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Abstract 

Advancing health interoperability can significantly benefit health research, including 

phenotyping, clinical trial support, and public health surveillance. Federal agencies, including 

ONC, CDC, and CMS, have been collectively collaborating to promote interoperability by 

adopting Fast Healthcare Interoperability Resources (FHIR). However, the heterogeneous 

structures and formats of health data present challenges when transforming Electronic Health 

Record (EHR) data into FHIR resources. This challenge becomes more significant when critical 

health information is embedded in unstructured data rather than well-organized structured 

formats. Previous studies relied on multiple separate rule-based or deep learning-based NLP 

tools to complete the FHIR resource transformation, which demands substantial development 

costs, extensive training data, and meticulous integration of multiple individual NLP tools. In 

this study, we assessed the ability of large language models (LLMs) to transform clinical 

narratives into HL7 FHIR resources. We developed FHIR-GPT specifically for the 

transformation of clinical texts into FHIR medication statement resources. In our experiments 

using 3,671 snippets of clinical texts, FHIR-GPT demonstrated an exceptional exact match rate 

of over 90%, surpassing the performance of existing methods. FHIR-GPT improved the exact 

match rates of existing NLP pipelines by 3% for routes, 12% for dose quantities, 35% for 

reasons, 42% for forms, and over 50% for timing schedules. Our findings provide the 

foundations for leveraging LLMs to enhance health data interoperability. Future studies will aim 

to build upon these successes by extending the generation to additional FHIR resources. 
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Introduction 

Interoperability enhances the ability of healthcare providers to deliver safe, effective, and 

patient-focused care. It also offers novel avenues for individuals and caregivers to access 

electronic health data for care coordination and management 1. The promotion of interoperability 

has become an integral aspect of various health initiatives, spanning from ensuring health equity 

to responding to public health emergencies 2. Federal agencies, including the Office of the 

National Coordinator of Health IT (ONC) 1, the Centers for Disease Control and Prevention 

(CDC) 3, and the Centers for Medicare & Medicaid Services (CMS) 4, collectively collaborate to 

promote interoperability through the adoption of FHIR, which is an interoperability standard 

developed by the Health Level 7 (HL7®) standards development organization.5 FHIR is 

specifically designed to facilitate the swift and efficient exchange of health data. FHIR has seen 

growing adoption in the modeling and integration of both structured and unstructured data for 

various health research purposes. Its applications range from developing computational 

phenotyping 6-8 to supporting clinical trials 9-12, building surveillance systems 13,14, and much 

more. 

Transforming health data into the FHIR format presents a major challenge, as various health 

organizations have their unique infrastructure, standards, and formats for generating, storing, and 

organizing health data 15. This challenge becomes more significant when critical health 

information is embedded in unstructured data other than well-organized structured formats. 

There are existing efforts for promoting the transformation of unstructured data into FHIR 

resources, offered by both academic and commercial sectors. In academic research, Hong et al.16 

integrated clinical NLP tools, including cTAKES 17, MedXN 18, and MedTime 18, to extract 

clinical entities from corresponding document sections and standardize them into FHIR 
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resources. Wang et al. developed Opioid2FHIR 19, a system that employs multiple deep learning-

based natural language processing (NLP) techniques for opioid information extraction and 

normalization. In the commercial domain, Google Cloud has released the Healthcare Natural 

Language API 20, capable of converting medical text input into FHIR resources. Azure Health 

Data 21 is proficient at converting semi-structured data into FHIR resources but does not handle 

free-text unstructured input. All the above FHIR transformation tools necessitate multiple NLP 

tools in sequence. Creating a pipeline that integrates multiple NLP tools requires substantial 

computational resources, annotated data, and human efforts. Furthermore, as the transformation 

progresses along the pipeline, the errors from each NLP tool compound and decrease overall 

accuracy.  

Therefore, we proposed leveraging pre-trained large language models (LLMs) and meticulous 

prompt engineering to facilitate the transformation of free-text input into FHIR resources. We 

manually annotated a dataset of free-text to FHIR MedicationStatement resource transformation 

pairs. We compared the transformation accuracy between FHIR-GPT and existing NLP pipelines 

using the annotated dataset.  
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Methods 

In this section, we delve into the technical details employed in data annotation, LLMs usage, and 

the evaluation process. Error! Reference source not found. is an illustrative visual 

representation of the workflow. 

