Supplementary Figures

Fig. S1. Lectin array data of human leukocytes in healthy subjects (HS), patients with MDD in depressive (DP) or remission state (REM). Primary data are obtained from Yamagata H et al., 2017. Data are the mean ± s.d. Significance was determined by one-way ANOVA.

Α

			HS #1 HS #2		S #2	
Protein	Uniprot Accession	Molecula Weight (kDa)	Score	Matches	Score	Matches
Glial fibrillary acidic protein (Fragment)	K7EPT8	50	82	3(2)	50	1(1)
Fibronectin	P02751	230	-	-	50	1(1)
Junction plakoglobin	P14923	23	37	2(1)	-	-
von Willebrand factor	P04275	260	36	3(1)	53	5(1)
N-glycosylase/DNA lyase (Fragment)	H7C0A1		-	-	34	3(0)
Hornerin	Q86YZ3	50	20	2(0)	-	-

В

>sp P04275	VWF HUMAN	on Willebra	and factor ()S=Homo sapi	iens OX=9606	6 GN=VWF PE:	=1 SV=4		
MIPARFAGVL	LALALILPGT	LCAEGTRGRS	STARCSLFGS	DFVNTFDGSM	YSFAGYCSYL	LAGGCQKRSF	SIIGDFQNGK	RVSLSVYLGE	FFDIHLFVNG
TVTQGDQRVS	MPYASKGLYL	ETEAGYYKLS	GEAYGFVARI	DGSGNFQVLL	SDRYFNKTCG	LCGNFNIFAE	DDFMTQEGTL	TSDPYDFANS	WALSSGEQWC
ERASPPSSSC	NISSGEMQKG	LWEQCQLLKS	TSVFARCHPL	VDPEPFVALC	EKTLCECAGG	LECACPALLE	YARTCAQEGM	VLYGWTDHSA	CSPVCPAGME
YRQCVSPCAR	TCQSLHINEM	CQERCVDGCS	CPEGQLLDEG	LCVESTECPC	VHSGKRYPPG	TSLSRDCNTC	ICRNSQWICS	NEECPGECLV	TGQSHFKSFD
NRYFTFSGIC	QYLLARDCQD	HSFSIVIETV	QCADDRDAVC	TRSVTVRLPG	LHNSLVKLKH	GAGVAMDGQD	VQLPLLKGDL	RIQHTVTASV	RLSYGEDLQM
DWDGRGRLLV	KLSPVYAGKT	CGLCGNYNGN	QGDDFLTPSG	LAEPRVEDFG	NAWKLHGDCQ	DLQKQHSDPC	ALNPRMTRFS	EEACAVLTSP	TFEACHRAVS
PLPYLRNCRY	DVCSCSDGRE	CLCGALASYA	AACAGRGVRV	AWREPGRCEL	NCPKGQVYLQ	CGTPCNLTCR	SLSYPDEECN	EACLEGCFCP	PGLYMDERGD
CVPKAQCPCY	YDGEIFQPED	IFSDHHTMCY	CEDGFMHCTM	SGVPGSLLPD	AVLSSPLSHR	SKRSLSCRPP	MVKLVCPADN	LRAEGLECTK	TCQNYDLECM
SMGCVSGCLC	PPGMVRHENR	CVALERCPCF	HQGKEYAPGE	TVKIGCNTCV	CQDRKWNCTD	HVCDATCSTI	GMAHYLTFDG	LKYLFPGECQ	YVLVQDYCGS
NPGTFRILVG	NKGCSHPSVK	CKKRVTILVE	GGEIELFDGE	VNVKRPMKDE	THFEVVESGR	YIILLLGKAL	SVVWDRHLSI	SVVLKQTYQE	KVCGLCGNFD
GIQNNDLTSS	NLQVEEDPVD	FGNSWKVSSQ	CADTRKVPLD	SSPATCHNNI	MKQTMVDSSC	RILTSDVFQD	CNKLVDPEPY	LDVCIYDTCS	CESIGDCACF
CDTIAAYAHV	CAQHGKVVTW	RTATLCPQSC	EERNLRENGY	ECEWRYNSCA	PACQVTCQHP	EPLACPVQCV	EGCHAHCPPG	KILDELLQTC	VDPEDCPVCE
