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Abstract 

Background: Although cardiac ultrasound is frequently performed in patients with chest pain, the 

probability of obstructive coronary artery disease (CAD) cannot be quantified. We investigated 

the potential of cardiac ultrasound radiomics (ultrasomics) to identify obstructive CAD using 

limited echocardiography frames, suitable for cardiac point-of-care ultrasound evaluation. 

Methods: In total, 333 patients who were either healthy controls (n=30), undergoing invasive 

coronary procedures (n=113), or coronary CT angiography (n=190) were divided into two 

temporally distinct training (n=271) and testing (n=62) cohorts. Machine learning models were 

developed using ultrasomics for predicting severe CAD (stenosis >70%) and compared with 

regional LV wall motion abnormalities (RWMA).  

Results: In total, 94 (28.2%) patients had severe CAD with 50 (15.0%) having high-risk CAD 

defined as left main stenosis >50% (n=11), multivessel CAD (n=43), or 100% occlusion (n=20).  

The ultrasomics model was superior to RWMA for predicting severe CAD [area under the receiver 

operating curve (AUC) of 0.80 (95% confidence interval [CI]: 0.74 to 0.86) vs. 0.67 (95% CI: 

0.61-0.72), p=0.0014] in the training set and [0.77 (95% CI: 0.64-0.90) vs. 0.70 (95% CI: 0.56-

0.81), p=0.24] in the test set, respectively. The model also predicted high-risk CAD with an AUC 

of 0.84 (95% CI: 0.77-0.90) in the training set and 0.70 (95% CI: 0.48-0.88) in the test set. A 

combination of ultrasomics with RWMA showed incremental value over RWMA alone for 

predicting severe CAD. 

Conclusions: Cardiac ultrasomic features extracted from limited echocardiography views can aid 

the development of machine learning models to predict the presence of severe obstructive CAD.  

Keywords: Radiomics, Coronary Artery Disease, Machine-Learning, Echocardiography 

 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.28.24305048doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.28.24305048
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

 

Introduction 

Coronary artery disease (CAD) remains one of the leading causes of global morbidity and 

mortality, with approximately 9 million annual deaths annually, a prevalence of 190 million 

individuals, and minimal improvement in incidence since 2008 (1,2). Clinical presentations range 

from stable angina to acute coronary syndromes due to luminal narrowing or thrombi formation.  

Recent guidelines have given a Class I recommendation for coronary computed 

tomography angiography (CCTA) in patients with suspected CAD who are low or intermediate 

risk while recommending invasive coronary angiography for patients with unstable coronary 

syndromes or those who cannot be medically managed and are at high risk for adverse cardiac 

events (3,4). To standardize patient management and severity assessment, the Coronary Artery 

Disease – Reporting and Data System (CAD-RADS) was introduced, grading luminal stenosis 

from absent (category 0) to total occlusion (category 5) (5). Elevated CAD-RADS categories, 

specifically over 4 (>70% luminal stenosis) —referred to as severe obstructive CAD – correlate 

unequivocally with an increased adverse risk for unfavorable outcomes (6). Despite this increased 

risk, there remains an unmet need for safe, non-invasive, and readily available algorithms that can 

guide triaging of patients with suspected severe obstructive CAD.  

The implementation of artificial intelligence (AI) in image analysis has facilitated the 

automation of tasks that traditionally relied on expert input. Specifically, the combination of AI 

and ‘omics’-based methods offers the potential for capturing individualized human health 

complexities. 'Radiomics', the extraction of quantitative pixel-level data from medical images, has 

been applied extensively in cancer and neuroscience research (7). In cardiology, radiomics has 
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been utilized in cardiac computed tomography (CT) and magnetic resonance imaging (CMR); yet 

its role in extracting cardiac ultrasound textural properties remains largely unexplored (8). 

In our recent work, we demonstrated the potential of cardiac ultrasound radiomics  

(ultrasomics) in capturing subtle LV morphological and functional changes that may not be 

apparent on visual inspection alone (9). Cardiac ultrasound imaging is frequently performed in 

patients with chest pain to assess global and regional left ventricular function and rule out 

alternative diagnoses. For the present investigation, we therefore explored the integration of 

ultrasomics with machine learning to predict the presence of severe obstructive CAD from limited 

echocardiography views which are suitable for cardiac point-of-care ultrasound evaluation.  

