Low Blood Levels of Selenium, Selenoprotein P and GPx3 are Associated with Accelerated Biological Aging: Results from the Berlin Aging Study II (BASE-II)

Valentin Max Vetter ^{1,a}, Kamil Demircan ^{2,a}, Jan Homann ³, Thilo Samson Chillon ², Michael Mülleder ⁴, Orr Shomroni ⁴, Elisabeth Steinhagen-Thiessen ¹, Markus Ralser ^{4,5}, Christina M. Lill ^{3, 6}, Lars Bertram ⁷, Lutz Schomburg ^{2,b}, Ilja Demuth ^{1,8,b}

^a Valentin Max Vetter and Kamil Demircan are joint first authors. ^b Lutz Schomburg and Ilja Demuth are joint last authors.

¹ Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Endocrinology and Metabolic Diseases (including Division of Lipid Metabolism), Biology of Aging working group, Augustenburger Platz 1, 13353 Berlin, Germany

² Institute for Experimental Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, D-10115, Berlin, Germany

³ Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany

⁴ Core Facility High Throughput Mass Spectrometry, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany

⁵ The Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, UK

⁶ Aging Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK

⁷ Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany

⁸ Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Regenerative Immunology and Aging, BIH Center for Regenerative Therapies, 13353 Berlin, Germany

Corresponding Author: Ilja Demuth (Ph.D.) Charité - Universitätsmedizin Berlin Lipid Clinic at the Interdisciplinary Metabolism Center, Biology of Aging Group Augustenburger Platz 1 13353 Berlin Email: ilja.demuth@charite.de Phone: ++49 30 450 569 143 FAX: ++49 30 450 566 904 Supplementary Material

Methods:

Mesurement of GPx3

The sample preparation involved semi-automated processing of serum samples in 96-well plates, including denaturation, reduction, alkylation, trypsin digestion, and cleanup steps (34). Liquid chromatography-mass spectrometry (LC-MS) analysis was conducted using a Bruker timsTOF Pro system coupled with an Agilent 1290 Infinity II LC system (35). Computational proteomics involved generating a spectral library based on Human Plasma PeptideAtlas and annotating peptide sequences to the Uniprot human reference proteome (36, 37). The software DIA-NN was used for data annotation and quantification (38). Pre-processing was performed using MS-DAP (39) as framework and included data normalization, outlier sample filtering, low-presence peptide filtering, data imputation, and batch correction to ensure high data quality.

Tables:

Supplementary Table 1: Standardized mean difference of epigenetic age estimators between selenium deficient participants and selenium sufficient participants. Statistical significance of difference was assessed by t-test.

	Deficient		Sufficient			
Variable	Mean(SD)	n	Mean (SD)	n	р	SMD
Horvath DNAmAA	-0.03 (4.20)	391	0.15 (4.34)	391	0.566	0.04
GrimAge DNAmAA	-0.11 (3.08)	391	-0.04 (3.13)	391	0.771	0.02
DunedinPACE	1.02 (0.11)	440	1.00 (0.10)	425	0.010	0.18

Note: SD = Standard Deviation, n = number of observations, SMD = Standardized Mean Difference.

Supplementary Table 2: Linear regression analysis of epigenetic age estimators calculated from all six epigenetic clocks available on selenium status (deficient vs. sufficient) in the complete dataset as well as sex-stratified subgroups. Model 1 is unadjusted. Model 2 is adjusted for chronological age, sex, BMI, smoking (packyears), and the first four genetic principal components (PC1 to PC4).

