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BACKGROUND: Although clinical prediction models have been proposed to predict 

thrombosis risk in non-valvular atrial fibrillation (NVAF), machine learning (ML) 

based models to predict thrombotic risk were limited. This study aimed to develop a 

robust ML-based predictive model that integrates multimodal echocardiographic data 

and clinical risk factors to evaluate the risk of thrombosis in patients with NVAF. 

METHODS AND RESULTS: A total of 402 NVAF patients scheduled for AF 

radiofrequency ablation and/or left atrial appendage closure at the First Affiliated 

Hospital of Guangxi Medical University from January 2020 to December 2023 were 

prospectively collected. Among them, there were 289 males (71.9%) and 113 females 

(28.1%), with a mean age of 59.7 years. There were 142 patients (35.3%) with left 

atrial thrombus/spontaneous echocardiographic contrast (LAT/SEC) and 260 patients 

(64.7%) without LAT/SEC. Clinical data, biochemical markers, and multimodal 

echocardiographic parameters were collected to construct the model. After screening 

the influencing factors with Least Absolute Shrinkage and Selection Operator 

(LASSO) regression, we explored seven ML models – Logistic Regression (LR), 
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Decision Tree (DT), K-Nearest Neighbors (KNN), Light Gradient Boosting Machine 

(LightGBM), Support Vector Machine (SVM), Random Forest (RF), and eXtreme 

Gradient Boosting (XGBoost), to forecast the risk of thrombosis in NVAF patients. A 

variety of metrics, such as accuracy, precision, recall, F1 score and area under the 

curve (AUC) were used to evaluate the performance of the models. The DeLong test 

was applied to compare area under receiver operating characteristic (AUROC) curves 

across different ML models. Decision curve analysis (DCA) was used to gauge the 

clinical utility of each ML model by comparing their clinical net benefit. To gain 

insight into the risk prediction model, we used Shapley additive explanations (SHAP) 

analysis and investigated the contributions of the different variables. The 

incorporation of multimodal echocardiographic parameters and clinical risk factors 

using advanced ML algorithms markedly enhanced the accuracy of predicting 

thrombosis risk in individuals with NVAF. Specifically, the XGBoost model (AUC 

0.959, 95% CI 0.925–0.993) slightly outperformed the traditional LR model (AUC 

0.949, 95% CI: 0.911-0.987) in predicting thrombosis risk in NVAF patients, and 

showed superior predictive ability compared to other ML algorithms. Additionally, 

XGBoost offered greater clinical net benefit within a threshold probability range of 

0.1 to 1.0. SHAP analysis revealed that left atrial structure (left atrial volume index, 

three-dimensional sphericity index), hemodynamic parameters (left atrial acceleration 

factor and S/D ratio), and functional parameters (peak atrial longitudinal strain and 

left ventricular ejection fraction) were important features in predicting the risk of 

thrombus formation in NVAF patients, with reduced peak atrial longitudinal strain 

being the most important risk factor for predicting thrombus.   

CONCLUSIONS: Developing a predictive model utilizing ML techniques that 

incorporate multimodal echocardiographic parameters in conjunction with clinical 

risk factors has the potential to enhance the predictive accuracy of the thrombosis risk 
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in individuals with NVAF. The XGBoost model shows that decreased PALS, 

hemodynamic abnormalities and left atrium spherical remodeling are significant 

factors correlated with increased risk of thrombus in NVAF.  

Keywords: non-valvular atrial fibrillation, machine learning, thrombosis risk, 

multimodal echocardiography 

 

 

Introduction 

Atrial fibrillation (AF) is a common clinical arrhythmia, with stroke being the 

predominant thrombotic complication in non-valvular atrial fibrillation (NVAF) and a 

major contributor to disability.
1
 The dislodgement of thrombi from the left atrium or 

left atrial appendage is the primary etiology of stroke in NVAF patients. Thus, a 

precise evaluation of thrombosis risk in the left atrium and left atrial appendage is 

crucial for effective stroke prevention in NVAF patients.
2
 This risk evaluation not 

only guides clinical management decisions but also has the potential to significantly 

improve patient outcomes 

Clinical practice frequently suggests utilizing the CHA2DS2-VASc score for 

assessing stroke risk, which primarily relies on clinical risk factors and does not 

incorporate biochemical markers.
3
 In contrast, the ABC score incorporates 

biochemical markers such as NT-proBNP and troponin I, and is a novel scoring 

system developed from extensive cohort studies. It is user-friendly and offers 

enhanced risk assessment capabilities when compared to the commonly utilized 

CHA₂DS₂-VASc score.
4
 This advancement holds significant implications for clinical 

diagnosis, evaluation, and medication management. Nevertheless, this score fails to 

account for indicators such as left atrial morphology and functional parameters, thus 

presenting certain limitations. 
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Changes in left atrial structure, function, and hemodynamics are instrumental for 

AF prediction and stroke risk evaluation.
5
 A detailed assessment of left atrial function 

using echocardiography has been shown to be beneficial in assessing risk, notably in 

NVAF patients with low CHA2DS2-VASc scores.
6
 Additionally, left atrial strain serves 

as a valuable surrogate indicator of structural remodeling and fibrosis.
7
 Studies 

suggest that combining echocardiographic measurement of left atrial strain with the 

CHA2DS2-VASc score can provide additional insight into stroke risk, helping with 

decisions about anticoagulation in newly diagnosed NVAF patients. 