VAGRRFASGK	KVTLNPSDPE	HCQICHCDVV	NLTCEACQEP	GGLVVPPTDA	PVSPTTLYVE	DISEPPLHDF	YCSRLLDLVF	LLDGSSRLSE	AEFEVLKAFV
VDMMERLRIS	QKWVRVAVVE	YHDGSHAYIG	LKDRKRPSEL	RRIASQVKYA	GSQVASTSEV	LKYTLFQIFS	KIDRPEASRI	TLLLMASQEP	QRMSRNFVRY
VQGLKKKKVI	VIPVGIGPHA	NLKQIRLIEK	QAPENKAFVL	SSVDELEQQR	DEIVSYLCDL	APEAPPPTLP	PDMAQVTVGP	GLLGVSTLGP	KRNSMVLDVA
FVLEGSDKIG	EADFNRSKEF	MEEVIQRMDV	GQDSIHVTVL	QYSYMVTVEY	PFSEAQSKGD	ILQRVREIRY	QGGNRTNTGL	ALRYLSDHSF	LVSQGDREQA
PNLVYMVTGN	PASDEIKRLP	GDIQVVPIGV	GPNANVQELE	RIGWPNAPIL	IQDFETLPRE	APDLVLQRCC	SGEGLQIPTL	SPAPDCSQPL	DVILLLDGSS
SFPASYFDEM	KSFAKAFISK	ANIGPRLTQV	SVLQYGSITT	IDVPWNVVPE	KAHLLSLVDV	MQREGGPSQI	GDAL GFAVRY	LTSEMHGARP	GASKAVVILV
TDVSVDSVDA	AADAARSNRV	TVFPIGIGDR	YDAAQLRILA	GPAGDSNVVK	LQRIEDLPTM	VTLGNSFLHK	LCSGFVRICM	DEDGNEKRPG	DVWTLPDQCH
TVTCQPDGQT	LLKSHRVNCD	RGLRPSCPNS	QSPVKVEETC	GCRWTCPCVC	TGSSTRHIVT	FDGQNFKLTG	SCSYVLFQNK	EQDLEVILHN	GACSPGARQG
CMKSIEVKHS	ALSVELHSDM	EVTVNGRLVS	VPYVGGNMEV	NVYGAIMHEV	RFNHLGHIFT	FTPQNNEFQL	QLSPKTFASK	TYGLCGICDE	NGANDFMLRD
GTVTTDWKTL	VQEWTVQRPG	QTCQPILEEQ	CLVPDSSHCQ	VLLLPLFAEC	HKVLAPATFY	AICQQDSCHQ	EQVCEVIASY	AHLCRTNGVC	VDWRTPDFCA
MSCPPSLVYN	HCEHGCPRHC	DGNVSSCGDH	PSEGCFCPPD	KVMLEGSCVP	EEACTQCIGE	DGVQHQFLEA	WVPDHQPCQI	CTCLSGRKVN	CTTQPCPTAK
APTCGLCEVA	RLRQNADQCC	PEYECVCDPV	SCDLPPVPHC	ERGLQPTLTN	PGECRPNFTC	ACRKEECKRV	SPPSCPPHRL	PTLRKTQCCD	EYECACNCVN
STVSCPLGYL	ASTATNDCGC	TTTTCLPDKV	CVHRSTIYPV	GQFWEEGCDV	CTCTDMEDAV	MGLRVAQCSQ	KPCEDSCRSG	FTYVLHEGEC	CGRCLPSACE
VVTGSPRGDS	QSSWKSVGSQ	WASPENPCLI	NECVRVKEEV	FIQQRNVSCP	QLEVPVCPSG	FQLSCKTSAC	CPSCRCERME	ACMLNGTVIG	PGKTVMIDVC
TTCRCMVQVG	VISGFKLECR	KTTCNPCPLG	YKEENNTGEC	CGRCLPTACT	IQLRGGQIMT	LKRDETLQDG	CDTHFCKVNE	RGEYFWEKRV	TGCPPFDEHK
CLAEGGKIMK	IPGTCCDTCE	EPECNDITAR	LQYVKVGSCK	SEVEVDIHYC	QGKCASKAMY	SIDINDVQDQ	CSCCSPTRTE	PMQVALHCTN	GSVVYHEVLN
AMECKCSPRK	CCV								

Fig. S2. Identification of vWF as a protein recognized by WGA. (A) Mass spectrometrybased identification of von Willebrand factor (vWF) in plasma EVs obtained from healthy subjects. (**B**) Sequence of human vWF (Uniplot: P04275) with the peptides identified by mass spectrometry indicated in red.