Clock	Model	St. β	β	SE	р	lowCI	upCI	n
Women and Men		,			•		•	
7-CpG DNAmAA	1	0.022	0.298	0.396	0.452	-0.480	1.075	1198
-	2	0.004	0.058	0.521	0.912	-0.965	1.081	691
Horvath DNAmAA	1	0.021	0.175	0.306	0.566	-0.425	0.775	782
	2	0.019	0.155	0.320	0.628	-0.473	0.783	684
Hannum DNAmAA	1	0.002	0.015	0.250	0.953	-0.475	0.505	782
	2	0.002	0.015	0.262	0.955	-0.499	0.529	684
PhenoAge DNAmAA	1	-0.036	-0.330	0.332	0.320	-0.983	0.322	782
C C	2	-0.038	-0.344	0.352	0.328	-1.034	0.346	684
GrimAge DNAmAA	1	0.010	0.065	0.222	0.771	-0.371	0.500	782
C	2	-0.017	-0.104	0.208	0.619	-0.513	0.306	684
DunedinPACE	1	-0.087	-0.019	0.007	0.010	-0.033	-0.004	865
	2	-0.087	-0.019	0.007	0.012	-0.034	-0.004	757
Women								
7-CpG DNAmAA	1	0.054	0.713	0.542	0.189	-0.352	1.778	602
-	2	0.088	1.185	0.725	0.103	-0.241	2.612	357
Horvath DNAmAA	1	0.025	0.205	0.415	0.621	-0.611	1.021	400
	2	0.041	0.340	0.446	0.446	-0.537	1.218	354
Hannum DNAmAA	1	-0.024	-0.155	0.327	0.637	-0.798	0.489	400
	2	0.001	0.007	0.350	0.984	-0.682	0.695	354
PhenoAge DNAmAA	1	-0.051	-0.476	0.468	0.310	-1.396	0.444	400
C C	2	-0.055	-0.518	0.499	0.300	-1.500	0.464	354
GrimAge DNAmAA	1	0.018	0.103	0.278	0.713	-0.444	0.649	400
C	2	-0.005	-0.027	0.288	0.924	-0.594	0.539	354
DunedinPACE	1	-0.083	-0.017	0.010	0.081	-0.035	0.002	447
	2	-0.066	-0.013	0.010	0.176	-0.032	0.006	395
Men								
7-CpG DNAmAA	1	-0.018	-0.241	0.566	0.670	-1.353	0.870	596
-	2	-0.078	-1.062	0.752	0.159	-2.542	0.418	334
Horvath DNAmAA	1	0.001	0.007	0.439	0.987	-0.856	0.871	382
	2	-0.009	-0.077	0.465	0.869	-0.992	0.838	330
Hannum DNAmAA	1	0.007	0.051	0.364	0.889	-0.665	0.767	382
	2	-0.006	-0.044	0.396	0.912	-0.823	0.735	330
PhenoAge DNAmAA	1	-0.027	-0.246	0.471	0.602	-1.172	0.680	382
5	2	-0.022	-0.195	0.500	0.697	-1.178	0.788	330
GrimAge DNAmAA	1	-0.031	-0.184	0.309	0.552	-0.793	0.424	382
e	2	-0.030	-0.185	0.305	0.546	-0.786	0.416	330
DunedinPACE	1	-0.119	-0.026	0.011	0.015	-0.047	-0.005	418
	2	-0.109	-0.024	0.011	0.034	-0.047	-0.002	362

Supplementary Table 3: Linear regression analysis of epigenetic age estimates calculated by all available six epigenetic clocks on quartiles of Selenoprotein P in men and women. Model 1 is unadjusted. Model 2 is adjusted for chronological age, sex, BMI, smoking (packyears), and the first four genetic principal components (PC1 to PC4). The first quartile is used as reference.