To the best of our knowledge, there is no publicly available dataset with corresponding text and 

FHIR resource pairs. We therefore annotated a dataset containing pairs of free-text input and 

corresponding FHIR MedicationStatement resource output. The FHIR resource of 

MedicationStatement is a record of a medication being taken by a patient or that a medication 

has been given to a patient, where the record is the result of a report from the patient or another 

clinician, or derived from supporting information.22 This transformation holds particular 

significance because many medication-related details, such as the reasons for administration and 

dosage instructions, often remain absent in structured data. Clinical notes within the EHR system 

frequently serve as the primary source for this medication-related information. For detailed 

examples of the elements in MedicationStatement, please refer to Error! Reference source not 

found.. 

The clinical text input was obtained from the 2018 n2c2 medication extraction challenge.23 We 

extracted the text snippets, each containing mentions of one medication and all its associated 

entities, from the discharge summaries. These extracted snippets, each tied to a specific 

medication, serve as input for both annotations and transformations. Our human annotation 

consisted of three key steps. We started by standardizing the entities from free text into clinical 

terminology coding systems. To achieve this, we leveraged the word spans of entities provided in 

the n2c2 dataset and manually looked up the HL7 CodeSets, SNOMED CT Browser 24, and the 

RxNav 25 for standardization.  We then assembled the identifiers, codes, texts, elements, and 
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structures into a complete MedicationStatement resource in JSON format as per FHIR v6.0.0: R6 

implementation guide 22. Finally, the human-converted MedicationStatement resources 

underwent validation using the official FHIR validator26 to ensure compliance with FHIR 

standards, including structure, datatypes, cardinalities, code sets, display names, etc.  

We experimented with the following 3 Large Language Models (LLMs), OpenAI GPT-4 27, 

Llama-2-70B 28, and Falcon-180B 29. We accessed the GPT-4 (model: gpt-4-32k as of 2023-05-

15) through the Azure OpenAI API service. We made multiple asynchronous API calls to 

enhance efficiency. For Llama-2-70B and Falcon-180B, we deployed them on our HIPAA-

compliant firewalled local servers with multiple GPUs. GPTQ 30 was used to accelerate the 

inference time for Llama-2-70B and Falcon-180B. 

We required these LLMs to transform the free-text entries into MedicationStatements 

conforming to the FHIR standard, employing the few-shot prompt settings that include 4-5 

examples of transformations in the prompts. Each clinical text snippet was individually input into 

the LLMs to generate their MedicationStatement resource. We leveraged five separate prompts 

to instruct the LLM to transform the free-text input into the elements of a MedicationStatement 

resource, including medication details (drug name, strength, and form), route, timing, dosage, 

and reason. All few-shot prompts followed a template consisting of task instructions, expected 

output FHIR templates in JSON format, 4-5 examples of transformations, a comprehensive list 

of codes from which the model could make selections, and the input text to be transformed. As 

there was no fine-tuning or domain-specific adaptation in our experiments, we initially had the 

LLMs generate the FHIR resource for a small subset of the dataset (N=100). Then, we manually 

reviewed the discrepancies between the LLM-generated FHIR output and our human 

annotations. Common mistakes were identified and used to refine the prompts. There were slight 
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differences in the prompts for each LLM, as different LLMs may be sensitive to different 

prompts. We did not instruct the LLMs to look up the SNOMED codes for the 'medication' and 

'reason' elements, as there are thousands of SNOMED CT Medication and Finding codes, 

exceeding the token limits of LLMs. Instead, our instructions were for them to identify the 

contexts mentioned in the input text and convert them into the appropriate JSON format. For 

other elements, such as routes and forms, we instructed LLMs to directly look up from the code 

set (numbering in hundreds). Example prompts can be found in the supplemental material. We 

will also share our annotated dataset on physionet.org upon acceptance. 

We compared LLMs with two existing NLP pipelines: NLP2FHIR 16 and Google HNL API 20. 

