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Abstract 

Background  

Early identification of heart failure patients at increased risk for near-term adverse outcomes 

would assist clinicians in efficient resource allocation and improved care. Deep learning can 

improve identification of these patients. 

Methods 

This retrospective study examined adult heart failure patients admitted to a tertiary care 

institution between January 2009 and December 2018. A deep learning model was constructed 

with a dense input layer, three long short-term memory (LSTM) layers, and a dense hidden layer 

to cohesively extract features from time-series and non-time-series EHR data. Primary outcomes 

were all-cause hospital readmission or death within 30 days after hospital discharge. 

Results 

Among a final subset of 49,675 heart failure patients, we identified 171,563 hospital admissions 

described by 330 million EHR data points. There were 22,111 (13%) admissions followed by 

adverse 30-day outcomes, including 19,122 readmissions (87%) and mortality in 3,330 patients 

(15%). Our final deep learning model achieved an area under the receiver-operator characteristic 

curve (AUC) of 0.613 and precision-recall (PR) AUC of 0.38. 

Conclusions  

This EHR-based deep learning model developed from a decade of heart failure care achieved 

marginal clinical accuracy in predicting very early hospital readmission or death despite previous 

accurate prediction of 1-year mortality in this large study cohort. These findings suggest that 
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factors unavailable in standard EHR data play pivotal roles in influencing early hospital 

readmission. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 28, 2024. ; https://doi.org/10.1101/2024.03.27.24304999doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.27.24304999
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 
 

 

Abbreviations: 

AUC = Area under the receiver operating characteristic curve 

BMI = Body mass index 

ECMO = Extracorporeal membrane oxygenation 

EHR = Electronic health record 

ICD = International Classification of Diseases 

LOS = Length of stay 

LSTM = Long short-term memory 

PR AUC = Precision-recall area under the curve 

ReLU = Rectified linear activation unit function  
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Clinical Perspective  

What is new? We developed an EHR-based deep learning model trained by 330 million data 

points from one of the largest cohorts of heart failure patients to date. Despite this model’s 

highly accurate prediction of long-term outcomes, such as mortality and disease progression, our 

findings suggest that EHR data alone offers limited predictive power for predicting the short-

term outcomes of 30-day hospital readmission or death. 

What are the clinical implications? Our study supports the notion that hospital readmission, in 

contrast to other health outcomes, is uniquely driven by additional factors beyond traditional 

EHR variables. Once identified, incorporation of these determinants into future deep learning 

models could allow for accurate heart failure risk-stratification at hospital discharge to facilitate 

more efficient allocation of limited resources to the most vulnerable patients. 

 

Introduction  

Heart failure remains a significant cause of morbidity and mortality in the United States 

with an annual mortality rate ranging from 22-30% (1-5). Heart failure patients represent the 

most rapidly growing and resource-intensive subset among patients with cardiovascular disease 

(6,7). Additionally, patients with heart failure have among the highest rates of unplanned 30-day 

hospital readmissions, ranging from 20-56% (5-7), many of which may be preventable (5-11). To 

this end, there has been increased emphasis on identifying heart failure patients who are at 

increased risk for adverse outcomes early after hospital discharge. 

Deep learning models employ automated learning techniques to identify outcome-

predictive data patterns in large datasets (12,13). Prior investigations using machine learning 
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models to predict hospital readmission in heart failure patients have reported inconsistent results 

(14-31). This may be attributed to difficulty in obtaining consistent, high-quality granular data 

for this heterogeneous patient group, or simply due to a lack of predictive signal in standard 

clinical metrics. Many other potential predictors, such as medication adherence and 

socioeconomic status, are not explicitly captured in EHR data but have been identified as critical 

determinants of care metrics including hospital readmission (32). 

