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Abstract 

Globally, urban settlements face increases in the frequency, magnitude, and duration of extreme climate events and 

shifts in their timing and spatial extent. Variation in temperature and rainfall conditions affect the temporal onset of 

dengue transmission. However, there is a need to understand how climate-related patterns and disease transmission 

mechanisms vary by location, particularly for topographically complex landscapes. In this investigation, we used 

dengue cases from 1,120 municipalities and five regions across Colombia during 2008–2019, and analyzed 

associations with extreme climate covariates generated from fine-scale, daily-level meteorological data, accounting 

for varying landscape and socio-economic properties. Using Bayesian spatio-temporal hierarchical models, we 

determined that high-intensity warm spells (with positive temperature anomalies of 8–12°C above mean monthly 

conditions) resulted in an earlier onset of dengue transmission risk in high-elevation settlements compared to low-

elevation settlements. Furthermore, the risk of dengue transmission after extremely dry conditions was greater and 

extended for a longer duration in highly urbanized municipalities compared to those with a low urban population. 

Our findings highlight that meteorological hazards affect disease transmission in urban settlements differently based 

on elevation and socio-economic conditions. Additionally, our analysis adds to increasing evidence of the 

vulnerability of mountainous urban communities to extreme weather and vector-borne diseases. Overall, we 

emphasize the need for monitoring and forecasting the occurrence and intensity of meteorological hazards and 

associations with emerging climate-sensitive disease threats. 
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Main  

Globally, urban settlements are facing increases in the frequency, magnitude, and duration of extreme 

climate events, as well as shifts in their timing and spatial extent, associated with climate change1,2. Heavy rainfall, 

droughts, and warm spells pose environmental hazards and exacerbate the existing challenges that urban populations 

face, including housing security, water supply, and socio-economic inequalities3,4. These inter-linked climate and 

urban issues directly and indirectly impact human health, including infectious disease transmission. Vector-borne 

diseases are particularly sensitive to climate conditions5. Temperature drives the biology of vectors and pathogens, 

and rainfall (as well as human water storage and management practices) regulates the availability of standing water 

where mosquitoes lay their eggs, determining the size and distribution of mosquito populations. Nearly half of the 

global population is at risk for dengue virus (DENV 1-4) infection—living in urban centers with the implicated 

Aedes spp. mosquitoes present and under environmental conditions suitable for virus transmission6,7. Aedes spp. 

mosquitoes feed on humans as a blood meal source and lay their eggs in water-holding containers, including 

discarded waste and water storage receptacles found across human-dominated landscapes8. Therefore, climate 

interacts with the socio-economic conditions of an urban settlement (e.g., human population density, availability of 

waste and water management) to determine dengue risk9.  

Temperature and rainfall act on multiple co-occurring and interacting processes that drive DENV 

transmission. As a result, climate affects dengue risk in complex and non-linear ways that vary over space and time, 

often with time lags that range from several weeks to months10,11. Ambient air temperature determines the speed of 

Aedes spp. life history and behavioral processes (e.g., development rates, survival rates, biting rates, etc.) as well as 

DENV replication rates within the mosquito. DENV transmission increases with rising temperatures, peaking at 

mean temperatures of 26–29°C, and then diminishes above this thermal optimum12. Rainfall leads to water 

accumulation in containers and infrastructure found throughout urban environments, creating aquatic habitat for 

juvenile mosquito development. Human water storage practices further complicates these dynamics, as people living 

in water-scarce regions (or settlements with unreliable water access) store water in containers around the home and 

community, that serve as egg-laying sites for female mosquitoes.  

Over two decades of climate and dengue research has established the associations between inter-annual 

climate phenomena (e.g., El Niño-Southern Oscillation, ENSO) and monthly weather conditions (e.g., mean 

monthly temperature) on dengue risk5,13–17. The association between extreme climate events and dengue, however, 

remains comparatively understudied. Evidence suggests that outbreak risk increases one to three months after 

heatwave events18,19. With respect to rainfall, heavy rains may flush out juvenile populations from water-holding 

containers, decreasing initial risk20. During dry spells, the need for communities to store water (for daily household 

uses such as cleaning and cooking) contributes to a build-up of aquatic habitat and mosquito populations over time, 

with studies showing spikes in dengue incidence three to five months after the onset of dry conditions5. However, 

the nuanced effects of extreme climate events, with different intensities and durations, on dengue risk requires 

further investigation.  

Urban settlements are not uniformly vulnerable to the impacts of climate extremes on disease risk21. Certain 

regions, for example highland areas, are particularly sensitive to changes in temperature22. These cooler 
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environments at the limits of the historical range of Aedes-borne diseases, are increasingly vulnerable to emerging 

disease outbreaks associated with warming temperatures23. In Puerto Rico, for example, temperature variability had 

the greatest impact on dengue incidence in the island’s mountainous zones24. In Nepal, climate change has 

intensified the magnitude of dengue outbreaks in mountain regions25,26.  