NLP2FHIR was built based on a previous version of the FHIR implementation guide R5; the 

Google HNL API primarily standardized concepts to UMLS CUIs, while the latest guide R6 and 

SNOMED was used in our annotations and LLMs' transformations. We therefore made 

necessary adaptations and conversions to ensure a fair comparison. We deployed the NLP2FHIR 

pipeline on our firewalled local servers and accessed the Google HNL API through the Google 

Cloud Healthcare API. 

When evaluating the FHIR resources generated by the LLMs, we first conducted a format 

validation check to ensure that the output was in a valid JSON format. On passing the validation, 

we evaluated the generated resources with exact match rate. This strict criterion required that the 

resources generated by the LLMs exactly matched the human annotations in all aspects, 

including structures, codes, and cardinality.  
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Results 

The annotation results are presented in Error! Reference source not found.. In summary, we 

annotated a total of 3,671 pairs of free-text input and FHIR MedicationStatement resource 

output. The free-text input was derived from discharge summaries for 280 admissions. The 

annotated resources encompass 625 distinct medications in 26 different forms and are associated 

with 354 different reasons, as well as 16 administration routes. These elements display varying 

levels of availability, ranging from approximately 30% for reasons to 65% for timing schedules. 

The annotated resources in the JSON structure have an average number of objects of 58.2 

(standard deviation = 16.2) and an average depth of 6.7 (standard deviation = 0.5).  

The transformation results are presented in Error! Reference source not found.. In summary, 

transformation using FHIR-GPT, achieved an exceptional exact match rate of over 0.90 for all 

elements, outperforming both baseline models and all other LLMs. Specifically, when compared 

to existing NLP pipelines, FHIR-GPT improved the exact match rate by 3% for routes, 12% for 

dose quantities, 35% for reasons, 42% for forms, and over 50% for timing schedules. Among all 

LLMs, we observed a trend of increasing accuracy as the parameter size increased. FHIR-GPT, 

with approximately 1.7 trillion parameters, surpassed the 180 billion parameter Falcon model 

and further improved upon the 70 billion parameter Llama-2 model. 
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Discussion 

The reproducibility of using LLMs for FHIR transformation was examined through two 

experiments conducted six months apart, in September 2023 and March 2024. No updates were 

applied to the weights of Falcon and Llama during this period. In our March 2024 experiment of 

FHIR-GPT, we employed the latest gpt-4-turbo model, an upgrade from the gpt-4-32k model 

utilized in the previous September 2023 run. The gpt-4-turbo model boasts an expanded context 

window, stretching from 32k to 128k tokens, and incorporates additional training data spanning 

from September 2021 to April 2023. The results of reproducibility can be found in Error! 

Reference source not found.. Although there are slight fluctuations observed across various 

models and elements, none exceed a decrease of 2 percent. This indicates a relative stability in 

using LLMs for FHIR transformation, even with the update to the foundation model. 

We conducted an error analysis to investigate instances where FHIR-GPT and human annotation 

diverge, with a particular focus on drug routes as an example. The 204 disagreements in 

transforming drug routes were categorized into five types of errors: false negatives, false 

positives, mismatched errors, syntax errors, and content filter rejections. A comprehensive 

breakdown, along with examples and distribution of these errors, is provided in Error! 

Reference source not found.. False negative errors primarily result from FHIR-GPT's 

insensitivity to certain medical abbreviations, such as 'gtt', or its failure to associate medical 

terms like 'lumen' with the intravenous route. Conversely, false positive errors occur when FHIR-

GPT inaccurately introduces nonexistent information or identifies annotation errors, such as the 

oversight of 'IVIG', which was unrecognized in the i2b2 expert annotation and therefore omitted 

from our human annotation. The mismatched-error category presents a combination of false 

negative and false positive errors. We posit that such errors could be mitigated through the 
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incorporation of more domain-specific knowledge or examples in the prompt, or through the 

injection of knowledge bases with retrieval-augmented generations. Additionally, rare instances 

occur where output cannot be parsed as JSON. These parsing issues can be easily rectified with a 

simple format adjustment, replacing all double quotes with single quotes or using more advanced 

JSON parsing tools. Additionally, the Azure platform occasionally rejects requests with content 

filters to avoid harmful content in the prompts, though such filters can be opted out of if 

necessary. 