Although prior studies have not identified any single EHR variable capable of accurately 

predicting heart failure readmission with the precision required to drive clinical decision-making, 

predictive associations between groups of EHR variables and heart failure outcomes have been 

reported (17,24,32,33). As an alternative strategy to traditional regression analysis models, this 

investigation employs the pattern-recognition capabilities of deep learning to exploit the 

outcome-predictive capabilities associated with often complex and non-intuitive groupings of 

variables found in the medical records of heart failure patients. 

EHR data platforms present patient-specific clinical variables in a uniquely structured 

format that may simplify and accelerate direct integration into machine learning models, 

facilitating application of their advanced analytic capabilities in risk prediction. These attributes 

give EHR-based deep learning models considerable potential for direct clinical utility in the 

identification of heart failure patients at high-risk for readmission or mortality. The accurate 

identification of these high-risk patients may improve distribution of available resources to the 

most vulnerable heart failure patients. 

 

Methods 
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Data Source 

The human studies Institutional Review Board at Washington University School of 

Medicine approved this study. All machine learning clinical variables analyzed in this study were 

obtained from the EHR of patients at Barnes-Jewish Hospital at Washington University Medical 

Center in St. Louis, Missouri. 

Cohort and Study Design 

The study population consisted of adult patients between the ages of 18 to 90 years old 

with any heart failure International Classification of Diseases (ICD) codes admitted between 

January 2009 and December 2018. Admissions within 30 days before the conclusion of data 

collection or a length of stay (LOS) under 48 hours were excluded. Admissions with no 

discharge date or ending in death were excluded as index hospitalizations, although not as 

subsequent readmissions. Finally, at least 5 unstructured records (e.g., diagnosis, treatment, 

procedures, etc.), 1 vital sign record, and 1 laboratory value were required to include a recorded 

medical encounter as a hospitalization. These criteria helped exclude brief admissions scheduled 

for diagnostic purposes, such as cardiac catheterization and transesophageal echocardiography, 

which are often ordered on an outpatient basis but performed in the hospital due to their invasive 

nature.  

The unit of analysis used to train our machine learning model was hospital admission, in 

contrast to other studies that have performed analysis at a patient (29) or unspecified (27) level. 

In patients with serial hospitalizations, each admission may qualify as a unique index 

hospitalization as well as a potential readmission if within 30 days after a prior discharge. By 

analyzing each instance as a unique opportunity for learning, data utilized for model training can 

be maximized. Moreover, this approach more accurately represents clinical practice and 
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enhances prediction applicability, since heart failure clinicians are routinely tasked with 

evaluating the risk of readmission at the end of each hospitalization. 

Our primary positive outcomes were all-cause readmission lasting ≥ 48 hours or death 

within 30 days after discharge following an index hospitalization. These were classified as 

“positive events”. The 30-day window after hospital discharge has been identified as a key health 

policy metric for health care quality improvement (34,35). Readmissions within this time frame 

often reflect poor patient risk evaluation and inadequate recognition of post-discharge needs 

(36). Ventricular assist device placement, extracorporeal membrane oxygenation (ECMO) 

support, or cardiac transplantation are not considered separately since all are captured as 

hospitalization events. Model inputs included EHR data prior to index hospitalization discharge 

date, including all EHR data obtained during prior and current hospitalizations and in the 

outpatient setting. 

Feature Extraction and Deep Learning Network Design 

The deep learning model in Figure 1 is comprised of three LSTM layers to extract 

features from time-series EHR data, including vital signs, medication, laboratory, assessment, 

procedural, and diagnostic coding variables (37). Additionally, a dense layer extracts non-time-

series patient attributes, such as age, gender, race; and a dense hidden layer which extracts 

additional features from the output features generated by the three LSTM input layers and the 

dense input layer. The intermediate features are extracted and pooled to a final hidden dense 

layer containing 16 neurons and a bias neuron. The model employs the rectified linear activation 

unit function (ReLU) for all dense hidden layers, and sigmoid activation for the final output 

neuron. 
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Most patients had available data for a subset of the 70 laboratory values evaluated (Table 

1). These values are encoded by a 70-length vector which initially starts as the mean data set 

value for each laboratory test. As new results are obtained over time, the previous value in the 

vector is replaced and remains in place until new testing is performed. Therefore, the vector 

contains the most recent test results or the mean value for the dataset if no results are available 

for a specific patient. Vectors are entered as input sequences for the LSTM layers in a sliding 

window fashion with the oldest vectors sliding off once they reach the end of the sequence. Vital 

signs are similarly encoded using a 7-length vector whose values are updated as more recent vital 

signs are recorded in the EHR. 