Methods 

Study Population 

We included 333 participants across three centers to establish training and validation cohorts: a) 

patients from a previously published prospective study (n=105) that enrolled consecutive patients 

undergoing clinically indicated coronary angiogram (n=75) and healthy controls (n=30) at West 

Virginia University, Morgantown (WVU), WV, USA (10), b) a previously published cohort who 

underwent CCTA in ambulatory settings at Mount Sinai Medical center (MSM), New York (n= 

190) (11), and c) a retrospective cohort of non-ST elevation myocardial infarction (NSTEMI) 

patients undergoing invasive coronary angiogram at Robert Wood Johnson University Hospital 

(RWJUH) (n=38). The inclusion and exclusion criteria for patients prospectively enrolled at WVU 

and MSM have been previously published (10,11). The institutional ethics committee of Rutgers 

Robert Wood Johnson Medical School and RWJUH approved the study to enable the analysis of 

the clinical, echocardiography, coronary CT, and invasive coronary angiography data.   
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The NSTEMI patients selected at RWJUH were specifically chosen to ensure diversity in the 

patient population and to evaluate how well the machine learning model can predict severe 

obstructive disease in CAD patients who were not well-represented in previous cohorts. Exclusion 

criteria for patients at RWJUH included (1) patients discharged to institutionalized care, (2) type 

2-5 acute myocardial infarction (AMI), (3) co‐existing terminal illness, such as cancer, (4) 

alternative diagnosis for elevated cardiac troponin values (e.g. myocarditis, non-ischemic 

cardiomyopathies, moderate-severe valvular heart disease), (5) pregnancy, and (6) technically 

insufficient imaging for one out of 2 views: parasternal long-axis (PLAX) and apical 4 chambers 

(A4C).  

To allow for a realistic evaluation of models on subsequent data, training and test datasets were 

derived from a temporal split. 80% of the chronologically admitted patients were selected for the 

training set along with healthy controls (n=271), while the remaining 20% of patients were 

included in the test set (n=62).  

Clinical Endpoints 

Severe obstructive coronary artery disease was defined as left main artery stenosis greater than 

50% or stenosis greater than 70% in any other significant vessels such as the left anterior 

descending, left circumflex, or right coronary artery. Additionally, high-risk coronary artery 

disease was defined as left main artery stenosis greater than 50%, multi-vessel obstructive CAD 

(>70%), or the presence of 100% coronary artery disease in any other significant vessel.  
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Echocardiography Image Acquisition, Preprocessing, and Semantic Segmentation 

Echocardiographic examinations performed at each center using commercial ultrasound systems 

included 2D, color Doppler, spectral Doppler, and tissue Doppler imaging. All measurements and 

evaluations were conducted by board-certified echocardiographers. All studies were stored on a 

cloud-based analysis platform (CoreSound Inc.) and all measurements including RWMA were 

standardized using a validated vendor-independent algorithm (Us2.ai Inc.) (12).  

For the ultrasomics machine-learning pipeline, we employed an automated echocardiography 

workflow consisting of four stages: preprocessing, echocardiographic view identification, 

semantic segmentation, and ultrasound feature extraction (Figure 1). To enable the adoption of the 

models on cardiac point-of-care-ultrasound (POCUS), we used two echocardiography views that 

are recommended in a set of limited views obtained for cardiac POCUS: parasternal long-axis 

(PLAX) or apical four-chamber views (A4C) (13). To ensure uniformity and compatibility across 

data processing, 2D echocardiographic images from diverse formats (e.g., .avi, .mp4 and .dcm) 

were converted into DICOM using the proprietary Sante DICOM software (SanteSoft, Nicosia, 

Cyprus, Greece). Images not amenable to ultrasomic analysis, such as those containing Doppler 

data or dual ultrasound regions primarily used for static measurements, were subsequently filtered 

out. The view identification stage utilized these processed multi-beat echocardiogram DICOM 

files to classify the transthoracic echocardiography views into A4C and PLAX views. The 

semantic segmentation stages involved the standard echoCV algorithm (14), which automatically 

delineated the left ventricular myocardium region at the end-diastole from the echocardiography 

recordings corresponding to the PLAX and A4C views. In the PLAX view, the region 

corresponding to the intra-ventricular septum and the posterior wall were combined to form a 

combined LV myocardial region. In this study, we modified the existing echoCV platform (14) to 
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be executed using Python 3.2 with CUDA 10.0 support provided by TensorFlow 1.15.0. To 

maintain uniformity across different image sizes, we resized the segmented images to 1024 by 

1024 pixels. Our prior study discussed the use of echoCV and its validation for predicting LV 

remodeling (15). From the semantic segmentation stages, we received the binary mask for the 

region of interest for LV myocardium, which was further utilized to extract the ultrasomic features 

from the original grayscale images.  