In this study, we delve into three potential pathways for transforming free-text clinical input into 

FHIR resources. While human annotation is the gold standard for transformation, its dependence 

on extensive human efforts poses scalability limitations. Existing NLP pipelines can automate 

these transformation processes but demand substantial training data and resources, with 

challenges in generalizability and transferability. On the other hand, a new pipeline must 

undergo training or fine-tuning for even minimal changes in the code set or expansion to new 

resources. In addition, the multi-step transformation process incurs considerable maintenance 

costs, demanding meticulous tracing for effective error debugging across all steps. FHIR-GPT, 

harnessing the power of pre-trained LLMs, eliminates the need for high-cost training and 

depends on only minimal human annotation for the few-shot examples in the prompts. FHIR-

GPT also achieves a superior level of accuracy compared to the approach employing NLP 

pipelines. Moreover, by altering the template and the corresponding code set in the prompt, 

FHIR-GPT holds the potential to generalize to other resources without the requirement for 

resource-specific training or fine-tuning. We believe that leveraging FHIR-GPT has the potential 

to greatly enhance interoperability, given its ease of implementation, high accuracy, and broad 

generalizability.  
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We acknowledge the following limitations in our study. irstly, while FHIR-GPT showcases 

superior performance compared to Llama and Falcon, its significant computational resource 

demands present a challenge. Moreover, its commercial nature gives rise to ethical 

considerations, impeding smooth integration into local EHR systems. We aim to investigate 

alternative lightweight and open-source foundation models of GPT-4 to overcome these 

obstacles while upholding comparable performance. Secondly, our evaluation of FHIR-GPT was 

confined to medication-related FHIR resources, potentially limiting the broader applicability of 

our findings. To address this, our future efforts aim to expand the transformation for a wider 

array of FHIR resources. Thirdly, our current approach primarily involves prompt engineering 

through trial-and-error with existing LLMs. There is no enhancement of the architecture of the 

foundational LLMs. To improve accuracy and reasoning in the transformation process, we aim to 

adopt advanced techniques like chain-of-thoughts31, retrieval-augmented generation, or domain-

specific finetuning in future endeavors. Fourthly, we recognize that LLMs can assist in other 

FHIR-related transformations, such as FHIR version upgrades and tabular-to-FHIR 

transformations. While we perceive these tasks as potentially less complex than our text-to-FHIR 

transformations, we encourage fellow researchers to explore the efficacy of LLMs in these 

alternative pathways to enhance interoperability. 

Conclusion 

In conclusion, this study lays the groundwork for harnessing LLMs to significantly improve 

health data interoperability through the transformation of free-text input into the FHIR resources. 

The FHIR-GPT model not only streamlines the process but also enhances transformation 

accuracy when compared to existing NLP pipelines. Building upon these promising results, our 
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future investigations will expand to encompass additional FHIR resources, aiming to advance the 

practical applications of LLMs in enhancing health data interoperability.
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Table 1. Descriptions, examples, and statistics of human annotation for the FHIR medicationstatement resource. 

Medication 
Statement 
Elements 

Type Card. Example Description Code Set N (%) N, 
Uniq. 
Entries 

N,  
Uniq. 
Codes 

identifier String 1..1 100035T133 External identifier MIMIC+i2b2 3671 (100%) 3,671 3,671 
subject Codeable

Reference 
1..1 {'reference': 'hadm_id164366'} Who is/was taking 

the medication 
MIMIC 3671 (100%) 280 280 

medication  1..1  What medication      
 medication Codeable

Concept 
0..1 {'coding': [ 

       {'system': 'NDC', 'code': '51079088120', 
        'display': 'clonazepam 0.5 MG Oral Tablet'}, 
       {'system': 'RxNORM', 'code': '197527'', 
        'display': 'Clonazepam 500 microgram oral tablet'}, 
       {'system': 'SNOMED', 'code': '322897008',  
        'display': 'Clonazepam 500 microgram oral tablet'}], 
'text': 'clonazepam 0.5 mg Tablet'} 

