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Abstract— Mental health disorders affect countless people 
worldwide and present a major challenge for mental health 
services, which are struggling with the demand on a global scale. 
Recent studies have indicated that activity of the brain’s Default 
Mode Network (DMN) could prove insightful in monitoring 
patient recovery from depression and has been used as a 
therapeutic target itself. An opportunity exists to replicate recent 
therapeutic protocols targeting DMN connectivity via functional 
magnetic resonance imaging using the more economically 
scalable modality of electroencephalogram (EEG). The aim of 
this work was to validate the accuracy of real-time DMN 
detection methods applied to EEG data, using a publicly 
available dataset. Using a Hidden Markov Model to identify a 12-
state resting-state network, this work achieved an overall DMN 
detection accuracy of 95%. Furthermore, the model was able to 
achieve a correlation of 0.617 between the baseline and calculated 
DMN fractional occupancy. These results demonstrate the ability 
of real-time analysis to effectively identify the DMN through 
EEG data providing an avenue for further applications that 
monitor and treat mental health disorders. 

Keywords— Real-time, EEG, HMM, default mode network, 
depression, machine learning 

I. INTRODUCTION 

The DMN describes  a set of brain regions that 
synchronously coactivate during ‘idle’ periods of wakefulness. 
This brain network has functional roles supporting attention 
and cognition [1], [2], and is associated with a number of 
introspective cognitive states, including episodic memory and 
future-oriented thought [3], [4]. The clinical significance and 
importance of the DMN continues to grow in scientific 
literature, with DMN dysfunction associated with numerous 
mental health disorders, including depression [5], [6]. 
Normalisation of DMN connectivity is theorised to be the 
mechanism of action of transcranial magnetic stimulation 
(TMS), a brain stimulation therapy that has proven effective in 
treating depression [6]. Neurofeedback methods implemented 

using functional magnetic resonance (fMRI) imaging to target 
DMN connectivity patterns have also been shown to reduce 
depressive symptoms in patients  [7], [8]. 

Methods that detect DMN activity have been widely 
implemented in fMRI, but have also been demonstrated in non-
invasive neurophysiology modalities such as EEG [9]. 
Whereas DMN-neurofeedback methods implemented in fMRI 
have been effective in reducing depressive symptoms [7],[8], 
these methods face significant economic barriers to becoming a 
scalable therapy. EEG based DMN-Neurofeedback has the 
potential to achieve comparable results whilst presenting 
drastically fewer practical and economic barriers to patient 
adoption. This could facilitate a quantitative and data-driven 
approach to mental healthcare, by augmenting current 
therapeutic practices with real-time readouts of DMN activity 
changes that assess and assist in clinical decisions and 
interventions. There is a clear motivation and increasing need 
to quantify, define, and understand the DMN. 

In this work, we compare a commercially available 
software package for real-time DMN detection against an 
emerging gold-standard methodology used in the research 
space for post-hoc inference of DMN activity. Applied in an 
offline fashion and utilising a number of techniques for noise 
reduction and source space signal estimation that are not 
technically feasible in real-time, this emerging gold-standard 
has been used to characterise physiological [10], cognitive [11] 
and task-based [12] characteristics of DMN activity. If 
validated, the ability to monitor this network in real-time at the 
high temporal resolution of EEG would present new 
opportunities for clinical monitoring and intervention in mental 
health illnesses. 

II. DATA 

The Leipzig Study for Mind-Body-Emotions Interactions 
(LEMON) dataset consists of 227 participants with two distinct 
age groups, a young cohort (N=153, 25.1±3.1 years, 45 female) 
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and an elderly cohort (N=74, 67.6±4.7 years, 37 female), 
sourced from Leipzig, Germany between 2013 and 2015 [13]. 
The study protocol and open access publication of the data for 
research purposes was approved by the ethics committee at the 
medical faculty of the University of Leipzig (reference number 
154/13-ff), with all participants providing consent to their data 
being shared anonymously prior to any data acquisition.  The 
dataset includes a resting-state fMRI and a 62-channel EEG 
experiment taken at rest (N=216) over 16 min. The EEG 
recording consists of 16 blocks, each 60s long, eight with eyes-
closed (EC) and eight with eyes-open (EO), where EC and EO 
were interleaved. Participants were asked to stay awake while 
fixating eyes on a computer screen. For the purposes of this 
study, the subset of 110 subjects was selected for whom both 
fMRI structural scans and EEG channel localizer data was 
available.  