The present-day socio-economic characteristics of urban settlements also determine how climate extremes 

impact dengue transmission risk. For example, in resource-limited settings, such as large informal urban settlements, 

heavy rainfall events coupled with garbage accumulation and poor housing conditions may result in the creation of 

high densities of aquatic larval habitat within a short span of time. Whereas, settlements that are formally-

constructed with high levels of impervious cover, may see higher rates of flash flooding and washout of larval 

habitat. These hypothesized interactions between climate conditions and urban features are generated from a limited 

number of studies. To inform dengue prevention in the midst of a changing climate, there is a need to understand 

how climate extremes drives dengue risk for urban settlements with different geographic features and levels of 

socio-economic vulnerability. 

Here, we highlight the country of Colombia as a case study to examine the nexus of extreme climate, urban 

socio-economic conditions, and dengue. Colombia is a highly urban country and labeled as “megadiverse,” 

containing a high degree of spatial heterogeneity in climate regimes and ecosystems27. The country, therefore, offers 

immense opportunity to examine how climate extremes interact with the geography and socio-economic conditions 

of urban settlements to drive dengue risk. We coupled spatio-temporal Bayesian hierarchical models with distributed 

lagged non-linear models (DLNMs). This approach simultaneously quantifies the spatially-varying, non-linear, and 

delayed dependencies between dengue cases and extreme climate conditions28. We use fine-scale, daily-level data to 

derive extreme climate metrics, emphasizing how short-term fluctuations in meteorological conditions have long-

lasting impacts on dengue risk. Given Colombia’s high degree of heterogeneity, results from this study can be used 

to inform the development of region-specific dengue early warning systems and outbreak preparedness activities for 

urban settlements across South America and the world.   

 

Dengue, Extreme Weather, and Urban Characteristics 

     Our study included 999,523 cases of dengue across 1,120 municipalities in Colombia from January 2008 

to December 2019. National outbreaks occurred in 2010, 2013, 2016, and 2019 (Fig. 1a). Dengue incidence was 

highest for departments in the Andean, Orinoco, and Amazon regions (Fig. 1b). Dengue seasonality varied along the 

country’s coastline, with higher incidence during the first half of the year on the Pacific Coast, and during the 

second half on the Caribbean Coast. For interior territories, the Orinoco and Amazon, dengue incidence was higher 

in the first to middle months of the year. In the Andean region, departments with municipalities at lower elevations 

(e.g., Tolima, Huila, Norte de Santander) experienced high incidence year-round and consistently during the study 

period. In contrast, those at higher elevations (e.g., Cundinamarca, Boyacá) exhibited high rates only during 

outbreak years (Fig 1b, Fig. S2). Through field sampling, Aedes spp. mosquitoes have been detected at elevations as 

high as 2,300 meters, with mosquitoes testing positive for dengue virus up to 1,900 meters29,30. Here, we observed 

cases in 44 municipalities with elevations above 2,300 meters, with cases detected as high as 3,165 meters. Cases at 
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the highest end of this elevation range are hypothesized to be travel-associated, with infections acquired at lower-

elevation municipalities.  

Measured climate extremes were frequent during our study period, consistent with evidence that Colombia 

is highly vulnerable to extreme climate, particularly during ENSO events31,32. Approximately 58% of municipalities 

(N=648/1,120) experienced at least one month where monthly temperature anomalies, precipitation anomalies, or 

both that exceeded the upper tercile their long-term average (1981–2019) (Fig 2a). Additionally, temperature 

anomalies exhibited elevation dependency for the 594 municipalities between 500–2500 meters. For example, 

municipalities between 1000–1500 meters experienced average temperature anomalies of 1.04ºC, those at 1500–

2000 meters, 1.10ºC, and those between 2000–2500 meters, 1.13ºC (Fig 3).  

Half of Colombia’s municipalities have 40% or more of their population residing in urban settlements. 

Municipalities are distributed along a wide elevation range (0–3,165 meters), with weak associations between 

elevation and the percent urban (r=-0.23), indicating that the proportion of the population living in urban settlements 

is not elevation-dependent. There are strong positive correlations between the percent urban and access to water 

systems (r=0.77); however only moderate negative  associations between the percent urban and the proportion 

“living with adequate housing conditions” (r=-0.4), as measured by the 2018 census33.  