Cardiac Ultrasound Ultrasomics Extraction 

Ultrasomic features were extracted using PyRadiomics (version 3.0.1, Python Software 

Foundation [15]) and SimpleITK (version 2.2.0, Insight Software Consortium [16]) within the 

open-source Python framework (version 3.7.13). A total of 99 ultrasomic features, corresponding 

to the shape, texture, and intensity distribution within the region of interest, were extracted from 

the LV myocardium region, resulting in 198 features for both the PLAX and A4C views.  

Machine Learning Model Development 

We developed a supervised machine learning (ML)-based model to predict severe, obstructive 

coronary artery disease using the open-source scikit-learn platform (scikit-learn 1.3.2). To address 

variability among the data sources, including image storage formats and scanner-related 

variability, we implemented a two-step normalization approach. First, the ultrasomics features 

were independently normalized using the cumulative distribution function, ensuring that the data 

fell within the scale of 0-1 for all features (15). Next, the ultrasomics from each of the three datasets 

were temporally split into training and test sets. In the second normalization step, we computed 

standard normalization, also known as z-score normalization, on the temporally split training 

dataset. The same transformations were applied to the test dataset.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.28.24305048doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.28.24305048
http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

 

After training and testing feature preparation, we trained a support vector machine (SVM)-

based algorithm, utilizing a linear kernel with a C value of 1 as hyperparameters to train the model 

on the training dataset. To prevent overfitting, a 10-fold cross-validation strategy was employed 

on the training dataset to evaluate the overall performance of the model. In 10-fold cross-

validation, the complete training dataset was split into 10 equal parts. At each of the 10 iterations, 

the model was trained on nine parts (i.e., 90% of the training data) and evaluated on the remaining 

part (i.e., 10% of the dataset). The performance of the model was evaluated on the test dataset 

using five performance evaluation metrics: sensitivity, specificity, F1-score, accuracy, and area 

under the receiver operating characteristic curve (AUC). The performance on the training dataset 

is presented as mean ± standard deviation for each of these five performance evaluation metrics. 

The prediction probabilities from the model were on a 0-1 scale and served as a continuous 

ultrasomics score representing obstructive coronary artery disease. They can also be interpreted as 

a binary outcome, with any value ≥ 0.5 indicating the presence of severe CAD, and a value < 0.5 

indicating the absence of severe CAD within a patient. 

Performance evaluation and statistical analysis 

Baseline characteristics for the training and test datasets are presented as median (interquartile 

range) for the continuous variables and total count (percentage) for the categorical variables. 

Continuous variables between training and test datasets were compared using the Mann-Whitney 

U test, while categorical variables were compared using the Fisher exact test. For categorical 

values with more than two categories, a chi-square test was used. The presence of regional wall 

motion abnormalities was reported as a categorical variable.  
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To calculate the AUC, a DeLong test was used to determine the ability of the model to predict 

severe and high-risk CAD. DeLong test was also used to calculate the AUC of the presence of 

RWMA for predicting severe and high-risk CAD. Logistic regression was performed using 

probabilities from our ultrasomics model for severe CAD, along with the presence of RWMA, to 

predict severe CAD. High-risk CAD prediction was conducted using ultrasomics model 

probabilities and the presence of RWMA. The incremental value of our ultrasomics model was 

compared with the predictive value of the presence of RWMA using a DeLong test to compare 

ROC curves. All statistical analyses were conducted using MedCalc® Statistical Software version 

22.021. All statistical tests were two-sided with a significance level of 0.05 unless otherwise 

specified. 

Results  

Baseline characteristics 

The clinical characteristics of all 333 study participants were divided into training and test sets, as 

assessed, and presented in Table 1. Similarly, the baseline characteristics for study participants 

who underwent CT coronary angiography (n=190), and invasive coronary angiography (n=143) 

were also assessed and presented as training and test sets in Table 2 and Table 3, respectively. 

Overall, in our training cohort of 271 patients, of whom 88 underwent coronary angiograms, 153 

underwent coronary CT angiography, and 30 were healthy controls, a total of 75 (27.7%) subjects 

had severe CAD. In the testing cohort, 19 out of 62 (30.6%) subjects had severe CAD. In the 

training cohort, 42 out of 271 patients (15.5%) had high-risk CAD, while in the test cohort, 8 out 

of 62 patients (12.9%) had the same composite and was not significantly different between the 

groups. Between the overall training and test cohorts, statistically significant differences included: 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.28.24305048doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.28.24305048
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

 

age (57 vs 63 years old, p=0.0032), prevalence of hypertension (65.3% vs. 83.9%, p=0.00387), 

and prevalence of smoking (42.4% vs. 56.5%, p=0.0487), respectively. The presence of RWMA 

was observed in 27 out of 271 patients (10%) in the training set and 6 out of 62 patients (9.7%) in 

the test set. 