Clock	Model		St. β	β	SE	р	lowCI	upCI	n
7-CpG DNAmAA	1	Q2	-0.018	-0.284	0.563	0.613	-1.388	0.820	1168
		Q3	-0.033	-0.525	0.567	0.354	-1.637	0.587	1168
		Q4	0.007	0.109	0.568	0.847	-1.005	1.224	1168
	2	Q2	0.051	0.771	0.734	0.294	-0.671	2.213	674
		Q3	-0.001	-0.020	0.753	0.979	-1.497	1.458	674
		Q4	0.022	0.348	0.764	0.649	-1.152	1.848	674
Horvath DNAmAA	1	Q2	0.033	0.310	0.435	0.477	-0.545	1.164	765
		Q3	-0.003	-0.026	0.450	0.954	-0.909	0.857	765
		Q4	0.012	0.120	0.451	0.791	-0.766	1.005	765
	2	Q2	0.032	0.293	0.457	0.522	-0.605	1.191	667
		Q3	0.026	0.252	0.467	0.590	-0.666	1.169	667
		Q4	0.007	0.067	0.476	0.888	-0.867	1.001	667
Hannum DNAmAA	1	Q2	0.111	0.857	0.354	0.016	0.162	1.551	765
		Q3	-0.023	-0.184	0.366	0.616	-0.901	0.534	765
		Q4	0.004	0.031	0.367	0.932	-0.688	0.751	765
	2	Q2	0.132	1.002	0.372	0.007	0.273	1.732	667
		Q3	0.011	0.086	0.380	0.821	-0.659	0.831	667
		Q4	0.012	0.098	0.386	0.801	-0.661	0.857	667
PhenoAge DNAmAA	1	Q2	0.024	0.252	0.475	0.596	-0.681	1.184	765
		Q3	-0.024	-0.255	0.491	0.604	-1.219	0.709	765
		Q4	-0.016	-0.177	0.492	0.719	-1.144	0.790	765
	2	Q2	0.026	0.269	0.505	0.594	-0.722	1.261	667
		Q3	-0.027	-0.287	0.516	0.578	-1.300	0.726	667
		Q4	-0.039	-0.417	0.525	0.427	-1.449	0.614	667
GrimAge DNAmAA	1	Q2	0.033	0.224	0.314	0.476	-0.393	0.841	765
		Q3	-0.071	-0.514	0.325	0.114	-1.152	0.124	765
		Q4	0.004	0.028	0.326	0.932	-0.612	0.667	765
	2	Q2	0.032	0.220	0.298	0.460	-0.365	0.806	667
		Q3	-0.048	-0.345	0.305	0.258	-0.943	0.254	667
		Q4	0.002	0.015	0.310	0.962	-0.595	0.624	667
DunedinPACE	1	Q2	-0.076	-0.018	0.010	0.078	-0.039	0.002	848
		Q3	-0.065	-0.016	0.011	0.125	-0.038	0.005	848
		Q4	-0.096	-0.024	0.011	0.024	-0.045	-0.003	848
	2	Q2	-0.074	-0.018	0.011	0.089	-0.039	0.003	740
		Q3	-0.067	-0.017	0.011	0.119	-0.038	0.004	740
		Q4	-0.115	-0.030	0.011	0.007	-0.051	-0.008	740

Supplementary Table 4: Linear regression analysis of epigenetic age estimates calculated by all available six epigenetic clocks on quartiles of Selenoprotein P in the subgroup of women. Model 1 is unadjusted. Model 2 is adjusted for chronological age, sex, BMI, smoking (packyears), and the first four genetic principal components (PC1 to PC4). The first quartile is used as reference.

Clock	Model		St. β	β	SE	р	lowCI	upCI	n
7-CpG DNAmAA	1	Q2	0.027	0.407	0.760	0.593	-1.085	1.898	588
		Q3	0.018	0.265	0.764	0.729	-1.236	1.766	588
		Q4	0.084	1.272	0.772	0.100	-0.245	2.789	588
	2	Q2	0.126	1.815	1.002	0.071	-0.156	3.785	348
		Q3	0.025	0.365	1.015	0.719	-1.631	2.361	348
		Q4	0.044	0.688	1.069	0.520	-1.414	2.791	348
Horvath DNAmAA	1	Q2	0.096	0.877	0.589	0.137	-0.281	2.036	391
		Q3	0.083	0.786	0.603	0.194	-0.400	1.972	391
		Q4	0.061	0.603	0.622	0.333	-0.620	1.826	391
	2	Q2	0.045	0.412	0.633	0.516	-0.833	1.657	345
		Q3	0.072	0.669	0.638	0.295	-0.586	1.925	345
		Q4	0.035	0.345	0.675	0.609	-0.982	1.673	345
Hannum DNAmAA	1	Q2	0.137	0.993	0.463	0.033	0.083	1.904	391
		Q3	0.036	0.271	0.474	0.568	-0.661	1.203	391
		Q4	0.021	0.165	0.489	0.736	-0.796	1.126	391
	2	Q2	0.163	1.162	0.493	0.019	0.192	2.131	345
		Q3	0.050	0.362	0.497	0.466	-0.615	1.340	345
		Q4	0.025	0.192	0.525	0.716	-0.842	1.225	345
PhenoAge DNAmAA	1	Q2	0.075	0.772	0.665	0.247	-0.536	2.080	391
		Q3	0.006	0.069	0.681	0.920	-1.271	1.408	391
		Q4	0.037	0.418	0.703	0.552	-0.964	1.799	391
	2	Q2	0.055	0.567	0.709	0.424	-0.827	1.962	345
		Q3	-0.005	-0.053	0.715	0.941	-1.459	1.353	345
		Q4	0.011	0.129	0.756	0.865	-1.358	1.616	345
GrimAge DNAmAA	1	Q2	0.054	0.329	0.394	0.405	-0.446	1.103	391
		Q3	-0.068	-0.433	0.403	0.284	-1.226	0.360	391
		Q4	-0.001	-0.009	0.416	0.984	-0.826	0.809	391
	2	Q2	0.051	0.319	0.407	0.434	-0.482	1.120	345
		Q3	-0.079	-0.505	0.411	0.219	-1.313	0.303	345
		Q4	-0.016	-0.112	0.434	0.796	-0.966	0.742	345
DunedinPACE	1	Q2	-0.101	-0.023	0.014	0.095	-0.049	0.004	438
		Q3	-0.058	-0.013	0.014	0.335	-0.040	0.014	438
		Q4	-0.108	-0.026	0.014	0.068	-0.054	0.002	438
	2	Q2	-0.086	-0.019	0.014	0.161	-0.046	0.008	386
		Q3	-0.095	-0.022	0.014	0.119	-0.049	0.006	386
		Q4	-0.133	-0.032	0.015	0.028	-0.061	-0.004	386

