Supplementary Material for :

Differential Adaptive Immune Responses Following SARS-CoV-2 Infection in Children Compared to Adults

Running Title : SARS-CoV-2 Immune Responses : Are Children Less Protected ?

Authors : Sabryna Nantel,^{1,2} Corey Arnold,³ Maala Bhatt,^{4,5} Yannick Galipeau,³ Benoîte Bourdin,¹ Jennifer Bowes,⁴ Roger L. Zemek,^{4,5} Marc-André Langlois,³ Caroline Quach,^{1,2} Hélène Decaluwe ^{1,2,6,#,*} & Anne Pham-Huy ^{4,7,#,*}

Affiliations :

¹Sainte-Justine University Hospital and Research Center, Montréal, Québec, Canada.

² Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine,

University of Montréal, Montréal, Québec, Canada.

³ Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.

⁴ Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada.

⁵ Division of Emergency Medicine, Department of Pediatrics, University of Ottawa, Ottawa, Ontario, Canada.

⁶ Pediatric Immunology and Rheumatology Division, Department of Pediatrics, University of Montréal, Montréal, Québec, Canada.

⁷ Division of Infectious Diseases, Immunology and Allergy, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, Ontario, Canada.

Shared senior authorships

CORRESPONDING AUTHORS (*)

Hélène Decaluwe

CHU Sainte-Justine Research Center

3175, Chemin de la Côte-Sainte-Catherine, Montréal, QC, Canada (H3T 1C5)

helene.decaluwe@umontreal.ca

Anne Pham-Huy

Children's Hospital of Eastern Ontario

401, Smyth Road, Ottawa, ON, Canada (K1H 8L1)

aphamhuy@cheo.on.ca

SUPPLEMENTAL FIGURES AND LEGENDS

Supplemental Figures

Figure S1. The IgA response against the nucleocapsid remains lower when comparing only symptomatic children to adults.

Figure S2. Symptomatic children present slightly increased neutralizing antibody titers to Omicron BA.4/BA.5 compared to symptomatic adults.

Figure S3. The reduced cellular immune response to SARS-CoV-2 in children compared to adults is still observed after excluding asymptomatic children.

Figure S4. The immune response to SARS-CoV-2 is similar in both sex.

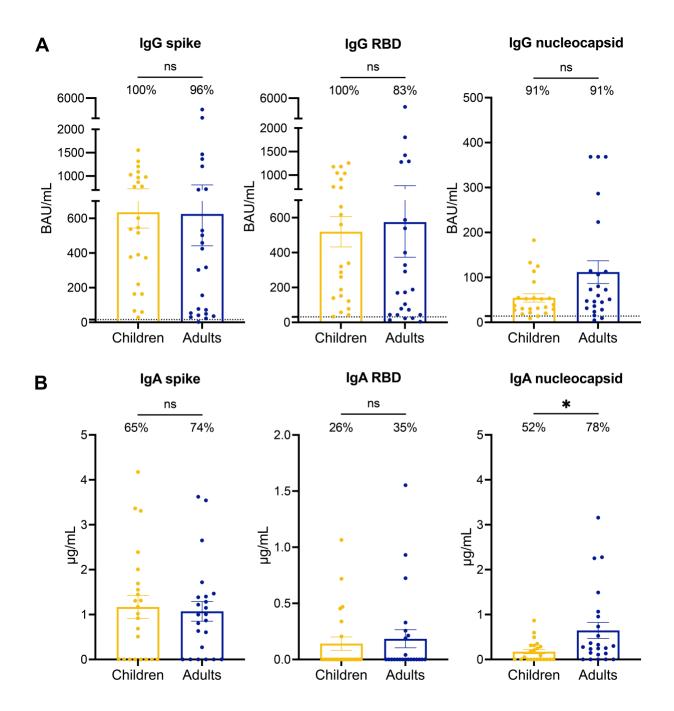
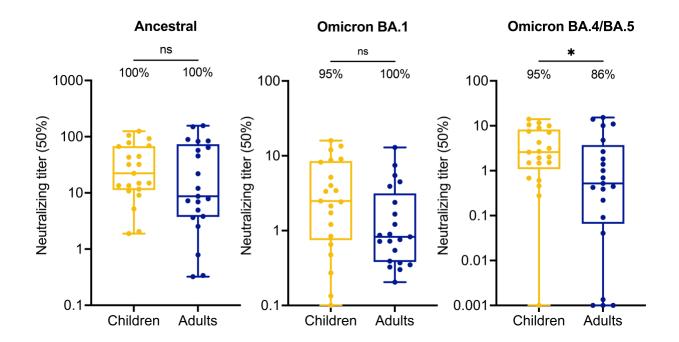



Figure S1. The IgA response against the nucleocapsid remains lower when comparing only symptomatic children to adults.

ELISA were conducted to measure the anti-spike (left panels), anti-RBD (middle panels) and anti-nucleocapsid (right panels) IgG (A) and IgA (B) levels in the serum of symptomatic and

seropositive children (n = 23, yellow) and adults (n = 23, blue) infected with SARS-CoV-2. (**A**) The percentage of participants with IgG responses above the positive cut-off value (15.53216 for spike, 31.34807 for RBD and 13.83556 for nucleocapsid) are indicated for each group. (**B**) The percentage of participants with detectable IgA are indicated for each group. Error bars indicate mean \pm SEM. Statistical significance was established as : ns (not significant) P >.05, *P <.05.