Machine learning (ML), with its novel applications in medicine, has 

demonstrated significant promise in cardiovascular disease assessment.
8,9

 The rise of 

machine learning technologies, especially when combined with multi-modal 

echocardiographic parameters, provides new perspectives for clinical risk 

assessment.
10

 Prediction models of thrombosis risk in atrial fibrillation (AF) are used 

to guide treatment.
11

 Although regression models have traditionally been the preferred 

analytical approach for prediction modeling, ML has emerged as a potentially more 

effective methodology. In this study, we aim to develop a predictive model that 

employs machine learning (ML) techniques in conjunction with detailed 

echocardiographic parameters and essential clinical factors. And compare the 

predictive accuracy of this ML-based model with that of traditional regression models 

in determining the risk of thrombosis among patients with NVAF. 

Methods 

Study population 

We performed a prospective, continuous study collecting data from inpatients at 

the First Affiliated Hospital of Guangxi Medical University. The study was conducted 

from January 2020 to December 2023 and focused on patients who were scheduled to 

undergo AF radiofrequency ablation and/or left atrial appendage closure. The 
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objective was to develop a machine learning model to predict left atrial thrombus 

(LAT) or spontaneous echo contrast (SEC) in patients with NVAF. Inclusion Criteria: 

Patients diagnosed with paroxysmal or persistent AF; Aged 18 years or older; Capable 

of undergoing transesophageal echocardiography. Exclusion Criteria: Presence of 

congenital heart disease; Myocardial disease; heart valve disease; History of valve 

repair or replacement surgery; Acute coronary syndrome; Moderate to severe 

functional mitral regurgitation. The research protocol has received approval from the 

Ethics Committee of the First Affiliated Hospital of Guangxi Medical University 

(Approval No: 2022-KT-077). All NVAF patients involved in the study have provided 

signed informed consent. The flowchart of the study participants and Schematic of 

study design was shown in Figure 1. 

Risk Factor Assessment and Laboratory Examination 

Access the electronic medical records system to gather basic patient information 

including age, gender, body surface area, blood pressure, and more. Past medical 

history should include conditions like hypertension, coronary heart disease, diabetes, 

hyperlipidemia, peripheral vascular disease, history of stroke or transient ischemic 

attack (TIA), heart failure, and AF type. Calculate the CHA2DS2-VASc score based on 

clinical history and other information. Also record history of anticoagulant drug use, 

including antiplatelet agents, warfarin, and new oral anticoagulants. After admission, 

fasting venous blood samples are taken and analyzed by the hospital laboratory to 

obtain biochemical indicators such as N-terminal pro-brain natriuretic peptide (NT-

proBNP), cardiac troponin I, serum creatinine (SCr), endogenous creatinine clearance 

rate (Ccr), and more. Calculate the glomerular filtration rate (eGFR) using the CKD-

EPI formula
12

, which considers factors like serum creatinine (SCr) levels, age, gender, 

and race. In total, 22 clinical data and biochemical indicators are collected. 

Echocardiography 
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Transthoracic echocardiography (TTE) and transesophageal echocardiography 

(TEE) were carried out using the Philips EPIQ 7C echocardiographic diagnostic 

system from Koninklijke Philips N.V. in the Netherlands. TTE utilized the S5-1 probe 

(1 to 5 MHz), while TEE utilized the X8-2t probe (2 to 8 MHz). We ensured that the 

time between TTE and TEE assessments did not exceed 48 hours to maintain 

consistency and reliability in the cardiac evaluation. 

Measurements of the cardiac chambers' linear dimensions followed standard 

methods.
13

 The left atrial diameter is measured in the parasternal long axis view of the 

left ventricle. Additionally, the left atrial transverse and longitudinal diameters are 

captured in the apical four-chamber view. We calculate the 2D sphericity index (2D-SI) 

of the left atrium using the ratio of its transverse diameter to the longitudinal diameter. 

The left ventricular mass was determined using the Devereux formula: LVM = 0.8

｛1.04[(SWT+LVEDD+PWT)
3
−LVEDD

3
]｝+0.6, where SWT represents the septal 

wall thickness at end-diastole, LVEDD the left ventricular end-diastolic diameter, and 

PWT the posterior wall thickness at end-diastole.  