III. METHODOLODGY 

In this work we measure the performance of real-time 
DMN detection algorithms against a comparable offline 
method established in the literature that is not real-time 
compatible. This comparable offline method may be 
considered an emerging gold-standard in the research space for 
detecting DMN activation from non-invasive neurophysiology 
data. The real-time DMN detection algorithms tested are 
implemented through proprietary software produced by 
Resonait Medical Technologies Pty Ltd, fully outlined in[14]. 
The established method for inferring the DMN states has been 
the subject of numerous publications [7], [10], [15], [16]. It 
was applied to the LEMON dataset using the open source 
OSL-Dynamics toolbox [17]. 

The offline method involves an initial set of steps for data 
preprocessing. EEG data was pre-processed through a pass 
band of 1 to 45Hz and down sampled to 250 Hz. Data was then 
co-registered to each subject’s structural MRI scan using a 
multiple local sphere forward head model and then underwent 
source space reconstruction using an LCM-V Beamformer 
projected to an eight millimetre grid. This grid was then 
parcellated into 38 regions of interest (ROIs) [15]. Results for 
this work was generated using both the raw sensor and source 
space data. However, using source space data would not be 
feasible in real-time applications given the processing pipeline. 

With all data projected into a common source space, the 
method then fits a Time delay Embedded Hidden Markov 
Model (TIDE-HMM) [9]. This framework [11] fits a 
generative model that describes the data Xt at each time point t 
as being generated from a latent state variable Zt∈[1,2,…K], 
where K is the total number of states. For consistency with the 
literature [9], [11], we selected a value of K=12. 

The complete model specification includes both the 
probabilistic model of temporal dynamics and the observation 
model, where a probabilistic model determines the activation 
of a specific latent state based on the input data. As described 
in Vidaurre et al. (2018) [9], the observation model applied 
uses a temporal embedding with a zero-mean Gaussian 
observation model: 

 P(vec(Xt-1:t+1)B1|Zt = k) ~ N(0,∑k) 

Temporal embedding was performed by the vec operator, 
where Xt-l:t+l  is a matrix of points with dimensions [W×P] 
centred at time point t, P is the number of dimensions (EEG 
channels in this work) and W=2l+1 is the length of the 
temporal embedding. The matrix B of dimension [WP×Q] 
reduces the dimensionality of the data for computational 
reasons by applying PCA with eigenvalue normalisation, with 
the parameter Q set to explain 90% of the embedded data 
variance. For a real-time application, this model was modified 
to include only current and previous time points: 

 P(vec(Xt-1:t)B2|Zt = k) ~ N(0,∑k) 

In this model W=l+1 (where l was chosen to be seven 
samples in this work) and the [W×P] matrix of Xt-l:t points were 
stacked into a [W.P×1] vector through the vec operator. This 
vector was then projected to a lower dimensionality space by 
the linear operator B and modelled with a Gaussian 
distribution, with zero mean and a [Q×Q] covariance matrix 
determined by the active state. As a result, each RSN-state is 
parameterised by a unique covariance matrix, which reflects 
the autocovariance of each channel and the cross-covariance 
across channels [11]. Vidaurre et al. (2018) described how this 
effectively represented a parameterisation of the power 
spectrum and the cross-power spectrum, respectively [10], 
[11]. Therefore, each RSN-state corresponds to a distinct 
distribution of power on each channel and coherence between 
channels [10]. 