Figure S2. Symptomatic children present slightly increased neutralizing antibody titers to Omicron BA.4/BA.5 compared to symptomatic adults.

Surrogate neutralization ELISA were conducted to establish the serum dilution level (ID50) required to inhibit 50% of the binding between the trimeric spike protein and the ACE2 receptor, thus neutralizing the virus's attachment capability to cells. Neutralizing antibody titers were measured for the ancestral SARS-CoV-2 spike, as well as Omicron BA.1 and BA.4/BA.5 variants. Serums were analyzed after SARS-CoV-2 infection in symptomatic and seropositive children (n = 21, yellow) and adults (n = 21, blue). The percentage of participants with detectable neutralizing antibodies against specific variants are indicated for each group. Statistical significance was established as : ns (not significant) P > .05, *P < .05.

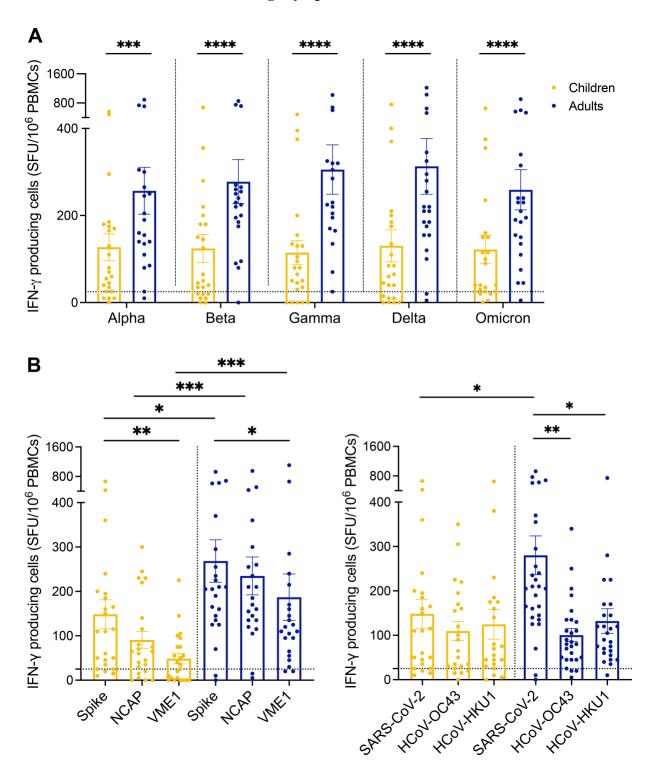


Figure S3. The reduced cellular immune response to SARS-CoV-2 in children compared to adults is still observed after excluding asymptomatic children.

T-cell responses were assessed by ELISpot assay after peptide stimulation. Samples were collected from SARS-CoV-2 infected children who were symptomatic at the time of infection, and seropositive at sampling (n = 23, yellow) and adults (n = 23, blue). (**A**) PBMCs were stimulated with SARS-CoV-2 spike peptide from five different variant strains (Alpha, Beta, Gamma, Delta, Omicron BA.1). (**B**) PBMCs were stimulated with peptide pools from the ancestral SARS-CoV-2 spike, nucleocapsid (NCAP) and membrane (VME1) protein. (**C**) PBMCs were stimulated with spike peptides from SARS-CoV-2 and common cold β -coronaviruses HCoV-OC43 and HCoV-HKU1. Results are expressed in number of IFN- γ producing cells per million PBMCs. Dotted line indicates the positive threshold value of 25 IFN- γ secreting cells. Error bars indicate mean ± SEM. Statistical significance was established as : ns (not significant, not shown) P >.05, *P <.05, **P <.01, ***P<.001, ****P<.0001.

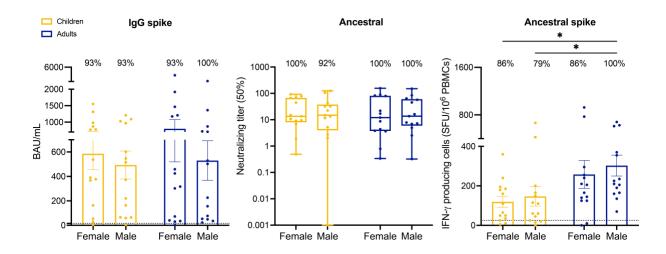


Figure S4. The immune response to SARS-CoV-2 is similar in both sex.

Samples were collected from equal numbers of children (n = 28) and adults (n = 28) from each sex (n = 14). (A) ELISA were conducted to measure the anti-spike IgG in the serum. (B) Surrogate neutralization ELISA were conducted to establish the serum dilution level (ID50) required to inhibit 50% of the binding between the trimeric spike protein and the ACE2 receptor, thus neutralizing the virus attachment capability to cells. (C) T-cell responses were assessed by ELISpot assay after peptide stimulation. For each of the three assays performed, no sex-based difference were noted. Error bars indicate mean \pm SEM. Statistical significance was established as : ns (not significant) P >.05, *P <.05.