 

Comparing Models of Monthly Climate Extremes to Models of Mean Conditions 

As a first step, we established a baseline model to predict monthly relative risk (RR) of dengue, with year-

specific municipality-level spatial random effects, monthly department-level temporal random effects, and a 

regional fixed effect (Table S2). We then added to this baseline by comparing dengue-climate models of monthly 

climate extremes to models of mean conditions—with lagged between 0 and 6 months for each climate variable. We 

explored extreme temperature variables including the number of warm days per month (WarmDays; i.e., days 

exceeding the 90th percentile of long-term mean conditions, T90-mean); the maximum duration of a warm spell 

(MaxDurationWarmSpell; i.e., maximum duration of consecutive warm days); and the maximum intensity of a warm 

spell (MaxIntensityWarmSpell; i.e., maximum positive temperature anomaly (°C) of a warm spell over long-term mean 

conditions). We also explored extreme precipitation variables including monthly positive precipitation anomaly 

(AnomalyPrecip, i.e., exceedance of monthly rainfall over the monthly long-term mean); the number dry and wet days 

(DryDays, WetDays; i.e. days with less than or greater than 1 mm of precipitation, respectively); and the maximum 

dry and wet spell durations (MaxDurationDrySpell, MaxDurationWetSpell). Full definitions of extreme climate variables 

are provided in Table 1.  

For temperature, we found that the Tmean  model had a lower DIC than three extreme temperature models 

(WarmDays, MaxDurationWarmSpell, MaxIntensityWarmSpell). However, the mean absolute error (MAE) of the 

MaxIntensityWarmSpell model was lower than the MAE of the Tmean  model for 26% of municipalities across the 

country, indicating better prediction in these areas (Table S5, Fig. S6–S7). We observed this improved model 

prediction for 25% of municipalities in the Caribbean, 28% in the Andean, and 34% in the Pacific region (Fig. S6). 

Within the Andean region, improved model prediction was indicated for 29% of intermediate- and 25% of high-

elevation municipalities, compared to 11% of low-elevation municipalities. Therefore, we examined the additive and 
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interactive effects of MaxIntensityWarmSpell and municipality elevation on lagged dengue risk. The interaction model 

(MaxIntensityWarmSpell *Elevation) had a substantially improved model fit over the Tmean  model (ΔDIC = 10949).  

For dry conditions, the DryDays model had a better fit than the Total-Precip model (ΔDIC = 301). We 

observed an improvement using DryDays over Total-Precip for 48% of municipalities across the country, with the 

greatest added value seen for municipalities in the Andean, Amazon, and Orinoco regions (with added value for 

51%, 66%, and 80% of municipalities in the regions, respectively). Next, we explored the interaction between 

DryDays and the probability that individuals may need to store water within the household. We hypothesized that 

variables including the proportion of residents with water system access or inadequate household conditions, would 

more closely reflect the need for water storage and yield the best model fit; however, this was not reflected in the 

data. Instead, the model with percent of the population residing in urban settlements (i.e., Percent Urban) yielded a 

substantially better fit over the proportion of residents with water system access model (ΔDIC = 5084).  

Finally, we found that the number of rainy days per month (WetDays) had a better fit than Total-Precip 

(ΔDIC = 114) and other measures of extreme precipitation, including monthly precipitation anomalies (ΔDIC = 

691).  We observed an improvement using WetDays over Total-Precip for 55% of municipalities across the country, 

with the greatest added value seen for municipalities in the Andes, Amazon, and Orinoco regions (with added value 

for 55%, 72%, and 77% of municipalities in the regions, respectively). We hypothesized that variables including 

human population density or the percentage of the municipality population residing in low-income housing would 

more closely reflect the potential for water container accumulation in the urban landscape; however, the interaction 

model including WetDays *Percent Urban best fit the data. Given that the best-fit models for rainfall conditions 

included the interaction between wet or dry days with the percent urban, we constructed one final model, 

incorporating the cumulative effects of extreme temperature-elevation interactions and rainfall conditions-urban 

interactions (Table 3).   

 

Warm spells and Dengue Risk along an Elevation Gradient  

Warm spells had a sustained impact on the RR of dengue for up to six months (Fig. S12). From the best-

fitting model (MaxIntensityWarmspell), we found that warm spells (> 2 days) with positive temperature anomalies (i.e., 

intensities) of 12–13°C above the municipality’s long-term mean temperature contributed to a RR peak 2–4 months 

after the extreme temperature event occurrence (RR > 4.0) (Fig. S12). When observing MaxIntensityWarmspell along 

an elevation gradient, we made two observations regarding the temporality of the lagged response and the maximum 

RR (Fig 4). We found that at low elevations, the maximum RR occurred 2–3 months after an anomalous temperature 

event. However, for municipalities above 1,000 meters, RR was highest in the first two months after an extreme 

temperature event (Fig. 4, Table 3). Furthermore, at higher elevations, moderate-intensity warm spells (2–6°C) 

resulted in sustained RR for the full six-month observation period, whereas high-intensity temperature anomalies (8–

12°C) contributed to increases in RR for a slightly shorter period (for up to five months, Fig S14). As anticipated, 

the maximum RR was higher for low-elevation municipalities compared to high-elevation municipalities, given that 

ambient air temperatures decrease at higher elevations. For low-elevation municipalities, the maximum RR 
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exceeded 4.0; for municipalities above 1,500 meters, maximum RR was below 3.0, and at the highest elevations 

(~2,500 meters) the maximum RR stayed below 2.0 (Fig. 4, Fig. S11).  