Given the large datasets and volume of data, scalable model 
inference was achieved using stochastic gradient variational 
Bayes methods that iteratively develop a model through batch 
training [10], [11]. [9]. To ensure convergence, full model 
inference was run five times, where the model with the lowest 
final free energy was used [11]. For RSN-state labelling, states 
were assigned according to ordinal distances as measured by 
the transition matrix and probability of direct state transitions 
(where high probabilities describe small distances and detailed 
further in Higgins et al.  2021) [11]. An active DMN state at 
time t would be denoted by Zt=1, where the DMN corresponds 
to RSN-state-1. 

The LEMON dataset was cross-validated using five folds, 
where at each fold a random non-stratified training and testing 
set are defined (88 and 22 participants, respectively). For the 
purposes of evaluation, the number of participants from the 
training set are adjusted to train the model and measure their 
performance on the testing set. These models are trained and 
tested using the raw sensor space data. The DMN detection 
accuracy was calculated, along with the DMN sensitivity and 
specificity. Fractional occupancy (FO) was also measured to 
compare the correlation from the baseline and calculated RSN 
for each recording. Lastly, DMN sensitivity and specificity was 
compared for instances of DMN with varying durations. 
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Fig.1. Confusion matrix of five-fold cross-validated results; state 1 is the 
DMN state. 

 
Fig. 2. Real-time performance improves over state visits and intervals 
that are sustained over time. DMN sensitivity increases very robustly 
with state visit duration (R=0.922, p=7.1E-32). Concurrently, DMN 
specificity increases very robustly with inter-state interval duration 
(rho=0.885,p=6.95E-51). 

IV. RESULTS 

Accuracy of DMN state detection was first measured 
independently over time samples, at the sampling period of 
0.004 seconds. At this temporal resolution when applied real-
time in sensor space, the model achieved a DMN detection 
accuracy of 95%, with a sensitivity of 45% and specificity of 
97% (see Table I). 

TABLE I.  CROSS-VALIDATED DMN PERFORMANCE 

 Accuracy Sensitivity Specificity 

Sensor 0.95±0.018 0.45±0.16 0.97±0.018 

Comparing these results to the detection accuracies of other 
states in sensor space shows that the DMN state has the third 
highest accuracy and sensitivity of any state. This supports the 
conclusion that the DMN state profile, consisting of elevated 
alpha band power and coherence distributed over posterior 
cingulate and lateral-parietal brain regions concurrent with 
elevated delta/theta band power and coherence across frontal-
temporal regions, is relatively well predisposed to real-time 
detection compared to other brain networks. 

We then investigated how DMN sensitivity and specificity 
related to traits of individual DMN state visits. Fig 2 plots the 
sensitivity of detection vs state visit length, alongside the 
specificity as a function of inter-state interval length. This 
demonstrates a robust relationship, where the real-time 
detection performance is much more sensitive for longer state 
visits (rho=0.922, p=7.1E-32), reaching an average sensitivity 
of 70% for state visits over 300 milliseconds in length (see Fig 
2). Conversely, the real-time detection performance displays 
higher specificity over inter-state intervals that are longer in 
duration (rho=0.885,p=6.95E-51), reaching around 90% for 
intervals exceeding 300 milliseconds. Taken together, these 
results suggest real-time performance is more robust to both 
intervals and state visits that are sustained over time, traits 
which have been attributed to stronger correspondence to 
cognitive processes [13]. 

We then investigated how well the algorithm can detect 
differences in each individual’s baseline state profiles, which 
could be important for a variety of prognostic or diagnostic 
applications. The fractional occupancy over all inferred states 

was measured and compared across subjects. This achieved a 
correlation of R=0.617 (p=7.11E-13 see Fig 3). The Bland-
Altman plots also revealed good agreement between the 
baseline and calculated fractional occupancy, albeit with a 
small negative bias. However, this bias might be explained by 
the poor detection of DMN states with short durations. 