Furthermore, a transthoracic three-dimensional (3D) matrix transducer is 

employed to acquire detailed images of the left heart in the standard apical four-

chamber view. The intelligent Heart Model (HM) functionality was used to gather 3D 

volumetric data, which includes the left ventricular end-diastolic volume (LVEDV), 

end-systolic volume (LVESV), ejection fraction (EF), and the left atrial volume 

(LAV). The left atrial maximum diameter (LADmax) is determined by identifying the 

largest measurement among the internal, transverse, and longitudinal diameters of the 

left atrium. The three-dimensional sphericity index (3D-SI) is then calculated by 

comparing the LAV to the volume of a sphere that has LADmax as its diameter 

(Figure 2A-C). In order to adjust for differences in body size, the left atrial volume 

and left ventricular mass were normalized to the body surface area (BSA), resulting in 
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the left atrial volume index (LAVI) and left ventricular mass index (LVMI). 

We performed left atrial strain measurements using two-dimensional speckle 

tracking technology. Standard dynamic images were acquired from the apical four-

chamber view and saved in the Dicom format for subsequent analysis. Off-line 

analysis was conducted using QLAB software, where the measurement process begins 

with tracing the endocardial border of the left atrium. Starting from one side of the 

mitral annulus, the trace proceeds along the inner border, avoiding pulmonary veins 

and the left atrial appendage, and ends at the opposing side of the mitral annulus. The 

region of interest (ROI) was set at a width of 3 mm. Adjustments to the ROI's size and 

shape were made to encompass the full thickness of the left atrial wall, deliberately 

excluding the pericardium. From this, we obtained the left atrial strain curve and 

specifically measured the peak atrial longitudinal strain (PALS) 

We recorded the peak early diastolic mitral flow velocity (E) in the apical four-

chamber view and calculated the E/e' ratio. Additionally, we determined the S/D ratio 

using the S and D velocities from the left atrial inflow at the right upper pulmonary 

vein. In AF rhythm, echocardiographic measurements—such as E peak, e' velocity, 

and pulmonary vein flow spectra—were averaged over five cardiac cycles for 

consistency. For patients in sinus rhythm, Doppler measurements were averaged over 

three cycles. The left atrial acceleration factor (α) was defined as α = E/[（S+D）/2], 

with E representing the peak E flow at the mitral valve, and S and D denoting peak 

flow velocities at the pulmonary vein.
14

 

Before TEE, patients were educated on the procedure's purpose and process and 

provided informed consent. A left atrial/left atrial appendage thrombus (LAT) was 

identified as a low-echoic mass, distinct from the endocardium and trabeculae, and 

observable across multiple TEE views. Additionally, SEC—smoke-like shadows 

within the left atrium or appendage—was evaluated after gain optimization as a 
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precursor to thrombus formation, indicative of stagnant flow and a hypercoagulable 

state. Demonstration of measuring multiple parameters using echocardiography and 

recognition of left atrial thrombus/spontaneous contrast were shown in Figure 2. 

All echocardiographic parameters were taken by expert cardiac physician, and to 

ensure objectivity, those involved in measuring echocardiographic indices and 

analyzing data were kept blinded to patient details. 

Prediction model 

This study divided the NVAF patients into two groups: a training set with 70% of 

the sample and a test set with the remaining 30%. We used Least Absolute Shrinkage 

and Selection Operator (LASSO) regression for feature selection and conducted 10-

fold cross-validation to optimize the training of the classification algorithm on the 

training set, identifying the best subset of variables for the predictive model. To 

evaluate feature importance, the study analyzed the intrinsic logic of the ML models, 

with feature weights indicating their impact on prediction. Feature importance charts 

visually depicted these findings, enhancing transparency and interpretability.  

We explored seven machine learning (ML) models – Logistic Regression (LR), 

Decision Tree (DT), K-Nearest Neighbors (KNN), Light Gradient Boosting Machine 

(LightGBM), Support Vector Machine (SVM), Random Forest (RF), and eXtreme 

Gradient Boosting (XGBoost) – to forecast the risk of thrombosis in NVAF 

patients.
15,16

 An array of metrics, including accuracy, precision, recall, F1 score, area 

under the curve (AUC), and 95% confidence intervals (CI), were employed to assess 

the models' performance. 'Accuracy' measures the model's ability to correctly identify 

cases (true positives and true negatives). 'Precision' assesses the ratio of correctly 

predicted positive cases to all predicted positive cases, while 'recall' evaluates the 

model's capability to detect true positives. The 'F1 score' acts as a combined metric of 

precision and recall, offering a comprehensive evaluation of the model's performance. 
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Furthermore, SHAP (SHapley Additive exPlanation) analysis was utilized to 

elucidate the predictive efficacy and influence of specific features on the model's 

results, drawing upon game theory principles.
17

 SHAP delves into the rationale behind 

each prediction, facilitating a comprehensive comprehension of feature impacts and 

revealing their positive or negative associations with predicted outcomes. The visual 

aids provided by SHAP offer lucid depictions of feature contributions for individual 

instances, as well as their broader significance within the dataset. 