Supplementary Table 5: Linear regression analysis of epigenetic age estimates calculated by all available six epigenetic clocks on quartiles of Selenoprotein P in the subgroup of men. Model 1 is unadjusted. Model 2 is adjusted for chronological age, sex, BMI, smoking (packyears), and the first four genetic principal components (PC1 to PC4). The first quartile is used as reference.

Clock	Model		St. β	β	SE	р	lowCI	upCI	n
7-CpG DNAmAA	1	Q2	-0.054	-0.865	0.811	0.286	-2.458	0.727	580
		Q3	-0.074	-1.202	0.818	0.142	-2.809	0.405	580
		Q4	-0.062	-1.002	0.812	0.218	-2.597	0.594	580
	2	Q2	-0.017	-0.261	1.097	0.812	-2.418	1.897	326
		Q3	-0.033	-0.527	1.137	0.643	-2.764	1.709	326
		Q4	0.010	0.153	1.111	0.890	-2.033	2.340	326
Horvath DNAmAA	1	Q2	-0.029	-0.272	0.623	0.663	-1.498	0.954	374
		Q3	-0.082	-0.829	0.652	0.204	-2.110	0.452	374
		Q4	-0.050	-0.482	0.635	0.449	-1.730	0.767	374
	2	Q2	0.011	0.102	0.677	0.880	-1.230	1.433	322
		Q3	-0.037	-0.358	0.701	0.610	-1.736	1.021	322
		Q4	-0.033	-0.312	0.686	0.649	-1.663	1.038	322
Hannum DNAmAA	1	Q2	0.093	0.730	0.513	0.156	-0.279	1.739	374
		Q3	-0.072	-0.601	0.536	0.263	-1.656	0.453	374
		Q4	-0.027	-0.216	0.522	0.679	-1.244	0.811	374
	2	Q2	0.113	0.882	0.571	0.124	-0.242	2.007	322
		Q3	-0.023	-0.192	0.592	0.746	-1.356	0.972	322
		Q4	-0.018	-0.146	0.579	0.802	-1.286	0.994	322
PhenoAge DNAmAA	1	Q2	-0.028	-0.288	0.675	0.670	-1.616	1.040	374
		Q3	-0.050	-0.544	0.706	0.441	-1.932	0.844	374
		Q4	-0.078	-0.820	0.688	0.234	-2.172	0.532	374
	2	Q2	-0.005	-0.046	0.733	0.950	-1.488	1.395	322
		Q3	-0.058	-0.611	0.758	0.421	-2.103	0.881	322
		Q4	-0.100	-1.039	0.743	0.163	-2.501	0.422	322
GrimAge DNAmAA	1	Q2	0.020	0.134	0.441	0.761	-0.733	1.001	374
		Q3	-0.067	-0.482	0.461	0.297	-1.388	0.425	374
		Q4	-0.012	-0.082	0.449	0.855	-0.965	0.801	374
	2	Q2	0.031	0.209	0.446	0.640	-0.669	1.087	322
		Q3	-0.024	-0.166	0.462	0.719	-1.075	0.743	322
		Q4	0.031	0.215	0.453	0.636	-0.676	1.105	322
DunedinPACE	1	Q2	-0.042	-0.011	0.015	0.489	-0.041	0.019	410
		Q3	-0.055	-0.015	0.016	0.361	-0.046	0.017	410
		Q4	-0.102	-0.025	0.015	0.098	-0.055	0.005	410
	2	Q2	-0.048	-0.012	0.017	0.463	-0.045	0.021	354
		Q3	-0.036	-0.010	0.017	0.578	-0.044	0.024	354
		Q4	-0.079	-0.020	0.017	0.222	-0.053	0.012	354