Other extreme temperature indicators provided information on the exposure-lag-response relationship with 

dengue incidence and served as points of comparison for previous dengue DLNM studies. Models of warm spell 

duration (MaxDurationWarmSpell) indicated that a warm spell of > 2 days is associated with increases in RR for up to 

six months (Fig. S16a). When this warm spell lasts 15 days, the highest risk (RR>1.25) is observed within the first 

three months before decreasing over time; and when a warm spell lasts nearly one month (>25 days), the highest risk 

(RR>1.4) is observed within a matter of weeks before decreasing over time. 

 

Extreme Rainfall and Dengue Risk along a Socio-economic Gradient (280) 

When examining the effects of dry days on dengue risk, across levels of urbanization, there is an initial 

decrease in risk within the first 0–2 months, followed by an increase in risk at 3–6 months. Increases in risk (i.e., 

RR>1) were triggered by as few as 3–5 dry days per month. The highest levels of risk were observed when almost 

the entire month was made up of dry days (> 26 dry days), with a peak RR occurring at a 4–5-month lag.  

When examining this rainfall-dengue relationship along a gradient of less to more urbanized (based on 

percent urban), RR was higher for highly urbanized municipalities (> 60% of the population living in urban 

settlements) compared to less urbanized municipalities (<25% urban), and this risk extended for a longer duration of 

time. For instance, less urbanized municipalities experienced maximum dengue risk (RR=1.1) with a 3–5-month lag, 

whereas highly urban municipalities (60% urban) experienced a RR of 1.4, with risk extending up to six months. 

Similarly, the initial protective effect of dry conditions are greater for rural municipalities than urban municipalities, 

and happen more immediately. Specifically, for rural municipalities, the lowest RR is 0.6 and occurs within the first 

two months of a municipality experiencing dry conditions. For highly urban municipalities, the lowest RR is 0.82 

and occurs with a lag of 1–3 months after a municipality experiences dry conditions.  

 

Discussion  

In this study, we examined the lagged and non-linear effects of climate extremes on dengue risk in 

Colombia, a highly urban country with a topographically-complex landscape. We found that moderate-intensity 

warm spells extended the duration of increased dengue risk up to six months. High-intensity warm spells posed a 

more immediate (i.e., short-term) risk for high-elevation municipalities than low-elevation municipalities. 

Additionally, our results support previous indications that dry conditions contribute to increased dengue risk at a 3–

5-month time lag. The magnitude of risk is higher for urban municipalities than rural municipalities28. Our 

investigation uniquely tested monthly-level variables of extreme climate derived from daily-level weather data 

(blended from satellite imagery and weather station data), revealing promising, and thus far under-utilized, 

indicators for future climate and vector-borne disease investigations.  

The greatest temperature anomalies were observed in the Andean region, prompting us to investigate the 

interactive effects of extreme temperature and elevation on dengue risk. While previous studies have examined the 

effects of extreme temperature on dengue risk, the effect modification of this risk by elevation has not previously 
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been quantified18,19,34. Here, we found that high-elevation settlements (>1,750 meters) had an immediate increase in 

dengue relative risk after a high-intensity warm spell (8–12°C above normal monthly conditions) and an extended 

duration of the highest-risk period. However, low-elevation settlements below (<1,000 meters), had the highest 

dengue relative risk 2–3 months after a high-intensity warm spell.  

We attribute these differences to ambient temperature conditions of the municipality, and in particular, 

where the municipality is situated along the thermal response curve for dengue virus transmission probability. 

Laboratory and modeling studies have indicated that for the dengue virus, optimal transmission conditions occur 

between 26–29°C; above this, the transmission probability decreases12. For our study period, high-elevation 

Colombian municipalities had median average annual temperatures of 15°C (IQR: 13°C, 18°C), while low-elevation 

municipalities had median average annual temperature of 27°C (IQR: 25°C, 28°C). Therefore, for high-elevation 

municipalities with established Aedes spp. populations, vector and virus traits are optimized during warm spell 

intensities of 8–12°C, whereas for low-elevation municipalities, these biological processes would exceed their 

thermal optimum.  

Our findings highlight the value of tailoring climate information into meaningful indicators of vector 

biological and ecological processes, as opposed to relying on mean conditions alone.  An entomological 

investigation by Carrington et al. (2014) showed that temperature fluctuations in aquatic larval habitats influence 

immature mosquito development, while changes in ambient air temperature affected female egg production (i.e., 

fecundity)35. Specifically, large diurnal temperature variation (18.6°C) at low-temperature water conditions (16°C) 

increased larval survival and decreased development time compared to constant temperature conditions36,37. 