Statistical analyses 

Continuous variables were first assessed for normality using the Shapiro-Wilk 

test. Variables following a normal distribution were described using as mean and 

standard deviation (SD) and compared via Student’s t-tests. Non-normally distributed 

variables were summarized using medians and interquartile ranges, with the Mann-

Whitney test employed for comparisons between groups. Categorical variables were 

presented as frequencies and percentages, and analyzed using either Pearson's chi-

square test or Fisher's exact test, as appropriate. For machine learning (ML) analyses, 

we utilized the R programming language. Specific ML models were implemented 

using various R packages: LASSO regression with the "glmnet" package, decision 

trees with the "rpart" package, random forests with the "randomForest" package, 

XGBoost with the "xgboost" package, support vector machines (SVM) with the 

"e1071" package, k-nearest neighbors (knn) with the "kknn" package, and LightGBM 

with the "lightgbm" package. The DeLong test was applied to compare receiver 

operating characteristic (ROC) curves across different ML models. Decision curve 

analysis (DCA) was used to gauge the clinical utility of each ML model by comparing 

their clinical net benefit. Statistical analyses were carried out using SPSS version 25.0 

and R statistical language (Version R 4.2.1). A P-value less than 0.05 was considered 

as indicative of statistical significance. 
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Results 

This study included a total of 402 patients with NVAF who met the inclusion and 

exclusion criteria, all of whom participated in the construction and validation phases 

of a thrombosis risk prediction model. The cohort consisted of 289 males (71.9%) and 

113 females (28.1%), with an average age of 59.7 ± 10.8 years. In our study, 142 

patients presented with LAT/SEC (35.3%), while 260 patients were absence of 

LAT/SEC (64.7%).  

A range of 34 characteristic parameters were assessed in this study, 

encompassing general clinical information—17 variables in total—including age, 

gender, BSA, systolic and diastolic blood pressure, presence of hypertension, diabetes, 

hyperlipidemia, history of stroke/TIA, CAD, heart failure, type of AF, CHA2DS2-

VASc score, and a history of anticoagulant or antiplatelet drug use (antiplatelet drugs, 

warfarin, and novel oral anticoagulants). Biochemical measurements were comprised 

of five variables: Scr, Ccr, eGFR, NT-proBNP and troponin I. In terms of multimodal 

echocardiographic parameters, 12 variables were analyzed including LVEDV, LVESV, 

LVEF, LVMI, LAVI, 2D-SI, 3D-SI, E, E/e' ratio, S/D ratio, left atrial acceleration 

factor (α), and PALS etc. 

The comparative analysis of these parameters between patients with and without 

LAT/SEC was presented in Table 1. In this research, 34 characteristic variables were 

initially considered, with LASSO regression employed for variable selection. The 

LASSO regression method applied a penalty function that shrinks some coefficients 

towards zero, effectively compressing them while ensuring the sum of their absolute 

values remains below a predetermined threshold. This process resulted in some 

coefficients being set to zero, thereby enabling the generation of a simplified and 

more interpretable model. Utilizing ten-fold cross-validation, the study automatically 
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excluded variables that had zero-valued coefficients through this method. Following 

this process, 9 key variables were selected, which included persistent AF, history of 

stroke/TIA, Ccr, EF, LAVI, 3D-SI, pulmonary vein S/D ratio, left atrial acceleration 

factor (α), and PALS. The finalized set of predictive variables and their selection 

process were illustrated in Figure 3. 

In the evaluation of LAT/SEC prediction models, ten-fold cross-validation was 

employed to assess the performance of various ML models. The assessment involved 

calculating key metrics for each model, including accuracy, precision, recall, F1 score, 

and AUC values, presented in Table 2. Additionally, ROC curves were plotted for 

these ML models based on their performance on the test set. 

From the comparative analysis of the model evaluation results and ROC curves, 

it was observed that among the seven models assessed, XGBoost demonstrated 

superior AUC values of 0.959 (95% CI 0.925–0.993) than other ML models. 

Compared with LR（AUC 0.949, 95% CI 0.911–0.987） , the XGBoost model 

exhibited a slightly more accurate prediction for LAT/SEC risk in NVAF patients (P < 

0.05). The XGBoost model outperformed the others, presenting the highest clinical 

net benefit within the threshold probability range of 0.1 to 1.0. The results were 

shown in Figure 3. 

The internal logic of the XGBoost model was analyzed to determine the ranking 

of the importance of feature variables. It identified PALS, left atrial acceleration 

factor (α), and 3D-SI as the most critical risk factors for thrombus formation. Other 

risk factors were ranked in descending order of importance and EF, LAVI, pulmonary 

vein S/D ratio, prior stroke/TIA, and persistent AF. These findings were visually 

presented in Figure 5A. 