Patients undergoing CCTA were also distributed into training (n=153) and test (n=37) cohorts 

(Table 2) and overall had a lower prevalence of severe CAD in both the training (9.8%) and test 

(8.1%) cohorts. Patients in the test group were significantly older (56 vs. 64 years old, p=0.0042) 

and had a higher prevalence of hypertension (53.6% vs. 78.4%, p=0.0086) compared to those in 

the training set. The distribution of echocardiographic and coronary angiographic findings is 

shown in Table 2.   

In patients who underwent invasive coronary angiography (n=113), there was a higher overall 

prevalence of severe CAD with 60 out of 88 (68.2%) in the training group and 16 out of 25 (66.7%) 

in the test group, than the CCTA group (Table 3).  

Predicting Severe Coronary Artery Disease 

The ML model was evaluated with 10-fold cross-validation in the training set and demonstrated 

better average performance overall, with an AUC value (Figure 2) of 0.80 (95% confidence 

interval [CI]: 0.74 to 0.86). On the test set, the model exhibited equivalent or better predictive 

performance, with an AUC of 0.77 (95% CI: 0.64-0.90). The sensitivity and specificity of this 

model on the training and test sets were as follows: sensitivity of 77.3% and specificity of 69.4% 

in the training cohort, sensitivity of 79% and specificity of 72.1% in the testing cohort. The 

ultrasomics model had a better diagnostic performance with an AUC of 0.80 (95% CI: 0.74-0.86) 

than the RWMA assessment with an AUC of 0.67 (95% CI: 0.61-0.72, p=0.0014) in the training 
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set. Similar performance was also observed in the test set with an AUC of 0.77 (95% CI: 0.64-

0.90) vs. 0.70 (95% CI: 0.56-0.81, p=0.24).  

Predicting High-Risk Coronary Artery Disease 

In the training set (Figure 3A), ultrasomics predicted high-risk CAD, with an AUC of 0.84 (95% 

CI: 0.77-0.90), a sensitivity of 64.3%, and a specificity of 83%. In the test cohort (Figure 3B), the 

AUC was 0.70 (95% CI: 0.48-0.88), with a sensitivity of 50%, and a specificity of 76%. 

Incremental value of a combined strategy 

To investigate the incremental value of ultrasomics in combination with RWMA, a logistic 

regression model was developed using the ultrasomic prediction probabilities from the primary 

model, along with the RWMA score. This composite model predicted severe CAD (Figure 4 A-B) 

with a higher training AUC of 0.82 (95% CI: 0.76-0.88) and test AUC of 0.83 (95% CI: 0.68-0.94) 

than the corresponding training AUC of 0.67 (95% CI: 0.61-0.72, p<0.0001) and test AUC of 0.70 

(95% CI: 0.56-0.81, p=0.037), for RWMA alone. Similarly, for predicting high-risk CAD (Figure 

4 C-D), this composite model showed a higher training AUC of 0.86 (95% CI: 0.79-0.92) and a 

test AUC of 0.76 (95% CI: 0.53-0.96) than the corresponding training AUC of 0.69 (95% CI: 0.63-

0.74, p<0.0001) and test AUC of 0.73 (95% CI: 0.60-0.84, p=0.64), for RWMA alone.  

Discussion 

To the best of our knowledge, this is the first study that shows the feasibility of an ultrasomics-

enabled machine learning model to predict severe obstructive CAD. The ultrasomics model was 

developed in a heterogeneous cohort of patients from three different institutions using resting 

echocardiography views (PLAX and A4C views). Despite the lack of any clinical cardiovascular 
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risk factors, the model showed robust performance for predicting severe stenosis in major coronary 

vessel territories (>70%) and high-risk CAD (left main stenosis >50%, multivessel stenosis >70%, 

or 100% occlusion). Furthermore, the present study demonstrated that the combination of 

ultrasomics with RWMA analysis improved the performance of resting echocardiography analysis 

for predicting both severe and high-risk CAD.   

Our previous work in an animal model and in patients undergoing cardiac magnetic 

resonance imaging had shown the potential of ultrasomics in identifying acoustic reflection 

patterns related to changes in myocardial architecture that are not identifiable by visual analysis 

(9,15). The present investigation extends this work by applying ultrasomics to clinical scenarios. 