The coding variables for basic procedures, surgical procedures, diagnostics, assessments, 

and medications were transformed into 100-length sequences of 32-dimensional vectors using 

Python's Genism Word2Vec (38). These sequences were then entered into an LSTM layer. Since 

the data were high-cardinality and sparse, no missing data management was required. The 

encoding process only considered present values and ignored those that were not present in the 

time series. 

The data were randomly divided into three sets: training (80%), validation (10%), and 

testing (10%). The model’s performance was evaluated using AUC, PR AUC, log loss, and Brier 

score. Feature importance was determined using the permutation feature importance method, 

where each feature in the trained neural network was permuted and the change in AUC analyzed. 

Additionally, multiple features were permuted together to analyze grouped feature importance. 

 

Results 
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Heart Failure Dataset Baseline Characteristics 

Our initial patient cohort comprised 52,806 heart failure patients. After the previously 

described exclusions, our final study set consisted of 49,675 patients, of whom, 20% (9,975) 

experienced positive events during the 10-year study period. Of those who experienced positive 

events, 84% (8,419) experienced 30-day readmissions and 28% (2,751) suffered 30-day all-cause 

mortality. The baseline demographic characteristics and vital signs of our training and internal 

validations cohorts are listed in Table 2. 

Heart Failure Dataset 30-day Adverse Events 

Of 171,563 study hospitalizations, 22,111 (13%) met our primary positive outcome 

(Table 3). Of these positive events, 19,122 (11%) involved 30-day all-cause readmission and 

3,330 (2%) involved 30-day all-cause mortality. Some patients experienced both mortality and 

re-admission within 30 days (Table 3).  

Heart Failure Dataset Hospital LOS Data 

The overall average LOS for the index hospitalizations was 122 hours.  The average LOS 

of positive versus negative observations was 148 hours versus 133 hours, respectively.  

Heart Failure Dataset Variable Importance 

Table 1 shows the importance of the 70 variables evaluated for individual impact on 30-

day all-cause readmission and mortality. Patient height, C-reactive protein level, and 

unstructured row count (which included variables such as diagnosis, treatment, procedures, etc.) 

demonstrated the highest importance at a univariate level. Figure 2 demonstrates the relative 

predictive importance of vital sign and laboratory test variables depicted on the x and y axes, 
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respectively. Variables are listed in descending order of univariate importance. Red hues 

represent those with highest impact on model prediction (darker red hues representing factors 

with the most important impact) and blue hues highlighting low impact variables (dark blue hues 

representing the least important impact). Brain natriuretic peptide levels and serum sodium levels 

exhibited the highest impact among the clinical variables evaluated (vertical gradient), and there 

was no apparent association between clinical variable importance and vital sign values 

(horizontal gradient). 

Model Performance 

The performance of the model for predicting 30-day readmission or death in heart failure 

patients was measured using the ROC curve with a test set ROC AUC of 0.613 (95% CI: 0.59-

0.64) (Figure 3). Table 4 shows additional performance metrics, including PR AUC of 0.38 (CI: 

0.33-0.41) shown in Figure 4. The model’s predictive performance remained stable across a 

range of hospitalization durations, including hospitalizations with a brief LOS (Table 1). The log 

loss was 0.57 with a Brier Score of 0.19 

 

Discussion 

This deep learning model predicting 30-day all-cause hospital readmission or death was 

developed using a decade of EHR data from a tertiary care hospital and included 330 million 

data points from 171,563 hospital admissions in 49,675 heart failure patients. The model 

employed time-sensitive LSTM networks to analyze subtle fluctuations in clinical EHR variables 

over time and utilized densely connected networks for fixed, non-time-dependent demographics. 