Codes that identify 
this medication 

NDC 

RxNorm 

SNOMED CT 
Medication 

3671 (100%) 1762 NDC: 
625 

RxNorm: 
520 

SNOMED: 
210 

 doseForm Codeable
Concept 

0..1 {'text': 'Tablet', 
'coding': [{'system': 'SNOMED','code': '385055001', 
                'display': 'Tablet'}]} 

powder | tablets | 
capsule + 

SNOMED CT 
Dose Form 

1478 (40.3%) 176 26 

 ingredient. 
Strength 

Quantity 0..1 {'value': 0.5,'unit': 'milligram', 'code': 'mg' 
'system': 'http://unitsofmeasure.org'} 

Quantity of 
ingredient presents 

unitsofmeasure. 
org 

2383 (64.9%) 188 16 

reason Codeable
Concept 

0..* [{'concept':  
        {'text': 'headache', 
         'coding': [{'system': 'SNOMED', 'code': '25064002', 
           'display': 'Headache'}]}}] 

Reason for why the 
medication is 
being/was taken 

SNOMED CT 
Finding 

1106 (30.1%) 619 354 

dosage  0..*       
 asNeeded Boolean 0..1 True Take "as needed"  3671 (100%) 2  
 route Codeable

Concept 
 {'text': 'PO',  

'coding': [{'system': 'SNOMED', 'code': '26643006', 
  'display': 'Oral route'}]} 

How medication 
enters the body 

SNOMED CT 
Route of Admin. 

2011 (54.8%) 64 15 

 timing. 
repeat 

Element 0..1 {'frequency': 1, 'period': 4.0, 'periodMax': 6.0, 
'periodUnit': 'h', 'duration': 3.0, 'durationUnit':'d'} 

Timing schedule hl7.org/fhir/ 2393 (65.2%) 177 6 

 timing. 
code 

Codeable
Concept 

0..1 {'coding': [{'system': 'HL7','code': 'Q4H', 
                   'display': 'Q4H'}]}} 

Code for timing 
schedule, e.g. 'BID' 

hl7.org/fhir/ 2287 (62.3%) 17 17 

 doseRange Quantity 0..1 {"doseQuantity": {"value": 5.0, "unit": "ML"}}  
Amount or range of 
medication per dose 

 1378 (37.5%) 53  
 dose-

Quantity 
Range 0..1 {"doseRange": {"low": { "value": 1.0}, 

          "high": { "value": 3.0}}} 
 11 (0.30%) 7  
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Table 2. Comparison of LLMs and existing NLP pipelines for transforming free-text input 
into FHIR MedicationStatement resources. Performance is evaluated using the exact match 
rate, which requires that the resources generated by the models precisely match human 
annotations in all aspects, including structure, codes, and cardinality. Due to version and 
implementation differences, the existing NLP pipelines cannot generate all the elements included 
in our annotations. The best-performing model for each element is indicated in bold, while the 
second-place model is underlined. 

Elements of 
medicationstatement 

Large Language Models Existing NLP Pipelines 
 

FHIR-GPT27 Falcon-180B28 Llama-2-70B29 NLP2FHIR16 
Google 

HNL API20 
 

medication      

  medication 0.968 0.899 0.859 0.862 0.963  

doseForm 0.976 0.790 0.633 0.556 -  

ingredient.Strength 0.980 0.921 0.792 - -  

reason 0.902 0.593 0.169 0.645 -  

dosage            

 route 0.902 0.457 0.516 - 0.871  

 timing.repeat 0.947 0.268 0.221 0.403 -  

 timing.code 0.952 0.818 0.600 0.424 -  

  doseQuantity/Range 0.973 0.864 0.823 0.724 0.854  

 

Table 3. Reproducibility in using LLMs for transforming FHIR resources. Two separate 
experiments were conducted six months apart using the same prompts, with identical model 
weights used for Falcon and Llama models. FHIR-GPT used the gpt-4-32k model in the 
September 2023 experiment, which was upgraded to the gpt-4-turbo (128k) model in March 
2024. 
Elements of 
medicationstatement Large Language Models 

FHIR-GPT27 Falcon-180B28 Llama-2-70B29 

 Sept. 2023 Mar. 2024 Sept. 2023 Mar. 2024 Sept. 2023 Mar. 2024 

medication          
  medication 0.968 0.970 0.899 0.897 0.859 0.849 

doseForm 0.976 0.974 0.790 0.785 0.633 0.634 
ingredient.Strength 0.980 0.981 0.921 0.912 0.792 0.792 

reason 0.902 0.908 0.593 0.617 0.169 0.172 
dosage             
 route 0.902 0.944 0.457 0.471 0.516 0.518 
 timing.repeat 0.947 0.938 0.268 0.264 0.221 0.218 
 timing.code 0.952 0.946 0.818 0.810 0.600 0.580 

  doseQuantity/Range 0.973 0.972 0.864 0.864 0.823 0.814 
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Table 4. Discrepancies between FHIR-GPT generated resources and human annotations. 
204 disagreements in transforming drug routes were categorized into five types of errors. 