Interestingly, obstructive CAD is associated with changes in myocardial architecture characterized 

by progressive myocyte hypertrophy and interstitial fibrosis, related to underlying risk factors, 

ischemia, and infarction (16,17). We speculate that ultrasomics may assess obstructive CAD 

through the quantification of subtle changes in myocardial architecture and textural patterning seen 

in patients with obstructive CAD. 

Given the heterogeneous presentations arising from varying degrees of disease, an 

individualized approach is needed for risk assessment and interventions. While it is well 

recognized that even patients with non-obstructive CAD are at an increased risk for future adverse 

cardiac events, the choice of interventions obviously differs with the presence of severe obstructive 

CAD; these patients require timely revascularization. Clinical guidelines have therefore 

recommended the use of CCTA as a first-line diagnostic option in symptomatic persons with a low 

to intermediate pretest probability of having obstructive CAD (18). However, as seen in our study, 

a considerable number of people who undergo CCTA have mild or no CAD. Thus, there is a 

growing interest in developing AI-based approaches to improve patient selection aiming to 
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enhance cost-effectiveness and diagnostic yield of CCTA, as AI-augmented imaging raises 

physician diagnostic accuracy and can detect more subtle signs indicative of CAD (19-21).  

Since cardiac ultrasound is frequently performed in patients with suspected CAD, ML is 

being increasingly utilized for the quantification of global and regional LV function (22). 

However, the literature is limited to the prediction of obstructive CAD from echocardiography 

images beyond gross hemodynamic and structural changes. Upton et al. used ML models built 

from stress echocardiograms and trained them using an ensemble machine-learning approach to 

identify patients with severe CAD. Using 31 novel features that were combined into their ML 

model, the authors were able to achieve an AUC of 0.934 with a high specificity of 85.7% (23). 

Using a combination of ultrasomics and RWMA from resting studies, our model demonstrated 

improved predictive value for both severe and high-risk CAD, with a specificity greater than 94% 

for both endpoints. Furthermore, our model’s applicability to the bedside using limited 

echocardiography views makes it more feasible for use by clinicians at the point-of-care. Thus, an 

ultrasomics model implemented at the point-of-care has relevance towards the development of 

diagnostic tools that may aid appropriate downstream testing. Further evaluation in prospective 

studies will be of value to understand the impact of new predictive models and their incorporation 

within clinical decision support systems. 

The ultrasomics model may also be beneficial for high-risk patients presenting with 

unstable coronary syndromes. Recent studies demonstrate that nearly 1/3rd of patients with 

NSTEMI have high-risk coronary anatomies including an acute occlusion of their culprit artery on 

invasive coronary angiography (24,25). These patients have double the size of infarction and 

display significantly higher major adverse cardiac event rates and all-cause mortality than those 

without total occlusion (26,27). Since the ultrasomics model in the present study identified patients 
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with high-risk CAD, including those with left main disease, multivessel disease, and 100% 

coronary occlusion, future studies should prospectively assess the incremental value of ultrasomics 

models in patients with ACS - specifically for identifying patients with occult coronary occlusion 

who present with NSTEMI and develop large infarcts in the absence of timely interventions.  

Limitations and Future Directions 

We analyzed a heterogeneous group of patients from multiple institutions with varying pretest 

probabilities of CAD. This resulted in class imbalance with the CCTA cohort having a lower 

prevalence of obstructive CAD than the invasive group. Moreover, the number of patients enrolled 

at each site was small and we used a strategy of temporal stratification to develop training and test 

cohorts to provide a realistic evaluation. The developed model would need to be tested in a 

prospective study where patients are enrolled with uniform inclusion and exclusion criteria. The 

highest yield would be an assessment performed in patients who present with chest pain in acute 

care settings and emergency departments where there is an immediate need to identify and 

efficiently triage patients with high-risk obstructive CAD.  

The integration of radiomic-based ML tools for clinical translation, including 

echocardiography, remains complex but within reach. Most importantly, standardizing and 

automating the process for ultrasomics extraction and segmentation of myocardium within 

echocardiography is required for consistently valid model formation (28). Strict standardization of 

workflow and harmonization of methods are necessary in the ultrasomics pipeline. Integration of 

models within echocardiography carts to improve diagnostic validity can circumvent scanner-to-

scanner variability that can influence results of ultrasomics extraction, image-processing 

techniques, feature-level optimization, and batch-prediction normalization (29). On the other hand, 
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the use of combined handcrafted ultrasomics with deep ultrasomics may improve model 

generalizability and its ability to be placed in cloud-based platforms. These implementation 

strategies would need to be tested in future investigations.  