Notably, we previously demonstrated that a nearly identical model successfully generated 
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accurate predictions of long-term adverse outcomes in the same cohort of heart failure patients, 

achieving an AUC of 0.91 (39). Our current findings indicate that EHR data alone is insufficient 

to generate similar predictive accuracy of 30-day hospital readmission or death in heart failure 

patients. This study underscores the unique nature of hospital readmission in comparison to other 

health quality metrics and the need to identify additional factors beyond traditional EHR 

variables that influence preventable hospital readmissions in this patient population. 

Our study supports a growing body of literature heightening awareness of socioeconomic 

factors (such as income, education, place of residence, disability, ethnicity, race) as pivotal 

determinants contributing to hospital readmission in heart failure patients (40,41). While it is 

unlikely that targeting individual socioeconomic factors alone will be enough to reduce 

readmissions (41), the predictive model we seek likely requires cohesive integration of a 

cumulative burden of socioeconomic determinants in combination with key clinical variables 

that can be extracted from the EHR. This task is one for which machine learning is uniquely 

suited, given its unique proficiency at identifying non-intuitive, multiparametric outcome 

predictive patterns, and its seemingly boundless capability for comprehensive data analysis and 

integration (14,15,17,19,22-24). Additionally, incorporating time-based metrics through 

recurrent neural network units allows for the detection of even subtle progression in heart failure 

status, which can uncover time-dependent relationships between variables to enhance prediction 

and accelerate learning. These results suggest only modest capability of time-sensitive neural 

networks for predicting post-discharge adverse outcomes within the framework of each 

individual patient’s unique heart failure course. 

Prior research utilizing machine learning to predict hospital readmission in heart failure 

patients has yielded varying degrees of accuracy, with predictive AUC values ranging from 0.62 
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to 0.96 (14,15,17,19,22-24,26-29). Our final deep learning model was developed in one of the 

largest cohorts of heart failure patients to date and lends support to previous model results at the 

lower end of that spectrum of predictive accuracy. Although our model AUC does not attain the 

high level of accuracy achieved by Lv et al in a smaller cohort of 13,600 patients (17), our results 

are comparable to those reported by larger models and may accurately represent current potential 

of large scale implementation of patient-specific outcome prediction using an embedded EHR 

model.  

By excluding hospitalizations with LOS ≤ 48 hours as index admissions or readmissions, 

our model attempts to exclude routine follow-up admissions, such as those related to elective, 

regularly scheduled endomyocardial biopsy and other surveillance investigations, many of which 

are unique to this complex patient subpopulation. This type of readmission may have contributed 

to overestimation of readmission for actual heart failure decompensation in previously published 

investigations (14,24,28). Instead, our model focuses upon longer hospitalizations, such as those 

for severe heart failure decompensation. 

Several limitations must be considered when interpreting the findings of this study. Its 

retrospective design and the use of data from a single institution may restrict the generalizability 

of the model. Additionally, retrograde leakage of data that may falsely improve predictive 

accuracy is always a possibility (42-44). Our definition of a positive event as all-cause 

readmission or mortality may thereby include a small proportion of patients for whom 30-day 

readmission or death was not related to heart failure. Although not ideal, this primary outcome 

definition is the most effective and clinically applicable in our large population of medically 

complex heart failure patients. The inclusion of multiple hospitalizations from each patient in 

predictive model development may potentially skew results to the subpopulation with heightened 
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disease severity and worse overall health status. However, multiple readmissions are common in 

heart failure patients and their impact should be represented in predictive models. Clinical 

models assist but should not substitute clinical judgement. Additional validation is essential to 

verify the applicability of this model in other heart failure patient populations. 