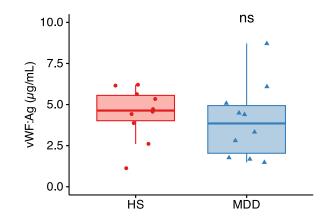


Fig. S3. No significant differences for vWF levels in human plasma were found between patients with MDD and healthy subjects. Quantification of vWF antigen (Ag) by sandwich ELISA between patients with MDD in depressive state (MDD, n = 10) and HS (n = 10). Significance was determined by Mann - Whitney U test to test for significance. n.s. nonsignificant.

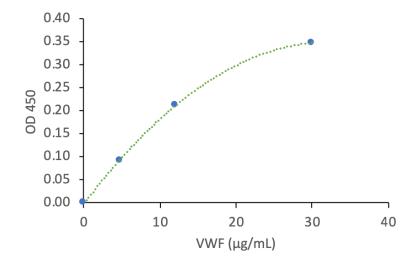


Fig. S4. Standard curve for a sandwich WGA-vWF ELISA. Absorbance (OD450) correlates with the amount of human recombinant vWF. Graph shows average values of technical duplicates on different days. R2 = 0.9998.

Supplementary Tables

	Baseline			After follow-up in MDD cohort		
	HS	MDD	p - value	MDD-DP	MDD-REM	p - value
Sample size	20	21		10	11	
Age (y)	55.5 ± 7.6	57.6 ± 6.0	0.249*	60.2 ± 5.5	56.5 ± 5.5	0.173*
Male/Female	7/13	9/12	0.606†	5/5	4/7	0.528 [†]
Onset age (y)	-	49.0 ± 12.7	-	53.0 ± 11.3	45.5 ± 13.4	0.217*
HDRS	1.1 ± 1.0	23.8 ± 3.6	9.85e ^{-27*}	25.0 ± 4.3	3.3 ± 2.6	1.43e ^{-10*}
GAF	92.0 ± 4.3	51.2 ± 6.7	6.64e ⁻²⁴ *	49.5 ± 7.5	86.5 ± 7.8	6.52e ^{-9*}
Antidepressants [§] (equivalent dose of imipramine) (mg)	-	220.1 ± 104.8	-	190.0 ± 88.9	209.3 ± 116.6	0.691*

Table S1. Demographics and clinical characteristics of study participants.

Demographic data of healthy subjects (HS) and patients with major depressive disorder (MDD). After the follow-up period in the MDD cohort, we determined a diagnosis of permanent depressive (MDD-DP) or remission state (MDD-REM). Data is presented as mean (standard deviation) or the number of participants in each group. [§]point in time of diagnosis. *Independent-samples t-test. [†]Chi-squared test.

Lectins	Origin	Primary recognition sugers
Con A	Concanavalin A from Canavalia ensiformis	α-D-Man, α-D-Glc
SBA	Soybean Agglutinin Glycine max (soybean)	α<β GalNAc
WGA	Triticum vulgaris (wheat germ) agglutinin	D-GlcNAc, Neu5Ac
DBA	Dolichos biflorus agglutinin	α-GalNAc
UEA-I	Ulex europaeus agglutinin 1	α-L-Fuc
RCA ₁₂₀	Ricinus communis agglutinin	β-Gal
PNA	Arachis hypogaea (peanut) agglutinin	Gal-β (1-3)-GalNAc

Table S2. Lectins used for detection of glycosylation of EVs.

Fuc: L-Fucose, Gal: D-Galactose, GalNAc: *N*-Acetylgalactosamine, Glc: D-Glucose, GlcNAc: *N*-Acetylglucosamine, Neu5Ac: N-glycan *N*-acetylneuraminic acid