Conclusion  

We demonstrated the ability of ML-enhanced predictive models using ultrasomics to predict 

severe, obstructive CAD and high-risk CAD in patients more accurately than the traditional 

assessment of RWMA alone. Our model was developed using limited echocardiography views and 

requires further external validation specifically when used at the bedside using POCUS as a cost-

effective AI tool for screening for obstructive CAD.  
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Figures 

 

Figure 1: Central Illustration: Depiction of the ultrasomics machine-learning pipeline, including 

the preprocessing, echocardiographic view identification, semantic segmentation, and ultrasound 

feature extraction. After extraction, machine learning was employed to create a predictive 

ultrasomics model for severe CAD.  

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 30, 2024. ; https://doi.org/10.1101/2024.03.28.24305048doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.28.24305048
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

 

 

Figure 2: Prediction of Severe CAD From ML Model. (A) Receiver-operating characteristic 

(ROC) curve of the training cohort with 10-fold cross-validation for predicting severe CAD and 

(B) ROC curve for the prediction of severe CAD in the validation (test) cohort. 
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Figure 3: Prediction of High-Risk CAD From ML Model. (A) Training cohort ROC curve for the 

prediction of high-risk CAD, defined as having either: left main (LM) artery stenosis >50%, 100% 

stenosis of left anterior descending (LAD), left circumflex (LCx), or right coronary (RCA) artery, 

or multivessel disease. (B) ROC curve for prediction of high-risk CAD in the test cohort.  
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Figure 4: Predicting severe CAD and high-risk CAD using a logistic regression model that 

combines ultrasomics with regional wall motion abnormalities. ROC curve for predicting severe 

CAD in the training cohort (A) and the test cohort (B). ROC curve for the prediction of high-risk 

CAD in the training cohort (C) and the test cohort (D). 
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Tables 

Table 1: Baseline characteristics for the training and test datasets used to develop and validate the 

machine learning models.  