Supplementary Table 6: Linear regression analysis of epigenetic age estimates calculated by all available six epigenetic clocks on quartiles of GPx3 intensity in men and women. Model 1 is unadjusted. Model 2 is adjusted for chronological age, sex, BMI, smoking (packyears), and the first four genetic principal components (PC1 to PC4). The first quartile is used as reference.

Clock	Model		St. β	β	SE	р	lowCI	upCI	n
7-CpG DNAmAA	1	Q2	-0,027	-0,432	0,594	0,467	-1,598	0,734	1066
		Q3	-0,024	-0,390	0,595	0,513	-1,558	0,778	1066
		Q4	-0,040	-0,634	0,593	0,285	-1,797	0,528	1066
	2	Q2	0,012	0,187	0,791	0,813	-1,365	1,740	614
		Q3	0,008	0,127	0,805	0,875	-1,453	1,707	614
		Q4	-0,042	-0,670	0,801	0,403	-2,243	0,903	614
Horvath DNAmAA	1	Q2	-0,033	-0,322	0,462	0,487	-1,228	0,585	689
		Q3	-0,076	-0,772	0,471	0,102	-1,697	0,153	689
		Q4	-0,064	-0,628	0,458	0,171	-1,527	0,272	689
	2	Q2	-0,016	-0,151	0,478	0,753	-1,090	0,788	608
		Q3	-0,048	-0,475	0,489	0,332	-1,436	0,486	608
		Q4	-0,030	-0,284	0,485	0,558	-1,236	0,667	608
Hannum DNAmAA	1	Q2	0,009	0,072	0,377	0,848	-0,668	0,813	689
		Q3	-0,017	-0,140	0,385	0,716	-0,895	0,615	689
		Q4	-0,059	-0,472	0,374	0,208	-1,206	0,263	689
	2	Q2	0,007	0,055	0,390	0,887	-0,712	0,822	608
		Q3	0,002	0,017	0,399	0,967	-0,768	0,801	608
		Q4	-0,021	-0,166	0,396	0,675	-0,943	0,611	608
PhenoAge DNAmAA	1	Q2	-0,034	-0,365	0,498	0,464	-1,343	0,613	689
		Q3	-0,090	-0,989	0,508	0,052	-1,986	0,008	689
		Q4	-0,098	-1,028	0,494	0,038	-1,998	-0,059	689
	2	Q2	-0,031	-0,324	0,521	0,534	-1,346	0,699	608
		Q3	-0,102	-1,087	0,532	0,042	-2,133	-0,042	608
		Q4	-0,061	-0,629	0,527	0,233	-1,665	0,406	608
GrimAge DNAmAA	1	Q2	0,004	0,026	0,332	0,937	-0,625	0,677	689
		Q3	-0,059	-0,430	0,338	0,203	-1,094	0,233	689
		Q4	-0,176	-1,246	0,329	0,000	-1,892	-0,601	689
	2	Q2	-0,044	-0,313	0,310	0,313	-0,923	0,296	608
		Q3	-0,085	-0,628	0,318	0,048	-1,252	-0,005	608
		Q4	-0,136	-0,975	0,315	0,002	-1,593	-0,358	608
DunedinPACE	1	Q2	-0,006	-0,002	0,011	0,885	-0,023	0,020	764
		Q3	-0,044	-0,011	0,011	0,309	-0,033	0,010	764
		Q4	-0,218	-0,054	0,011	0,000	-0,076	-0,033	764
	2	Q2	-0,011	-0,003	0,011	0,801	-0,024	0,019	674
		Q3	-0,039	-0,010	0,011	0,369	-0,032	0,012	674
		Q4	-0,146	-0,037	0,011	0,001	-0,059	-0,015	674

Supplementary Table 7: Linear regression analysis of epigenetic age estimates calculated by all available six epigenetic clocks on quartiles of GPx3 intensity in the subgroup of women. Model 1 is unadjusted. Model 2 is adjusted for chronological age, sex, BMI, smoking (packyears), and the first four genetic principal components (PC1 to PC4). The first quartile is used as reference.