V. DISCUSSION 

An ability to detect activity in the brain’s default mode 
network in real-time could have a range of potential clinical 
applications for mental health illnesses, particularly depression. 
The results presented above validate the technical accuracy of 
the real-time system tested, highlighting the potential to 
measure DMN activity from real-time EEG recordings. In 
particular, a range of metrics presented comparing accuracy of 
DMN detection firstly at the temporal resolution of 0.004sec, 
then over longer timescales, and then across different subjects 
supports the conclusion that DMN detection performance is 
reasonably robust across different timescales and comparisons. 

Nonetheless, some caution is warranted interpreting these 
results. Firstly, our analysis assumes the output of the HMM-
TIDE model on source reconstructed data is an objective 
ground truth. This is a modelling assumption, and in reality no 
underlying ground truth for the time-course of DMN activation 
is obtainable. Brain networks are defined by patterns of 
correlations over disparate anatomical regions, which do not 
have discretised boundaries in either time or space. The 
emerging gold standard is to impose such boundaries in a data-
driven way, where these boundaries are inferred from a 
statistical analysis of a large dataset. This also requires that 
data is co-registered to an individual’s MRI and EEG fiducial 
markers, correcting for individual differences in neuroanatomy, 
then source reconstructed to a common brain space. Our results 
should be interpreted therefore as measuring concurrence with 
this approach, as comparison to an objective ground truth is not 
possible. 

In a similar manner, when computing accuracy metrics we 
conservatively treat all states as independent. In reality brain 
networks are not independent but overlap in both function and 
physiology. The confusion matrix presented in Fig 1 for 
example shows the most common misclassification for DMN 
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Fig.3. Correlation of fractional occupancy (FO) of baseline and calculated 
cross-validated results with corresponding Bland-Altman plots. 

false negatives was into state 4 , whereas the least common 
misclassification was into state 12. Our performance metrics 
conservatively weight each of these misclassifications equally, 
yet state 4 is the Parietal Alpha Network that is functionally 
linked to the DMN [11], whereas state 12 is the Dorsal 
Attention Network that is robustly anticorrelated with the 
DMN [18]. 

The pattern between accuracy metrics and timing patterns 
is also encouraging when considering the practical applications 
of this algorithm. Neurofeedback involves delivering a 
stimulus to a user when a brain state is detected, however the 
latency between a stimulus being triggered and it actually 
being transmitted to the relevant areas of the brain is on the 
order of 200-300 milliseconds [19]. The temporal profile of 
detection accuracy is quite serendipitous in this regard, being 
more strongly weighted to trigger selectively during longer 
DMN state visits, and similarly less likely to trigger a false 
negative during longer intervals between DMN state visits. 
Such a profile increases the likelihood of the stimulus reaching 
the relevant brain areas while the network is still engaged, 
despite the latency involved. 

Similarly, the detection of each instance of DMN might not 
be as valuable as the ability to capture each individual’s FO of 
DMN, which may prove more clinically relevant. The Bland-
Altman plot demonstrates the ability to correctly predict the FO 
for each participant with a high correlation (R=0.617) and a 
weak negative bias (see Fig 3). The demonstrated ability to 
detect and quantify DMN activity will form the basis for future 
work to detect and evaluate patients with depression and 
psychiatric disorders.  

VI. CONCLUSION 

These results have demonstrated the ability to use a sub-
selection of the LEMON dataset to predict the brain-state time 
course using the Resonait model. The clinically important 
DMN state was detected with a high degree of accuracy (95%) 
and specificity (97%), but with considerably lower sensitivity 
(45%). The source of missed DMN instances appears to be 
associated with occurrences of DMN with very short durations, 
which may be less clinically meaningful for therapeutic 
applications. The results furthermore confirm a high 
correlation in the FO statistics over subjects, achieving an R-
value of 0.617. Taken together, these results validate the 

approach of real-time DMN detection in EEG data, which has 
potential for a range of clinical applications in mental health. 
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