Category Explanation Input Example Expected Output Generated Output N (%) 
False 
Negative 

Despite the 
presence of 
drug route 
information in 
the input, 
FHIT-GPT 
overlooks it. 

2 ml of 100 
Units/ml heparin 
(200 units heparin) 
each lumen Daily 
and PRN 

{'text': 'each lumen', 
  'coding': [{ 
'system': 'snomed.info/sct',  
'code': '47625008',  
'display': 'Intravenous 
route' 
}]} 

{} 95 
(45.7%) 

PEs and HIT at the 
referring institution, 
and was continued 
on an argatroban gtt 

{'text': 'gtt'} {}  

False 
Positive 

FHIR-GPT 
fabricates drug 
route 
information 
that does not 
exist in the 
input. 

Pneumonia was 
suspected and 
patient was started 
on vancomycin 

{} {'text': 'IV', 
  'coding': [{ 
'system': 'snomed.info/sct',  
'code': '47625008',  
'display': 'Intravenous route' 
}]} 

62 
(29.8%) 

Joint pain: 
medication side 
effect (IVIG, 
hydralazine 

{} {'text': 'IVIG', 
  'coding': [{ 
'system': 'snomed.info/sct',  
'code': '47625008',  
'display': 'Intravenous route' 
}]} 

 

Mis-
matched 
Error 

Although 
FHIR-GPT 
generates drug 
route resource, 
it does not 
align with the 
actual data 
provided in the 
input. 

heparin lock flush 
(porcine) [heparin 
lock flush] 10 
unit/mL 2mL to 
PICC line Flush 
dail 

{'text': 'PICC line Flush', 
  'coding': [{ 
'system': 'snomed.info/sct',  
'code': '417989007',  
'display': 'Intraductal 
route' 
}]} 

{'text': 'PO', 
  'coding': [{ 
'system': 'snomed.info/sct',  
'code': '284009009',  
'display': 'Route of 
Administration values' 
}]} 

46 
(22.1%) 

Artificial Tears 1-2 
DROP OU PRN 

{'text': 'OU', 
  'coding': [{ 
'system': 'snomed.info/sct',  
'code': '54485002',  
'display': 'Ophthalmic 
route' 
}]} 

{'text': 'DROP', 
  'coding': [{ 
'system': 'snomed.info/sct',  
'code': '372473007',  
'display': 'Oromucosal use' 
}]} 

 

Syntax 
Error 

The generated 
content is not 
in a valid 
FHIR resource 
or JSON 
format. 

COPD flare with 
vancomycin 1 gm 
IV 

{'text': 'IV', 
  'coding': [{ 
'system': 'snomed.info/sct',  
'code': '47625008',  
'display': 'Intravenous 
route' 
}]} 

{''text'': ''IV'', 
  ''coding'': [{ 
''system'': 
''snomed.info/sct'',  
''code'': ''47625008'',  
''display'': ''Intravenous 
route'' 
}]} 

4 
(1.9%) 

Content 
Filter 
Rejection 

FHIR-GPT 
fails to 
generate 
content due to 
the input 
failing to pass 
the Azure 
content filter. 

… he developed 
delirium … which 
manifested as 
inappropriate and 
sometimes violent 
actions with pt 
attempting to hit 
staff and spitting on 
staff. … pt had to be 
given haloperidol 

{} N/A 1 
(0.5%) 
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[Figure 1. Overview of the transformation from free-text to FHIR resource. a. Example of a 
snippet from the discharge summary, which is the free-text input for FHIR resource generation. 
b. The n2c2 expert annotation of medication-related entities in the discharge summary. c. 
Example of the transformed FHIR MedicationStatement resource based on our annotations, 
serving as the ground truth transformation. The same color shading from panel b is used. d. 
Example prompt used to instruct LLMs in generating FHIR resources. e. The workflow details 
how we annotated the dataset and compared the performance of LLMs with existing NLP 
pipelines in transforming free-text inputs into associated FHIR resources.] 