Clock	Model		St. β	β	SE	р	lowCI	upCI	n
7-CpG DNAmAA	1	Q2	-0,115	-1,804	0,832	0,031	-3,439	-0,170	548
		Q3	-0,076	-1,159	0,814	0,155	-2,758	0,440	548
		Q4	-0,043	-0,638	0,793	0,421	-2,195	0,919	548
	2	Q2	-0,052	-0,840	1,124	0,455	-3,051	1,372	324
		Q3	0,012	0,198	1,136	0,862	-2,038	2,433	324
		Q4	-0,028	-0,406	1,058	0,701	-2,487	1,675	324
Horvath DNAmAA	1	Q2	-0,012	-0,120	0,650	0,853	-1,398	1,157	362
		Q3	-0,024	-0,242	0,666	0,717	-1,552	1,068	362
		Q4	0,016	0,144	0,604	0,812	-1,044	1,332	362
	2	Q2	0,007	0,074	0,693	0,915	-1,289	1,438	321
		Q3	0,016	0,165	0,708	0,816	-1,229	1,559	321
		Q4	0,055	0,493	0,652	0,451	-0,791	1,776	321
Hannum DNAmAA	1	Q2	0,019	0,141	0,493	0,774	-0,828	1,111	362
		Q3	0,002	0,016	0,505	0,974	-0,977	1,010	362
		Q4	-0,025	-0,169	0,458	0,713	-1,070	0,733	362
	2	Q2	0,061	0,452	0,521	0,387	-0,574	1,477	321
		Q3	0,058	0,448	0,533	0,401	-0,600	1,496	321
		Q4	0,009	0,058	0,491	0,906	-0,907	1,023	321
PhenoAge DNAmAA	1	Q2	-0,032	-0,348	0,711	0,625	-1,746	1,051	362
		Q3	-0,039	-0,436	0,729	0,550	-1,869	0,998	362
		Q4	-0,069	-0,676	0,661	0,307	-1,976	0,624	362
	2	Q2	-0,048	-0,519	0,751	0,490	-1,998	0,959	321
		Q3	-0,072	-0,801	0,768	0,298	-2,312	0,711	321
		Q4	-0,043	-0,417	0,707	0,555	-1,809	0,974	321
GrimAge DNAmAA	1	Q2	-0,016	-0,106	0,426	0,804	-0,943	0,731	362
		Q3	-0,017	-0,112	0,436	0,797	-0,971	0,746	362
	_	Q4	-0,131	-0,777	0,396	0,050	-1,555	0,002	362
	2	Q2	-0,066	-0,439	0,437	0,316	-1,300	0,421	321
		Q3	-0,068	-0,469	0,447	0,295	-1,348	0,411	321
		Q4	-0,135	-0,815	0,412	0,049	-1,625	-0,005	321
DunedinPACE	1	Q2	-0,095	-0,022	0,014	0,114	-0,050	0,005	407
		Q3	-0,073	-0,018	0,014	0,221	-0,046	0,011	407
	_	Q4	-0,308	-0,067	0,013	0,000	-0,093	-0,041	407
	2	Q2	-0,096	-0,023	0,014	0,113	-0,051	0,005	361
		Q3	-0,089	-0,021	0,014	0,140	-0,050	0,007	361
		Q4	-0,234	-0,051	0,014	0,000	-0,078	-0,024	361

Supplementary Table 8: Linear regression analysis of epigenetic age estimates calculated by all available six epigenetic clocks on quartiles of GPx3 intensity in the subgroup of men. Model 1 is unadjusted. Model 2 is adjusted for chronological age, sex, BMI, smoking (packyears), and the first four genetic principal components (PC1 to PC4). The first quartile is used as reference.