Variable Train (n=271) Test (n=62) P 

Demographic Parameters   

Age (years) 271 57 (49.0 - 67.0) 62 63 (55.0 - 71.0) 0.0032 

Sex (M), n (%) 271 132 (48.7) 62 28 (45.2) 0.67 

BMI (kg/m2) 271 28.9 (25.0 - 33.8) 62 28.6 (24.4 - 33.3) 0.57 

Hypertension, n (%) 271 177 (65.3) 62 52 (83.9) 0.00387 

Hyperlipidemia, n (%) 271 198 (73.1) 62 44 (71.0) 0.75 

Diabetes Mellitus, n (%) 271 70 (25.8) 62 18 (29.0) 0.63 

Coronary Artery Disease, n (%) 271 64 (23.6) 62 19 (30.6) 0.26 

Chronic Kidney Disease, n (%) 271 27 (10.0) 62 6 (9.7) 0.95 

Smoking, n (%) 271 115 (42.4) 62 35 (56.5) 0.0487 

Echocardiographic Parameters  

LVEDV, ml 269 97.8 (77.3 - 118.3) 61 88 (71.3 - 114.5) 0.18 

LVESV, ml 268 34.9 (26.2 - 47.4) 61 30 (23.1 - 43.5) 0.07 

LVEF, % 270 61 (56.3 - 65.0) 61 63.7 (58.9 - 66.0) 0.12 

LVIDd, mm 269 46 (42.0 - 50.0) 62 44.8 (40.0 - 48.0) 0.08 

LV Mass index, g/m2 266 78.1 (62.2 - 96.9) 61 75.2 (65.3 - 91.4) 0.73 

LA Volume index, mL/m2 261 29.09 (22.73 - 39.68) 59 29.81 (24.19 - 36.20) 0.85 

MV E/A ratio 261 1.00 (0.80 - 1.30) 60 1.013 (0.825 - 1.300) 0.68 

Average e', cm/s 266 8.0 (6.47 - 9.49) 60 7.59 (6.16 - 8.92) 0.20 

Average E/e' 261 9.16 (7.21 - 11.03) 60 9.85 (7.55 - 14.19) 0.06 

Presence of RWMA, n (%) 261 27 (10.3) 58 6 (10.3) 1 

Coronary Artery Parameters*  

Severe CAD, n (%) 241 75 (31.1) 62 19 (30.7) 0.64 

High-risk CAD, n (%) 241 42 (17.4) 62 8 (12.9) 0.70 

Location of Stenotic Coronary Artery  

Left Main, n (%) 241 9 (3.7) 62 2 (3.2) 0.23 

Left Anterior Descending, n (%) 241 54 (22.4) 62 13 (21.0) 0.27 

Left Circumflex, n (%) 241 33 (13.7) 62 10 (16.1) 0.97 

Right Coronary Artery, n (%) 241 39 (16.2) 62 6 (9.7) 0.47 

Number of Significant Stenoses  

Single Vessel, n (%) 241 38 (15.8) 62 13 (21.0) 0.17 

Multivessel, n (%) 241 37 (15.4) 62 6 (9.7) 0.53 

100% stenosis, n (%) 241 15 (6.2) 62 5 (8.1) 0.55 
BMI: body mass index; LVEDV: left ventricular end-diastolic volume; LVESV: left ventricular end-systolic volume; 

LVEF: left ventricular ejection fraction; LVIDd: left ventricular internal diameter, end-diastole; MV E/A ratio: mitral valve 

inflow peak velocity, early diastole (E) to peak velocity flow, late diastole (A); e’: mitral annulus velocity, early diastole; 

RWMA: regional wall motion abnormalities; CAD: Coronary Artery Disease.  

*Ultrasomic features from healthy controls (n=30) were included in the training cohort to train the machine learning model 

and did not undergo coronary angiography. 
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Table 2: Baseline characteristics for the study participants who underwent coronary CT 

angiography.  

Variable Train (n=153) Test (n=37) P 

Demographic Parameters 

Age (years) 153 56 (49-65) 37 64 (55 - 71.5) 0.0042 

Sex (M), n (%) 153 67 (43.8) 37 12 (32.4) 0.27 

BMI (kg/m2) 153 28.1 (23.9-33.1) 37 29.3 (24.9 - 33.9) 0.49 

Hypertension, n (%) 153 82 (53.6) 37 29 (78.4) 0.0086 

Hyperlipidemia, n (%)  153 113 (73.9) 37 26 (70.2) 0.68 

Diabetes Mellitus, n (%) 153 21 (13.7) 37 10 (27) 0.08 

Coronary Artery Disease, n (%) 153 0 (0) 37 0 (0)   

Chronic Kidney Disease, n (%) 153 15 (9.8) 37 3 (8.1) 1 

Smoking, n (%) 153 55 (35.9) 37 20 (54.1) 0.06 

Echocardiographic Parameters 

LVEDV, ml 152 95.15 (73.4-115.5) 37 85.8 (67.6 - 103.25) 0.14 

LVESV, ml 151 30.1 (23.25-41.00) 37 26.3 (19.83 - 34.18) 0.07 

LVEF, % 153 63 (59.0-66.0) 37 65 (61.8 - 66.3) 0.12 

LVIDd, mm 153 45.5 (41.0 to 49.0) 37 43.8 (39.0 to 47.3) 0.12 

LV Mass index, g/m2 152 74.7 (61.5-93.5) 37 75.5 (66.2 - 94.4) 0.61 

LA Volume index, mL/m2 149 31.60 (26.05-37.98) 34 37.91 (28.70 - 46.00) 0.0161 

MV E/A ratio 149 1.02 (0.80-1.30) 37 1 (0.80 - 1.30) 0.69 

Average e', cm/s 150 7.9225 (6.470-9.480) 37 7.235 (6.09 - 8.71) 0.13 

Average E/e' 148 8.88 (6.91-10.67) 37 9.89 (8.11 - 15.77) 0.0109 

Presence of RWMA, n (%) 153 0 (0) 37 0 (0)   

Coronary CT Angiogram Parameters 

Severe CAD, n (%) 153 15 (9.8) 37 3 (8.1) 0.75 

High-risk CAD, n (%) 153 5 (3.3) 37 2 (5.4) 0.62 

Location of Stenotic Coronary Artery  

Left Main, n (%) 153 0 (0) 37 0 (0)   

Left Anterior Descending, n (%) 153 7 (4.6) 37 1 (2.7) 0.13 

Left Circumflex, n (%) 153 4 (2.6) 37 2 (5.4) 0.55 

Right Coronary Artery, n (%) 153 8 (5.3) 37 0 (0) 0.18 

Number of Significant Stenoses  

Single Vessel, n (%) 153 12 (7.8) 37 3 (8.1) 0.96 

Multivessel, n (%) 153 3 (2.0) 37 0 (0) 0.39 

100% stenosis, n (%) 153 3 (2.0) 37 2 (5.4) 0.25 
BMI: body mass index; LVEDV: left ventricular end-diastolic volume; LVESV: left ventricular end-systolic volume; LVEF: 

left ventricular ejection fraction; LVIDd: left ventricular internal diameter, end-diastole; MV E/A ratio: mitral valve inflow 

peak velocity, early diastole (E) to peak velocity flow, late diastole (A); e’: mitral annulus velocity, early diastole; RWMA: 

regional wall motion abnormalities; CAD: Coronary Artery Disease. 
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Table 3: Baseline characteristics of study participants who underwent invasive coronary 

angiography. 