 

 

Discharge Summary:

Discharge Medications:

…

[7. senna 8.6 mg Tablet Sig: 

One (1) Tablet PO BID P.R.N 

Constipation]

…

Patient was discharged to 

long-term care facility.

a.   Discharge Summary
Medication senna

Reason Constipation

Route PO

Timing BID 

Dose One (1)

Form Tablet

Strength 8.6 mg

asNeeded P.R.N

b.   Entity Annotations c.   FHIR MedicationStatement
{'resourceType': 'MedicationStatement',
 'id': '100035T133',
 'subject': {'reference': 'hadm_id100035'},
 'medication': {'reference': {'reference': '#med100035T133'}},
 'reason': [
     {'concept': {'text': 'Constipation’,
 'coding': [{'system': 'http://snomed.info/sct’,
 'code': '14760008’,
 'display': 'Constipation'}]}}],
 'dosage': [
     {'route': {'text': 'PO’, 
                   'coding': [{'system': 'http://snomed.info/sct’, 
                   'code': '26643006’, 
                   'display': 'Oral route'}]},
      'timing': {'repeat': {'frequency': 2, 'period': 1.0, 'periodUnit': 'd'},
                     'code': {'coding': [{'system': 'http://terminology.hl7.org/’, 
                                'code': 'BID’,
           'display': 'BID'}]}},
      'asNeeded': True,
      'doseAndRate': [{'doseQuantity': {'value': 1.0}}]}],
 'contained': [
     {'resourceType': 'Medication',
      'id': 'med100035T133',
      'code': {'coding’: [
 {'system': 'National Drug Code’, 
 'code': '00904516561’, 
 'display': 'sennosides, USP 8.6 MG Oral Tablet’},
 {'system': 'RxNorm’, 
 'code': '312935’, 
 'display': 'sennosides, USP 8.6 MG Oral Tablet'}], 
                   'text': 'senna 8.6 mg Tablet'},
      'doseForm': {'text': 'Tablet’, 
 'coding': [{'system': 'http://snomed.info/sct’, 
 'code': '385055001’, 
 'display': 'Tablet'}]},
      'ingredient': [{'item': {'concept': {'text': 'senna'}}, 
 'strengthQuantity’: 
       {'value': 8.6, 'unit': 'milligram’, 
        'system': 'http://unitsofmeasure.org’, 
        'code': 'mg'}}]}]}

[INSTRUCTIONS]
You are a helpful assistant that can help with medication data extraction. 
User will paste a short narrative that describes the administration of a drug.
Please extract the drug route (How drug should enter body), e.g. PO, IV.
< Collapsed for more instructions >

[TEMPLATE]
{"text": "<string>", // the originial text mention of drug route
 "coding": [ //optional, but MUST lookup from the table below
    {"system": "http://snomed.info/sct",
      "code": "<code>", # SNOMED code
      "display": "<display>" # the display of the code}]}

[EXAMPLES]
For example, the narrative 
"Oxycodone-Acetaminophen 5-325 mg Tablet 
Sig: 1-2 Tablets PO\nQ4-6H (every 4 to 6 hours) as needed“
You should return a json format:
 {'text': 'PO', 'coding': [{'system': 'http://snomed.info/sct', 'code’: 
'26643006','display': 'Oral route'}]}
< Collapsed for 4 more examples >

[TERMINOLOGIES]
Code Display
6064005 Topical route
10547007 Otic route
<Collapsed for 143 more SNOMED CT Codes>

d.   Prompts for LLMs

e.   Workflow

Free-text input

Prompts

Entity Annotations

NLP2FHIR

Google HNL API

Existing NLP Pipelines

FHIR-GPT

LLaMa-2-70B

Falcon-180B

Large Language Models

Existing n2d2 Annotation 

FHIR Resources

Our Annotation

TransformationInput

Generation
Input
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