Our results suggest that EHR data alone offers limited predictive power for certain care 

quality metrics, such as early hospital readmission or death, and support the notion that other 

factors not routinely recorded in hospital medical records may play a pivotal role in determining 

these outcomes. To this end, further investigation is necessary to determine which of these non-

standard metrics are most important in this patient population. Once identified, incorporation of 

these variables into future deep learning models could allow for accurate heart failure risk-

stratification at hospital discharge to facilitate more efficient allocation of limited resources to 

the most vulnerable patients.  
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Figure 1 

A deep learning model was constructed with a dense input layer, three long short-term memory 

(LSTM) layers, and a dense hidden layer to cohesively extract features from time-series and non-

time-series EHR data.   
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Figure 2 

Heat map demonstrating the relative predictive importance of vital sign and laboratory test 

variables depicted on the x and y axes, respectively. Variables are listed in descending order of 

univariate importance, with red hues representing those with highest impact on model prediction 

and blue hues highlighting low impact variables.  
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Figure 3 

The area under the receiver-operating characteristic curve (AUC) (or C-statistic) of 0.61 with a 

95% CI of 0.59-0.64 demonstrates marginal clinical accuracy in short-term prediction of adverse 

30-day outcomes in this large study cohort.  
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Figure 4 

The precision recall area under the curve (PR AUC) of 0.37 with a 95% CI of 0.33-0.41 further 

supports the notion that standard EHR data lacks crucial factors, such as socioeconomic 

determinants, that lay pivotal roles in influencing early readmission and mortality in this cohort. 
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Table 1 

Univariate importance of the 70 clinical variables evaluated for individual impact on 30-day all-

cause readmission and mortality.  

Variable AUC Without 

Variable 

Importance 

Vital Signs 

Height 0.593 1.000 

Weight 0.594 0.996 

Heart rate 0.598 0.987 

Diastolic blood pressure 0.598 0.987 

Oxygen flow rate 0.599 0.984 

Systolic blood pressure 0.603 0.974 

Oxygen saturation 0.603 0.974 

Laboratory Values 

C-reactive protein 0.503 1.000 

Sodium  0.510 0.987 

Lactate dehydrogenase 0.513 0.980 

Brain natriuretic peptide 0.517 0.973 

Hematocrit 0.521 0.966 

Fasting glucose 0.521 0.965 

Monocytes 0.524 0.958 

Albumin 0.525 0.956 

Fraction of inspired oxygen 0.526 0.954 

Lactic acid 0.529 0.949 

Uric acid 0.529 0.948 

Plasma potassium 0.530 0.946 
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Ammonia 0.531 0.945 

Cannabinoids 0.532 0.943 

Hemoglobin 0.533 0.940 

Amylase 0.534 0.939 

Total hemoglobin 0.535 0.936 

Venous partial pressure of 

oxygen 
0.537 0.932 

Triglycerides 0.541 0.925 

Hemoglobin A1c 0.541 0.925 

Chloride 0.541 0.925 

Potassium 0.541 0.924 

Carbon dioxide 0.545 0.916 

Carboxyhemoglobin 0.546 0.915 

Calculated oxygen saturation 0.546 0.914 

Venous oxygen content 0.546 0.914 

Oxygen gradient 0.547 0.912 

Ketones 0.550 0.907 

Alanine aminotransferase 0.550 0.906 

Basophils 0.552 0.903 

Base excess 0.552 0.901 

Methemoglobin 0.553 0.901 

Blood urea nitrogen 0.553 0.899 

Troponin I 0.555 0.897 

Benzodiazepines 0.556 0.894 

Pulmonary artery oxygen 0.558 0.891 

Partial thromboplastin time 0.558 0.891 

Magnesium 0.558 0.890 

Alkaline phosphatase 0.559 0.888 
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Glucose 0.560 0.887 