This study employed the SHAP methodology to perform a detailed analysis of 

the thrombosis risk prediction model for patients with NVAF, which was developed 
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using the XGBoost algorithm. Figure 5B illustrated a summary plot that conveyed the 

average influence of each feature on the model's predictions. In this plot, features 

represented in the yellow region are those that tend to increase the probability of 

thrombosis in NVAF patients. For instance, a higher left atrial volume index or the 

presence of persistent AF were associated with a heightened risk of stroke. Conversely, 

features in the red region suggested a protective effect against thrombosis. An 

example of this was the LVEF and PALS, which are negatively correlated with the 

risk of LAT/SEC. 

Beyond a global interpretation, the SHAP values were capable of providing 

insights into individual risk assessments, as depicted in Figure 6 which shows the 

factors influencing the thrombosis risk classification for a single patient within the 

XGBoost model. This individualized analysis not only demonstrated the role each 

attribute played in predicting thrombosis risk but also indicated its specific impact, 

aiding clinical practitioners in evaluating the thrombosis risk for particular patients. 

The significance of each feature was denoted by the magnitude of the arrows, with 

yellow arrows indicating features that amplify risk and red arrows denoting those that 

mitigate it. 

For illustration, consider a patient highlighted in Figure 6A with an f(x) value of 

3.93, which fallen above the established risk threshold of -0.85, marking the 

individual as high risk for thrombosis. This patient had a mix of risk-increasing 

(yellow) and risk-decreasing (red) factors, whose combined effect dictates the overall 

risk evaluation. The S/D ratio inhibited the risk of thrombosis, while PLAS, LVEF, 

LAVI, 3D-SI, pre-stroke/TIA, and persistent AF promoted the risk. The 

comprehensive and quantitative analysis of each factor's contribution allowed for 

individualized and precise treatment decisions to be formulated. 
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Discussion  

This study explored the effectiveness of seven different ML models in predicting 

the risk of thrombosis in patients with NVAF based on multimodal ultrasound 

parameters. The results showed that the XGBoost model slightly outperformed the 

traditional Logistic regression model in predicting the risk of thrombosis in NVAF 

patients, and demonstrated superior predictive ability compared to other ML 

algorithms. Left atrial structure (LAVI, 3D-SI), hemodynamic parameters (left atrial 

acceleration factor and S/D ratio) and functional parameters (PALS, LVEF) were 

identified as important features for predicting the risk of thrombosis in NVAF patients. 

Decreased PALS is the most important risk factor for predicting thrombosis. Utilizing 

multimodal echocardiographic parameters combined with clinical risk factors such as 

persistent AF and prior stroke/TIA can significantly improve the predictive ability of 

thrombosis risk in NVAF patients. 

Thrombus formation in the left atrium/left atrial appendage is the fundamental 

cause of stroke in NVAF patients.
18

 Assessing the thrombosis risk in NVAF patients is 

a crucial step for preventing stroke and improving patient outcomes. Although the 

CHA2DS2-VASc score provides good evaluation of stroke risk based on common 

clinical risk factors in daily practice, but stroke still occurred in patients with a 

CHA2DS2-VASc score less than 1.
19

 Previous guidelines do not routinely recommend 

antithrombotic therapy for patients with a CHA2DS2-VASc score less than one. 

Therefore, it is crucial in clinical practice to identify NVAF patients with low 

CHA2DS2-VASc scores but significant thrombosis risk.
3
 

Combining clinical risk factors with non-invasive echocardiographic parameters 

may help identify NVAF patients with higher thrombotic risk.
5,20

 Numerous studies 

have shown that echocardiographic evaluation of left atrial volume and function in 

NVAF patients can effectively predict the risk of stroke.
21,22

 Previous studies have 
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indicated that left atrial size does not have predictive value for stroke when adjusted 

for clinical risk factors.
7
 Therefore, solely relying on left atrial diameter may not 

sensitively predict the risk of thrombus in NVAF patients.
23

 It is recommended by 

guidelines to integrate advanced echocardiographic parameters into the CHA2DS2-

VASc scores in order to improve the risk stratification of thrombus in patients with 

NVAF. 

Left atrial strain analysis has the capability to detect nuanced alterations in left 

atrial structure and function that may not be easily discernible through conventional 

ECG or other cardiac morphological assessments.
24

 Left atrial enlargement typically 

occurs in later stages of left atrial dysfunction, while left atrial strain measurements 

can detect early-stage left atrial dysfunction, especially when left atrial volume is still 

within the normal range, and provide additional prognostic information for 

cardiovascular disease.
25

 Prior studies have suggested that left atrial strain parameters 

may be better predictors of adverse cardiovascular events in NVAF patients. 
26,27