Variable Train (n=118) Test (n=25) P 

Demographic Parameters 

Age (years) 118 58.5 (49.0 - 68.0) 25 60.0 (53.7 - 71.0) 0.22 

Sex (M), n (%) 118 65 (55.1) 25 16 (64.0) 0.51 

BMI (kg/m2) 118 29.2 (26.4 to 34.2) 25 27.3 (24.2 - 32.5) 0.06 

Hypertension, n (%) 118 95 (80.5) 25 23 (92.0) 0.25 

Hyperlipidemia, n (%) 118 85 (72.0) 25 18 (72.0) 1 

Diabetes Mellitus, n (%) 118 49 (41.5) 25 8 (32.0) 0.50 

Coronary Artery Disease, n (%) 118 64 (54.2) 25 19 (76.0) 0.0483 

Chronic Kidney Disease, n (%) 118 12 (10.2) 25 3 (12.0) 0.73 

Smoking, n (%) 118 60 (50.8) 25 15 (60) 0.51 

Echocardiographic Parameters 

LVEDV, ml 117 99.8 (84.9 to 120.2) 24 102.4 (76.1 to 128.1) 0.93 

LVESV, ml 117 40.5 (29.1 to 55.9) 24 41.5 (28.9 to 52.2) 0.64 

LVEF, % 117 58 (53.7 to 63.9) 24 61.4 (53.2 to 63.9) 0.51 

LVIDd, mm 116 46.0 (42.0 to 50.5) 25 46.0 (41.7 to 48.4) 0.37 

LV Mass index, g/m2 114 83.4 (63.9 to 103.7) 25 73.3 (63.9 to 81.5) 0.14 

LA Volume index, mL/m2 112 27.29 (22.80 to 32.73) 25 20.7 (17.61 to 28.13) 0.0011 

MV E/A ratio 112 0.967 (0.812 to 1.286) 23 1.038 (0.89 to 1.45) 0.24 

Average e', cm/s 116 8.0 (6.45 to 9.62) 23 8.0 (6.79 to 9.04) 0.88 

Average E/e' 113 9.55 (7.61 to 12.19) 23 8.74 (7.52 to 11.34) 0.86 

Presence of RWMA, n (%) 108 27 (25) 21 6 (28.6) 0.79 

Invasive Coronary Angiogram Parameters* 

Severe CAD, n (%) 88 60 (68.2) 25 16 (64.0) 0.68 

High-risk CAD, n (%) 88 37 (42.0) 25 6 (24.0) 0.27 

Location of Stenotic Coronary Artery 

Left Main, n (%) 88 9 (10.2) 25 2 (8.0) 0.55 

Left Anterior Descending, n (%) 88 47 (53.4) 25 12 (48.0) 0.05 

Left Circumflex, n (%) 88 29 (32.9) 25 8 (32.0) 0.69 

Right Coronary Artery, n (%) 88 31 (35.2) 25 6 (24.0) 0.0143 

Number of Significant Stenoses 

Single Vessel, n (%) 88 26 (29.5) 25 10 (40.0) 0.23 

Multivessel, n (%) 88 34 (38.6) 25 6 (24.0) 0.37 

100% stenosis, n (%) 88 12 (13.6) 25 3 (12.0) 0.98 
BMI: body mass index; LVEDV: left ventricular end-diastolic volume; LVESV: left ventricular end-systolic volume; 

LVEF: left ventricular ejection fraction; LVIDd: left ventricular internal diameter, end-diastole; MV E/A ratio: mitral 

valve inflow peak velocity, early diastole (E) to peak velocity flow, late diastole (A); e’: mitral annulus velocity, early 

diastole; RWMA: regional wall motion abnormalities; CAD: Coronary Artery Disease. 

*Ultrasomic features from healthy controls (n=30) were included in training cohort to train the machine 

learning model and did not undergo coronary angiography. 
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