Clock	Model		St. β	β	SE	р	lowCI	upCI	n
7-CpG DNAmAA	1	Q2	0,055	0,855	0,826	0,301	-0,767	2,478	518
		Q3	0,037	0,608	0,849	0,474	-1,060	2,277	518
		Q4	-0,020	-0,343	0,874	0,695	-2,059	1,373	518
	2	Q2	0,064	0,992	1,124	0,378	-1,221	3,205	290
		Q3	-0,014	-0,221	1,160	0,849	-2,504	2,063	290
		Q4	-0,068	-1,196	1,248	0,338	-3,652	1,260	290
Horvath DNAmAA	1	Q2	-0,054	-0,510	0,635	0,423	-1,760	0,740	327
		Q3	-0,134	-1,296	0,645	0,045	-2,564	-0,028	327
		Q4	-0,093	-0,999	0,696	0,152	-2,369	0,371	327
	2	Q2	-0,036	-0,324	0,667	0,628	-1,637	0,990	287
		Q3	-0,121	-1,127	0,688	0,103	-2,482	0,227	287
		Q4	-0,124	-1,296	0,741	0,082	-2,756	0,163	287
Hannum DNAmAA	1	Q2	0,001	0,008	0,546	0,988	-1,065	1,081	327
		Q3	-0,038	-0,317	0,554	0,567	-1,406	0,772	327
		Q4	-0,021	-0,190	0,598	0,750	-1,367	0,986	327
	2	Q2	-0,037	-0,299	0,594	0,615	-1,467	0,870	287
		Q3	-0,047	-0,385	0,612	0,530	-1,591	0,820	287
		Q4	-0,040	-0,366	0,659	0,580	-1,664	0,932	287
PhenoAge DNAmAA	1	Q2	-0,037	-0,381	0,694	0,584	-1,746	0,985	327
		Q3	-0,143	-1,514	0,704	0,032	-2,899	-0,128	327
		Q4	-0,094	-1,101	0,761	0,149	-2,598	0,395	327
	2	Q2	-0,010	-0,095	0,729	0,896	-1,531	1,341	287
		Q3	-0,145	-1,489	0,752	0,049	-2,970	-0,007	287
		Q4	-0,076	-0,873	0,810	0,282	-2,469	0,722	287
GrimAge DNAmAA	1	Q2	0,022	0,152	0,457	0,740	-0,747	1,051	327
		Q3	-0,109	-0,763	0,464	0,101	-1,675	0,149	327
		Q4	-0,137	-1,060	0,501	0,035	-2,045	-0,075	327
	2	Q2	-0,035	-0,240	0,447	0,592	-1,121	0,640	287
		Q3	-0,126	-0,873	0,461	0,059	-1,781	0,035	287
		Q4	-0,147	-1,146	0,497	0,022	-2,124	-0,168	287
DunedinPACE	1	Q2	0,080	0,020	0,016	0,209	-0,011	0,051	357
		Q3	-0,015	-0,004	0,016	0,809	-0,036	0,028	357
		Q4	-0,080	-0,022	0,017	0,200	-0,056	0,012	357
	2	Q2	0,064	0,016	0,017	0,345	-0,017	0,049	313
		Q3	0,006	0,001	0,017	0,934	-0,033	0,036	313
		Q4	-0,061	-0,017	0,018	0,354	-0,053	0,019	313

Supplementary Figure 1: Scatterplots of serum selenium levels and biological age estimators calculated from all six available epigenetic clocks in women and men (A) as well as in the all-women (B) and all-me (C) subgroup. The x-axis is log-scaled. All available participants of the older age group are included.

Supplementary Table 2: Boxplots of biological age estimators calculated by all six available epigenetic clocks stratified serum selenium status (deficient vs. sufficient) in men and women (A), women (B) and men (C). Statistical significance of difference between group means was assessed by t-test.

Supplementary Figure 3: Scatterplots of selenoprotein P levels and biologcal age estimators calculated from all six available epigenetic clocks in women and men (A) as well as in the all-women (B) and all-me (C) subgroup. The x-axis is log-scaled. All available participants of the older age group are included.

Supplementary Figure 4: Boxplots of biological age estimators calculated by all six available epigenetic clocks stratified by quartiles of selenoprotein P in men and women (A), women (B) and men (C). Statistical significance of difference between group means was assessed by t-test.

Supplementary Figure 3: Scatterplots of GPx3 intensity and biological age estimators calculated from all six available epigenetic clocks in women and men (A) as well as in the all-women (B) and all-me (C) subgroup. The x-axis is log-scaled. All available participants of the older age group are included.

Supplementary Table 4: Boxplots of biological age estimators calculated by all six available epigenetic clocks stratified by quartiles of GPx3 intensities (proteomics) in men and women (A), women (B) and men (C). Statistical significance of difference between group means was assessed by t-test.