 Left 

atrial strain analysis can help improve risk stratification for NVAF and guide 

secondary prevention strategies, independent of conventional echocardiographic 

parameters such as left atrial volume.
21,28

  Using left atrial strain may improve risk 

stratification and decision-making in patients with cardio embolism, particularly in 

long-term rhythm monitoring and/or empirical anticoagulant therapy.
29

 Our research 

also indicated that PALS assessed by speckle tracking echocardiography can identify 

left atrial dysfunction, closely related to thrombosis risk and independent of other 

cardiovascular risk factors. AF can cause hemodynamic changes in the atrium, 

increasing the risk of stroke and other thromboembolic events. The irregular 

contractions during AF impair the atrium's pumping function, leading to decreased 

blood flow speed and increased risk of blood stasis and thrombus formation in 

patients with NVAF
30

. Prior research has demonstrated a strong link between 
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LAT/SEC and left atrial hemodynamic parameters
31

. Fang et al. discovered that these 

parameters can help assess stroke risk in NVAF patients by indicating the association 

between thrombosis risk and blood flow status in the left atrium and left atrial 

appendage
18

. This provides a foundation for more precise evaluation of stroke risk in 

NVAF patients. Our study found that left atrial acceleration factor(α) and pulmonary 

vein S/D ratio were independently correlated with the risk of thrombosis. The 

previous study also suggested that left atrial sphericity was linked to a prior history of 

stroke in patients with AF.
32

 Our study also indicated that 3D-SI can predict thrombus 

risk by showing left atrium morphological changes, regardless of size and without 

relying on geometric assumptions. A detailed assessment of left atrial function using 

echocardiography has been shown to be beneficial in assessing risk of thrombosis. 

This study suggested that left atrial structure (LAVI, 3D-SI), hemodynamic 

parameters (left atrial acceleration factor a), and functional parameters (PALS, LVEF) 

were important features for predicting the risk of thrombus in NVAF patients, with 

decreased PALS being the most significant risk factor for predicting thrombosis. 

ML has great potential for innovation and disruption in the medical field. It has 

been successfully applied in various cardiovascular diseases and has shown promising 

results in predicting efficacy through visual evaluation.
33,34

 One important application 

area is managing the potential thrombotic risk in NVAF.
8
 Novel technologies like ML 

have the potential to significantly greatly enhance stroke risk management and 

clinical prognosis in patients by identifying those at high risk of thrombosis and 

intervening early. Previous studies have shown that ML models can accurately predict 

left atrial appendage thrombosis and outperform conventional stroke risk scores, 

which may help predict the risk of stroke in NVAF patients.
11

 The internal logic of 

ML models can identify critical risk factors such as left atrial and left atrial appendage 

structures and certain biomarkers, which are crucial for predicting thrombosis and 
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optimizing treatment strategies for NVAF patients, with significant implications for 

preventing ischemic stroke. Studies have used data from the Korean AF Registry of 

Ischemic Stroke Patients and the Korean University Stroke Registry to internally and 

externally validate ML models. The results showed that ML models performed well in 

predicting both outcomes. For adverse outcomes at 3 months, the multilayer 

perceptron model demonstrated significantly higher ROC values of 0.890 and 0.859 

in the internal and external validation groups, respectively, outperforming logistic 

regression
35

. Therefore, explainable ML models can effectively predict short-term 

outcomes and identify high-risk NVAF-related stroke patients.  

XGBoost is an advanced decision tree ensemble technique widely used in the 

medical field. It is highly regarded for its excellent classification performance, ability 

to model complex nonlinear relationships, and handle high-dimensional data.
36

 In the 

process of building predictive models, model interpretability is also an important 

factor. The XGBoost model introduces tree-based model feature importance and more 

complex SHAP values to reveal the specific contribution of each feature to the 

prediction results, balancing model performance and interpretability. This study 

utilized the internal logic of the XGBoost model to establish a predictive model for 

thrombosis risk in NVAF patients, demonstrating good performance in model 

evaluation. In the validation set, the AUC value for predicting LAT/SEC was 0.959 

(95% CI 0.959-0.993), outperforming other ML models. Feature importance analysis 

and SHAP interpretability analysis were used to rank the features based on their 

importance and frequency in each model, identifying the risk factors for thrombus in 

NVAF. Through interpreting SHAP plots with actual cases, clinical physicians can 

better understand how the model operates and guide personalized treatment strategies 

for NVAF patients. 

In this research, the utilization of advanced machine learning algorithms to 
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combine multimodal echocardiographic parameters with clinical risk factors resulted 

in a substantial improvement in the predictive accuracy for evaluating thrombus risk 

in patients with NVAF. Besides, XGBoost model demonstrated superior predictive 

performance, aiding in the precise clinical assessment of thrombus risk in NVAF 

patients. The model showed that decreased PALS, hemodynamic abnormalities and 

left atrium spherical remodeling were significant factors correlated with increased risk 

of thrombus in NVAF.  