Partial pressure of carbon dioxide 0.561 0.885 

Pulmonary artery oxyhemoglobin 0.563 0.880 

International normalized ratio 0.563 0.879 

Cocaine 0.564 0.878 

Creatinine 0.569 0.867 

Direct bilirubin 0.572 0.862 

High-density lipoprotein 0.574 0.858 

Prothrombin time 0.575 0.856 

Phosphorous 0.575 0.855 

D dimer 0.584 0.839 

Aspartate aminotransferase 0.586 0.833 

Fraction of inspired oxygen 0.595 0.816 

Plasma protein 0.595 0.815 

Anion gap 0.596 0.813 

Calcium 0.598 0.809 

pH 0.599 0.807 

Eosinophils 0.599 0.807 

Fibrinogen 0.600 0.806 

Urine specific gravity 0.600 0.806 

Lymphocytes 0.600 0.806 

Indirect Coombs 0.600 0.806 

Lipase 0.600 0.805 

Bicarbonate 0.602 0.802 

Creatine kinase 0.602 0.802 

Platelets 0.602 0.802 

Bilirubin 0.603 0.800 
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Partial pressure of oxygen 0.603 0.800 

Thyroid stimulating hormone 0.603 0.799 

Neutrophils 0.603 0.799 

Cholesterol 0.604 0.798 

Oxygen saturation 0.604 0.798 

Static Variables 

Unstructured row count  0.540 1.000 

Laboratory test row count 0.567 0.940 

Length of stay (LOS) hours 0.591 0.889 

Vital sign row count 0.597 0.875 

Gender 0.602 0.865 

Race 0.604 0.859 

Age at admission 0.606 0.857 
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Table 2 

Baseline characteristics in training and internal validation cohorts. 

 Training 

Cohort 

Internal 

Validation Cohort 

Number of participants 19,884 2,486 

Age at admission, years 63 (SD:15) 63 (SD:15) 

Gender   

        Female, % 9,052 (46) 1,095 (44) 

        Male, % 10,832 (55) 1,390 (46) 

        Unknown, % 0 (0) 1 (0) 

Ethnicity   

        White, % 9,036 (45) 1,093 (44) 

        Black, % 9,313 (47) 1,202 (48) 

        Asian, % 87 (0) 7 (0) 

        Other, % 1,448 (7) 184 (7) 

LOS, hours 268 (SD:718) 290 (SD:832) 

Systolic blood pressure, mmHg 125 (SD:15) 125 (SD:14) 

Diastolic blood pressure, mmHg 70 (SD:9) 71 (SD:9) 

Heart rate, bpm 82 (SD:8) 82 (SD:8) 

O2 saturation, % 97 (SD:1) 97 (SD:1) 
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Table 3 

Comparison of positive and negative observations. 

 Negative 

Observation 

Positive 

Observation 

Number of participants 49,675 9,975 

Age at admission, years 62 (SD:13) 62 (SD:15) 

Gender   

        Female, % 22,956 (46) 4,488 (45) 

        Male, % 26,717 (54) 5,487 (55) 

        Unknown, % 2 (0) 0 (0) 

Ethnicity   

        White, % 19,373 (39) 3,591 (36) 

        Black, % 27,321 (55) 5,386 (54) 

        Asian, % 496 (1) 1 (0) 

        Other, % 2,485 (5) 997 (10) 

LOS, hours 98 (SD:453) 128 (SD:439) 

Systolic blood pressure, mmHg 127 (SD:20) 125 (SD:21) 

Diastolic blood pressure, mmHg 71 (SD:13) 71 (SD:13) 

Heart rate, bpm 81 (SD:13) 82 (SD:13) 

O2 saturation, % 97 (SD:2) 97 (SD:2) 
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Table 4 

Predictive model performance results. 

Measure Result 

ROC AUC 0.613 

Log Loss  0.570 

PR AUC 0.380 

Brier Score 0.190 
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