However, small fluctuations (7.6°C) at intermediate and high mean temperatures (26°C and 35°C, respectively) 

slowed the development of immature mosquitoes35 Furthermore, they demonstrated that small variations in daily 

ambient temperature at high mean temperatures terminated female egg production35. While daily temperature 

variation of aquatic habitat is not directly associated with the warm spell intensities that we used in our study, these 

experimental findings provide supportive evidence that juvenile development may accelerate under extreme 

temperature conditions at high elevations, resulting in increased dengue risk within a short time window. In contrast, 

juvenile development may slow down and female mosquito fecundity may decrease under these same extreme 

temperatures at low elevations, contributing to delayed increases in dengue incidence.  

For low-elevation regions with high baseline temperatures, a study in Vietnam also described a delayed 

spike in dengue risk after a heatwave (defined as more than seven days of temperatures > 95th percentile, 24.3°C)19. 

While in Singapore, researchers found initial decreases in dengue relative risk (RR<1) in the weeks immediately 

following heatwaves (three or more days of temperatures > 90th percentile, 33.2°C)32. Alternatively, in attempts to 

explain the demographic mechanisms behind delayed mosquito population outbreaks at anomalously high 

temperatures, Chaves et al. 2014 implemented a two-stage demographic model of Ae. aegypti larvae and adults38. 

They observed 10-week delays as high-temperature environments initially triggered decreases in larval survival, but 

later initiated compensatory increases in fecundity (which were assumed within the model, based on population 

fitness trade-offs) that lasted the span of the heatwave, as well as increases in larval survival and responsive 

decreases in fecundity when temperature conditions returned to normal. While there are indications that extreme 
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temperature anomalies at high mean temperatures delay the onset of increased risk, the biological and statistical 

links between extreme temperature conditions and mosquito ecology are poorly understood. Further laboratory, 

field, and statistical investigations are needed5,39.  

Our findings indicate a different dengue risk profile for high versus low-elevation municipalities under 

extreme temperature conditions. First, high-elevation municipalities experiencing anomalous temperatures may not 

have the same early warning lead time for a dengue outbreak as low-elevation municipalities. Additionally, cities at 

high elevations likely have a larger proportion of susceptible individuals in their population (due to a lack of 

endemic circulation of DENV), which may contribute to an earlier onset of pathogen transmission40,41. Furthermore, 

high-elevation municipalities that do not commonly experience dengue circulation may not have the necessary 

public health infrastructure to promptly respond to emerging outbreaks, further increasing population-level 

vulnerability to the disease. This is particularly true for a country such as Colombia, where many people reside in 

small- to mid-sized urban settlements at high elevations. While warm spells in low-elevation regions carry public 

health risks due to heat stress and associated non-communicable disease risks, proactive interventions including 

dengue advisories should also be initiated for high elevation urban settlements to prevent rapid-onset dengue 

outbreaks42,43.  

With respect to precipitation extremes, urban municipalities experienced a maximum RR of 1.4 between 

three to six months after a high occurrence of dry days per month. Rural municipalities, however, experienced a 

maximum RR of 1.2 between three to five months after a high occurrence of dry days per month. The increased risk 

in urban environments may be due to higher mosquito populations densities in urban environments compared to 

rural ones, due to the availability of larval habitat and human blood-meal hosts. Additionally, highly urban 

municipalities may have a strained capacity to ensure water security for a large population, necessitating the 

collection and storage of water in artificial containers for a longer period of time compared to rural areas28. Here, the 

temporal lag in dengue risk following dry conditions is similar to previous national-level investigations conducted 

by Lowe et al. for Barbados and Brazil10,28. The extended duration of risk for Colombian urban settlements 

following dry conditions may be due to water management and governance factors, socio-economic conditions, or 

behavioral practices that leave urban Colombian residents vulnerable to dengue risk for a longer time period. 

As research on extreme weather and dengue risk continues, we find that a systematic evaluation of 

precipitation indicators is needed, particularly in assessing risk at multiple spatial and temporal scales or for 

different decision-making criteria. Notably, we found that a simple measure of month-to-month count of days 

without rainfall resulted in a similar temporal lag in increased dengue incidence compared to drought indices used in 

other studies. This variable may serve as a more tractable weather indicator for policy-makers and a user 

community—easy to understand and calculate using readily-available data44. Specifically, we calculated a crude 

measure of monthly dry conditions (the frequency of dry days per month), whereas previous national-level 

investigations conducted by Lowe et al., leveraged more sophisticated drought indices such as the Palmer Drought 

Severity Index (PDSI) or the Standardized Precipitation Index (SPI)10,28. These indices incorporate normal 

precipitation conditions using historical records, and in the case of SPI, consider dry conditions across multiple time 

horizons, ranging from one month (SPI-1) to 24 months (SPI-24), which capture prolonged dry spells or drought.  
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Our study supports the development of early warning systems by quantifying a specific time window 

following extreme weather conditions, during which outbreak preparedness activities can be initiated. These 

measures may include enhancing mosquito control, preparing health facility capacity, and communicating with local 

communities regarding the increased risk of dengue transmission. We emphasize that weather hazards can affect 

urban settlements differently based on elevation and socio-economic conditions. Additionally, our analysis adds to 

increasing evidence of the vulnerability of mountainous urban communities to extreme weather and vector-borne 

diseases, emphasizing the need for monitoring and forecasting the occurrence and intensity of meteorological 

hazards and their associated health impacts.  