Limitations 

This study had a relatively small sample size and lacked external validation, 

requiring an increase in sample size for multicenter verification to enhance the 

stability and generalizability of the model. In this study, only a subset of clinical and 

echocardiographic features was considered, without incorporating more detailed 

biochemical indicators, possibly overlooking other potential risk factors. ML are 

designed to uncover the latent connections between input variables and output values; 

however, they may not be able to capture relationships that are not fully elucidated 

due to specific variables. Additionally, anticoagulants offer notable benefits in the 

prevention of left atrial appendage thrombus. However, in this study, only the type of 

anticoagulant medication was considered, without taking into account dosage and 

duration of irregular medication records. Finally, this study included more SEC 

patients and fewer patients with LAT, leading to some selection bias and potential 

deviations in predictive results. Additionally, there may be differences in thrombus 

formation risk among SEC patients of different levels. 

 

Conclusion 

This study demonstrates that the integration of multimodal echocardiographic 

parameters with clinical risk factors based on sophisticated ML algorithms 
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significantly improved the predictive accuracy of thrombus risk in patients with NVAF. 

Specifically, the XGBoost model slightly outperforms the traditional Logistic 

regression model in predicting thrombus formation risk in NVAF patients, and shows 

superior predictive ability compared to other ML algorithms. Left atrial structure 

(LAVI, 3D-SI), hemodynamic indices (left atrial acceleration factor and S/D ratio) and 

functional parameters (PALS, LVEF) are crucial factors in predicting the risk of 

thrombus formation in patients with non-valvular atrial fibrillation (NVAF). Among 

these factors, PALS emerges as the most important risk factor for predicting LAT/SEC. 

Developing a predictive model utilizing machine learning techniques that incorporate 

multimodal echocardiographic parameters in conjunction with clinical risk factors, 

such as persistent atrial fibrillation and prior stroke/TIA, has the potential to enhance 

the predictive accuracy of thrombosis risk in individuals with NVAF. 
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Figure legends 

Figure 1. (A) Flowchart of the participants’ selection and study design. (B) Graphical 

abstract (DT, Decision Tree; KNN, K-Nearest Neighbors; LightGBM, Light Gradient 
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Boosting Machine; LR, Logistic Regression; NVAF, non-valvular atrial fibrillation; 

RF, random forest; RF, Random Forest; TEE, transesophageal echocardiography; 

SVM, Support Vector Machine; XGBoost, eXtreme Gradient Boosting). 

Figure 2. Demonstration of measuring multiple parameters using echocardiography 

and recognition of left atrial thrombus/spontaneous contrast. (A-C), Measurements of 

left atrial diameter (a), transverse diameter(b), longitudinal diameter(c), and left atrial 

three-dimensional volume. (D), Mitral valve peak early diastolic E-wave flow velocity. 

(E), Mitral annular lateral wall early diastolic velocity (e’). (F) The pulmonary venous 

flow velocity spectrum shows that the S-wave represents the systolic peak blood flow 

velocity and the D-wave represents the diastolic peak blood flow velocity. (G-H) 

Normal left atrial peak longitudinal strain and decreased left atrial peak longitudinal 

strain. (I), without left atrial thrombus or spontaneous echo contrast，(J), spontaneous 

echo contrast, (K) left atrial thrombus. 

Figure 3. LASSO regression to select feature variables. (A), The curve of the 

regression coefficient varies with the change of Log(λ) (B) LASSO's mean squared 

error changes with Log(λ) in the regression analysis graph. Nine variables with 

nonzero coefficients were selected by optimal lambda. 

Figure 4. (A)The diagnostic accuracy of machine learning models for detecting left 

atrial thrombus/spontaneous echo contrast in validation cohorts. (B) The decision 

curve analysis of the machine learning model demonstrated the net benefits in 

predicting left atrial thrombus or spontaneous echo contrast. 

Figure 5. (A) Feature importance view based on XGBoost model. (B) Summary chart 

of SHAP based on XGBoost model 

Figure 6. XGBoost model predicting the risk score of thrombosis, with example 

SHAP charts for certain cases: (A) Example of high-risk thrombosis, (B) and (C) 

examples of low-risk thrombosis. 
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Table 1 Baseline Characteristics of the 402 patients stratified by LAT/SEC. 

Variable Overall 

(n=402) 

No LAT/SEC 

(n=260) 

LAT/SEC 

(n=142) 

