery aneurysm and dissection. Controls were defined as participants 
without a positive diagnosis for any phenotype listed in the ICD-10 I00-I99: Diseases of the circulatory 
system chapter. This strategy was implemented to minimize the risk of contamination resulting from 
correlated or genetically related diagnoses. After applying these filters, the total UK Biobank CAD 
cohort amounted to 42,145 cases and 137,689 controls. Of these 179,834 individuals, there were 1169 
participants with deleterious ANGPTL3 variants, 761 with deleterious ANGPTL4 variants, and 912 with 
deleterious APOC3 variants. The association of each deleterious variant model with CAD was measured 
using logistic regression, adjusting for age, sex, age * sex interaction, and the five first genetic principal 
components. The associations were reported as the odds ratio per 1-allele. 
 
Association of deleterious variants with plasma triglycerides, ANGPTL3 and ANGPTL4 protein 
levels in the United Kingdom Biobank (Step 4) 
 
We measured the genetic association of deleterious variants in ANGPTL3, ANGPTL4, and APOC3 with 
plasma triglycerides (UKB data field 30870). We also measured the association of deleterious 
ANGPTL3 variants with ANGPTL3 protein levels (UKB data field olink_instance_0.angptl3), and the 

https://gwas.mrcieu.ac.uk/
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association of deleterious ANGPTL4 variants with ANGPTL4 protein levels (UKB data field 
olink_instance_0.angptl4). APOC3 plasma protein levels were not measured in the UK Biobank. The 
association analyses were conducted in the control group of the CAD analyses described in the section 
above. This was for two reasons. First, it restricts bias from post-event measurements affecting the gene-
triglycerides or gene-protein associations. Second, the over-recruitment of cases can affect the 
distribution of confounders, which might distort the gene-triglycerides or gene-protein associations. 
The ANGPTL3 and ANGPTL4 protein concentrations, measured as Olink log2 normalized protein 
expression (NPX), were scaled to have a mean of zero and a standard deviation of one. In the control 
group, there were 131,292 individuals with available plasma triglycerides measurements, of which 886 
carried deleterious ANGPTL3 variants, 601 carried deleterious ANGPTL4 variants, and 676 carried 
deleterious APOC3 variants. There were 13,662 in the control group with available plasma ANGPTL3 
protein measurements, of which 93 had a deleterious ANGPTL3 variant. There were 13,727 with 
available plasma ANGPTL4 protein measurements in the control group, of which 77 had a deleterious 
ANGPTL4 variant. The associations between the deleterious variants and plasma triglycerides, 
ANGPTL3 or ANGPTL4 protein levels were determined using linear regression adjusting for age, sex, 
age * sex interaction, fasting time at sampling, and the five first genetic principal components. For 
triglycerides, the associations were reported as the 1-mmol/L change per 1-allele. For ANGPTL3 and 
ANGPTL4 plasma protein concentrations, the associations were reported as the 1-s.d. change per 1-
allele. 
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SUPPLEMENTAL FIGURE 1 
 
Figure S1. Scatter plots showing the results of the drug-target MR analyses. Each subplot 
represents the results of the analyses displayed in Figures 2-4 of the main manuscript that used more 
than one genetic instrument.  
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SUPPLEMENTAL FIGURE 2 
 
Figure S2. Regional genetic association plots showing the results of the colocalization analyses. 
Each subplot represents the results of the analyses displayed in Figure 2-4 of the main manuscript. 
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SUPPLEMENTAL FIGURE 3 
 
Figure S3. Results of cis-pQTL MR analyses of the estimated glomerular filtration rate by (eGFR) 
by Cystatin C and plasma Creatinine. The findings are displayed in bar graphs, illustrating the level 
of the effect per s.d. decrease in protein abundance. The red lines represent the 95% CI. 
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SUPPLEMENTAL FIGURE 4 
 
Figure S4. Results of phenome-wide MR analysis on FinnGen outcomes using ANGPTL3 
rs34483103-1:62604866:AGTTAATGTG>A [3 prime UTR, c.*52_*60del] and APOC3 
rs138326449-11:116830638:G>A [donor loss, c.55+1G>A] variants. A: Volcano plot displaying the 
results of ANGPTL3 cis-pQTL phenome-wide MR. B: APOC3 cis-pQTL phenome-wide MR volcano 
plot. The y-axis solid straight lines indicate the phenome-wide significance threshold. ‘OR’ indicates 
the odds ratio with 95% confidence intervals with Bonferroni correction for the 694 FinnGen 
outcomes. 
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SUPPLEMENTAL FIGURE 5 
 
Figure S5. Cis-pQTL MR of the clinical laboratory outcomes, showing the results on a 1-s.d. scale. 
The red bars indicate the 95 % CI. The black dots indicate the effect point estimate. ‘*’ indicate P < 
0.05. ‘**’ indicates P < 0.05 with a shared causal variant (H4). A list explaining the abbreviations is 
provided in the supplemental material (Supplemental Table 1). 
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SUPPLEMENTAL FIGURE 6 
 
Figure S6. Wildtype human ANGPTL4 protein and the ANGPTL4 E40K variant protein are 
detected to a similar extent by the antibody used in the human ANGPTL4 ELISA. Western blot of 
the precipitated medium of HEK293 cells transfected with expression vectors for different mutant forms 
of human ANGPTL4 fused to a V5-tag (34). CC/AA is an oligomerization defective ANGPTL4 variant. 
SDS-PAGE was performed using a loading buffer without DTT or other disulfide-reducing agent. Equal 
amounts of medium were loaded. Membranes were blotted with an antibody from R&D Systems that is 
used for the human ANGPTL4 Elisa (AF3485, 1:2500). Secondary antibody was goat anti-rabbit IgG 
conjugated to HRP (1:5000). 
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