 

Methods  

Data Sources  

We obtained dengue case data from 2008–2019 using the national surveillance system, SIVIGILA (Sistema 

Nacional de Vigilancia en Salud Pública), operated by the National Institute of Health (Instituto Nacional de Salud). 

To calculate dengue incidence rates per municipality, we divided monthly case counts by annual population 

estimates using census data collected in 2005 and 2018 (for years 2008–2017 and 2018–2019, respectively)45,46.  

Temperature data were obtained from the Colombia’s Enhancing National Climate Services (ENACTS) 

initiative of the International Research Institute for Climate and Society (IRI)47. The dataset provided daily 

temperatures from 1980–2019 at a 0.1° spatial resolution. Data were blended (i.e., spatially and temporally 

interpolated and smoothed) using NASA’s MERRA-2 data and ground-truth records gathered at weather stations 

operated by the Colombian Institute of Hydrology, Meteorology and Environmental Studies (Instituto de 

Hidrología, Meteorología y Estudios Ambientales, IDEAM)48. For each municipality, we used the mean of daily 

minimum and maximum temperatures to calculate a daily mean temperature (Tmean-daily). We then used Tmean-daily to 

derive mean monthly temperatures (Tmean) and monthly extreme temperature variables, including the total number of 

warm days per month (days with temperatures exceeding the 90th percentile of the municipality’s long-term seasonal 

climatology, 1980–2019, T90-mean), the maximum duration a warm spell for a month (the maximum number of 

consecutive days with temperatures exceeding the T90-mean), and the maximum warm spell intensity per month 

(positive temperature anomaly of warm spell compared to the long-term climatology, 1980–2019).  

We also obtained daily precipitation data from the Climate Hazards Group Infrared Precipitation with 

Station data (CHIRPS)49. CHIRPS provides precipitation estimates from 1981–2019 at a 0.05° spatial resolution49. 

With these data we calculated monthly total precipitation amounts, the monthly precipitation anomaly, the longest 

wet spell duration (duration of consecutive days with > 1mm daily rainfall), the longest dry spell duration (duration 

of consecutive days with < 1mm daily rainfall), and the number of dry days (number of days with < 1mm daily 

rainfall) (Table 1).  

We examined how extreme climate variables interact with each urban settlement’s geographic and socio-

economic characteristics to drive dengue incidence. Each municipality's region and Lang climate zone designations 

were obtained using IDEAM shapefiles50. Additionally, we calculated the minimum elevation of the urban center for 

each municipality with data from the Shuttle Radar Topography Mission (SRTM v3 product) at a 30-meter 
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resolution  (S1 Text)51. To characterize the socio-economic characteristics of each municipality, we used cross-

sectional data taken from the 2018 national census, considering the percentage of residents living in urban areas (i.e., 

the percent urban), population density, the percentage of residents with water system access, and the percentage of 

homes with adequate housing conditions45. We ran a principal components analysis (PCA) to understand the total 

variability among elevation and urban socio-economic characteristics (Fig. S5).  

Modeling Approach 

We constructed spatio-temporal Bayesian hierarchical models of monthly dengue case counts for 1,120 

Colombian municipalities in 31 departments from January 2008 to December 2019. We used negative binomial 

regressions to account for overdispersion in the distribution of case counts (S1 Text, Fig. S3). We incorporated a 

distributed lagged nonlinear model (DLNM) to examine non-linear and delayed associations between climate 

extremes and dengue incidence from 0 to 6 months, as indicated from previous investigations10. Model parameters 

were estimated in a Bayesian framework using integrated nested Laplace approximations in R version 4.2.1 (S1 

Text) 52. 

We constructed baseline models with department-level monthly autocorrelated random effects to account 

for seasonal variation. Additionally, baseline models included municipality-level yearly spatial random effects to 

account for inter-annual variation in shared attributes between neighboring municipalities (e.g., human mobility) or 

other factors not included in our analysis (e.g., dengue serotypes in circulation, vector control activities). We then 

tested whether including five regions and six Lang climate classifications as fixed effects improved the model fit. 

We incorporated DLNMs for the weather and climate extremes covariates to understand possible non-linear and 

delayed associations between dengue incidence, extreme temperature, and rainfall from 0 to 6 months.  