P value 

Age, years  59.69 ± 10.75 58 ± 11.25 62.77 ± 9.02 < 0.001 

Female sex, n (%) 113 (28) 79 (30) 34 (24) 0.604 

Body surface area, m² 1.75 ± 0.23 1.75 ± 0.23 1.75 ± 0.23 0.702 

SBP, mmHg 128.09 ± 18.49 127.93 ± 18.2 128.39 ± 19.07 0.813 

DBP, mmHg 79.92 ± 12.07 78.73 ± 11.55 82.08 ± 12.73 0.01 

Medical history 

Hypertension, n (%) 201 (50) 117 (45) 84 (59) 0.009 

Diabetes, n (%) 55 (14) 27 (10) 28 (20) 0.014 

Dyslipidemia, n (%) 123 (31) 89 (34) 34 (24) 0.043 

Previous stroke/TIA, n (%) 70 (17) 34 (13) 36 (25) 0.003 

Vascular disease, n (%) 162 (40) 95 (37) 67 (47) 0.048 

CAD, n (%) 77 (19) 38 (15) 39 (27) 0.003 

HF, n (%) 25 (6) 9 (3) 16 (11) 0.004 

Persistent AF, n (%) 185 (46) 82 (32) 103 (73) < 0.001 

CHA2DS2 -VASc score 2 (1, 3) 2 (1, 3) 3 (2, 4) < 0.001 

Laboratory data 

Scr, µmol/L 85.5 ± 35.25 83.04 ± 31.84 90.01 ± 40.51 0.077 

Ccr, ml/min 77.59 ± 18.5 80.99 ± 18.42 71.39 ± 17.02 < 0.001 

eGFR, mL/min / 1.73 m
2
 82.69 ± 19.29 85.12 ± 18.96 78.24 ± 19.16 < 0.001 

NT-proBNP, pg/mL 544 (118, 1095) 2801 (88, 1040) 1066 (497, 2096) < 0.001 

Troponin I, ng/L 4 (2, 10) 3 (2, 7) 8 (4, 14) < 0.001 

Medication 

Antiplatelet, n (%) 46 (11) 25 (10) 21 (15) 0.163 

Warfarin, n (%) 22 (5) 7 (3) 15 (11) 0.002 

NOACs, n (%) 264 (66) 172 (66) 92 (65) 0.868 

Echocardiographic parameters 

LVEDV, ml 125.58 ± 35.38 121.1 ± 33.2 133.78 ± 37.82 < 0.001 

LVESV, ml 48.98 ± 29.27 44.54 ± 27.57 57.1 ± 30.61 < 0.001 

LV mass index, g/m
2
 118.65 ± 32.34 112.68 ± 30.79 129.6 ± 32.36 < 0.001 

LV ejection fraction, % 63.2 ± 10.84 65.38 ± 9.65 59.2 ± 11.76 < 0.001 

LAVI, mL/m
2
 39.58 ± 15.97 34.5 ± 15.01 48.86 ± 13.3 < 0.001 

2D-SI 0.84 ± 0.08 0.83 ± 0.07 0.85 ± 0.08 < 0.001 

3D-SI 0.84 ± 0.08 0.81 ± 0.08 0.88 ± 0.06 < 0.001 

E, cm/s 89.94 ± 22.62 85.95 ± 22.69 97.24 ± 20.66 < 0.001 

E/e’ ratio 10.57 ± 3.97 9.76 ± 3.49 12.06 ± 4.34 < 0.001 

S/D ratio 1.06 ± 0.56 1.2 ± 0.58 0.79 ± 0.41 < 0.001 

LA acceleration factor (α) 1.8 ± 0.81 1.51 ± 0.56 2.34 ± 0.92 < 0.001 

PALS, % 23.31 ± 9.65 27.47 ± 8.83 15.7 ± 5.59 < 0.001 

Values are mean  SD, n (percentage), or median (25th, 75th percentile).  

2D-SI: Two dimensional spherical index; 3D-SI: Three dimensional spherical index; AF: atrial fibrillation; CAD: 
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Coronary artery disease; DBP: diastolic blood pressure; HF: heart failure; LAT/SEC, left atrial thrombus / 

spontaneous echocardiographic contrast; LAVI, left atrial volume index; LV, left ventricle; LVEDV, left ventricular 

end diastolic volume; LVESV, left ventricular end systolic volume, NOACs: novel oral anticoagulants, PALS: peak 

atrial longitudinal strain; SBP: systolic blood pressure  
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Table 2.  The diagnostic efficacy of machine learning models in detecting left atrial 

thrombus or spontaneous echo contrast. 

      Model Accuracy Precision Recall F1 AUC（95% CI） 

LR 0.893 0.836 0.920 0.876 0.949（0.911-0.987） 

DT 0.876 0.760 0.927 0.835 0.865（0.782-0.948） 

RF 0.893 0.911 0.820 0.863 0.939（0.897-0.981） 

XGBoost 0.884 0.891 0.820 0.854 0.959（0.925-0.993） 

SVM 0.901 0.880 0.880 0.880 0.949（0.911-0.987） 

KNN 0.810 0.800 0.720 0.758 0.856（0.786-0.926） 

LightGBM 0.860 0.851 0.800 0.825 0.899（0.840-0.958） 

DT: Decision Tree, KNN: K-Nearest Neighbors, LightGBM: Light Gradient Boosting Machine, LR: 

Logistic Regression, RF: Random Forest, SVM: Support Vector Machine, XGBoost: eXtreme 

Gradient Boosting,  
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