We tested how extreme temperature and rainfall indices interact with elevation and socio-economic 

characteristics to drive dengue incidence. For temperature, given the evidence for elevation-dependent warming in 

the Andes Mountains, we tested the linear interaction between extreme temperature variables and the minimum 

elevation of the urban extent for each municipality53. We centered the elevation variable at 0 meters, 1,000 meters, 

and 1,750 meters to partition low-, intermediate-, and high-elevation municipalities.  

For dry conditions, based on previously established associations between drought and household water 

storage on dengue risk, we examined whether socio-economic variables might serve as a proxy for the population-

level need for water storage28. We tested the interactions between dry conditions and socio-economic variables using 

linear interaction terms by centering the continuous variables at low, intermediate, and high values of each variable 

(Table 2). We first tested the percent of the population living in an urban area. We then examined the municipality's 

water infrastructure level, measured by the percentage of residents accessing water systems, and finally, tested 

whether household-level properties may reveal the need for water storage, using a summary index calculated from 

the 2018 Colombian national census measuring a lack of “household deficiencies” (which included questions 

regarding access to public services and the structural stability of the dwelling)33. For excess rainfall conditions, we 

aimed to capture the interaction between heavy rainfall and the availability of water-holding containers in the urban 

landscape. We used linear interaction terms for socio-economic characteristics, including the percent urban, 
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population density, and the percent of the population living in low socio-economic status neighborhoods. Similarly 

to dry conditions, we centered these continuous variables at low, intermediate, and high values (Table 2).  

We selected a climate extremes-urban characteristics interaction model for each of the three climate 

conditions (temperature, dry conditions, and wet conditions) by comparing models of increasing complexity. For 

each, we calculated goodness of fit measures, including deviance information criterion (DIC), which balances model 

accuracy against complexity by penalizing for the number of effective parameters in the model, and the mean cross-

validated log score, which measures the predictive power of the model when excluding one data point at a time54,55. 

With the DIC and log score, smaller values indicate better-fitting models. We also calculated the difference in mean 

absolute error (MAE) between the climate extremes models compared to the baseline models as well as to the 

standard weather variable models (e.g., Tmean, Total-Precip). This provided us with an understanding of whether the 

climate extremes models better predicted dengue cases compared to baseline or standard weather variable models; 

and where this added value was geographically.  

We constructed a final model by combining the best-fitting extreme temperature and rainfall conditions 

models (with elevation and urbanicity interactions). With this model, we quantified the lagged and non-linear effects 

of climate extremes on dengue risk across elevation and urbanization gradients. Finally, we cross-validated our 

predictions, by refitting the selected model 12×12 times, excluding a month per year from the fitting process each 

time. We compared observations from each department to their respective out-of-sample posterior predictive 

distributions between January 2008 and December 2019. 
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Table 1. Monthly weather and climate extremes variables calculated from daily-level data  
 

Weather and 
Climate 

Extremes 
Variable Name Description Data Processing 

Monthly Mean 
Temperature 

Tmean 
Mean of the daily mean 
temperatures (Tmean-daily) per 
month 

The monthly mean of daily mean temperatures (Tmean-daily) 
(°C) for the centroid of the urban geographic extent of each 
municipality. Daily values were calculated using the mean of 
the daily maximum (Tmax-daily) and minimum (Tmin-daily) 
temperatures (Colombia ENACTS, 2007–2019). Calculations 
were conducted in the IRI/LDEO Climate Data Library, 
using the “Expert Mode” function56.  

Number of Warm 
Days  

WarmDays 
Number of days with daily 
temperatures > T90-mean 
threshold per month 

The number of days per month with daily temperatures 
exceeding the 90th percentile of the municipality’s monthly 
long-term average (1983–2019) (T90-mean). Calculations were 
conducted using Tmean-daily and the “heatwaveR” package in 
R57. 

Maximum Warm 
Spell Duration 

MaxDurationWarmspell 
Maximum duration of daily 
mean temperatures > T90-mean 
threshold  

The maximum duration of consecutive days per month with 
Tmean-daily exceeding the T90-mean threshold of the 
municipality’s long-term average (1983–2019), calculated 
using the “heatwaveR” package in R. 

Maximum Warm 
Spell Intensity 

MaxIntensityWarmspell 

Maximum exceedance of 
Tmean-daily over the long-term 
average   

The maximum exceedance (°C) of Tmean-daily above the 
municipality’s long-term average (1983–2019) per month, 
calculated using the “heatwaveR” package in R. 

Total Precipitation Total-Precip. 
Cumulative monthly 
precipitation 

The estimated monthly rainfall amount per municipality.  

Precipitation 
Anomaly 

AnomalyPRECIP 
Exceedance of cumulative 
monthly precipitation over 
the long-term average   

The maximum exceedance monthly rainfall above the 
municipality’s long-term average (1983–2019) per month, 
calculated using the “heatwaveR” package in R. 

Number of Wet 
Days 

N-DaysWET 
Number of days > 1 mm 
precipitation 

The number of days per month with daily rainfall > 1 mm. 

Number of Dry Days N-DaysDRY 
Number of days < 1 mm 
precipitation 

The number of days per month with daily rainfall < 1 mm. 

Maximum Wet Spell 
Duration 

MaxDuration Wetspell 
Maximum duration of days 
> 1 mm precipitation 

The maximum duration of consecutive days per month with 
daily rainfall > 1 mm. 

Maximum Dry Spell 
Duration 

Max-Duration Dryspell 
Maximum duration of days 
< 1 mm precipitation 

The maximum duration of consecutive days per month with 
daily rainfall < 1 mm. 

 
 
Table 2. Centered socio-economic variables for climate extremes-urbanicity interaction models‡  

Socio-economic Condition   
Centered: Low Centered: Intermediate Centered: High 

Percentile Value Percentile Value Percentile Value 

% Urban 25th 25.1 80th 65.1 95th 87.5 

% Access to Water Systems 25th 55.3 50th 74.4 75th 87.1 

% Inadequate Housing Conditions 25th 21.4 50th 40.1 75th 54.8 

% Living in Low-income Areas 10th 79.2 25th 91.9% 75th 99.4% 
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Table 3. Final models for temperature and rainfall conditions  
Description Model Formula DIC 

CV Mean 
Log Score 

BaselineReg α + βs(s) m(t) + φs a(t) + υs a(t) 519404 1.712 

BaselineReg + MaxIntensityWarmspell *Elev  α + βs(s) m(t) + φs a(t) + υs a(t) + γr + f.w(x1st, l)*vELEV 490792 1.572 

BaselineReg + WetDays*Urb  α + βs(s) m(t) + φs a(t) + υs a(t) + γr + f.w(x1st, l)*vURB 511635 1.663 

BaselineReg + DryDays*Urb + MaxIntensityWarmspell*Elev   α + βs(s) m(t) + φs a(t) + υs a(t) + γr + f.w(x1st, l)*vELEV + f.w(x2st, l)*vURB 494009 1.431 

 

 

Table 4. Maximum relative risk across elevation and percent urban gradients 

 Low % Urban 
25%  

Med. % Urban 
40% 

High % Urban 
60% 

High Elevation 3.39 [1.70, 6.75] 3.40 [1.83, 5.21] 3.42 [1.24, 7.88] 

Med Elevation 3.93 [2.11, 7.10] 3.94 [1.64, 6.34] 3.93 [2.57, 7.64] 

Low Elevation 4.48 [2.46, 5.96] 2.12 [1.19, 5.10] 4.49 [3.20, 6.52] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 3, 2024. ; https://doi.org/10.1101/2024.04.02.24304484doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.02.24304484
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21

 

 

 

Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 1. Dengue cases in Colombia, 2008–2016. a. Timeseries of dengue case counts for Colombia from January 2008–
December 2019. The horizontal line represents the average number of dengue cases per month for the study period
(N=6704). b. Heatmaps of dengue incidence rates (DIR) for each department, grouped and colored by region. The scales
vary to highlight inter-annual and seasonal variations in DIR within and between regions. Additionally, some
departments span multiple regions (e.g., Cauca spans both the Andean and Pacific regions); data reflect the sum of
dengue cases reported in the municipalities within the indicated region.  
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Fig 2. Bivariate plots of extreme temperature and extreme rainfall conditions. a. Bivariate plot showing terciles of
mean monthly temperature anomalies and excess rainfall anomalies, compared to their long-term average (1981–2019)
averaged across the study period (2008–2019).  
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3. Association between maximum temperature anomalies and municipality elevation. a. Scatterplot of
maximum temperature anomalies above 5°C and the minimum elevation of municipalities, colored by region. b. Bar

 of 
, 

of 
ar 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 3, 2024. ; https://doi.org/10.1101/2024.04.02.24304484doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.02.24304484
http://creativecommons.org/licenses/by-nc-nd/4.0/


 23

chart of the log of maximum temperature anomalies and elevation, binned in increments of 500 meters. Bars are shown
for Colombia overall and for the Andes region.  
 
 

 

Fig 4.  Warm spell intensities and dengue risk, along an elevation gradient 
Contour plots show the exposure-lag-response association between the maximum warm spell intensity in a month
and dengue using the temperature and precipitation interaction model. Darker red indicates an increase in the
relative risk of dengue compared to monthly normal temperatures (calculated from monthly averages, 1981–2019)
Plots are restricted 
 
 

 
Fig 5.  Occurrence of dry days and dengue risk, along a percent urban gradient 
Contour plots show the exposure-lag-response association between extreme temperature anomalies and dengue
using the dry conditions-percent urban model. The darker shade of teal indicates an increase in the relative risk of
dengue compared to zero dry days.  
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