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1 Introduction

We describe our model of yellow fever infection incorporating vaccination, population and transmis-
sion dynamics, incorporating both infection due to spillover from the sylvatic (non-human primate)
reservoir and infection due to human-to-human transmission. We further describe how epidemiolog-
ical parameter values were estimated within a Bayesian framework based on observed data.

The odin.dust package1 was used to implement the SEIRV model; this is a domain specific
language based on R which is automatically compiled to C++ for improved computation speed.
Additional functions for input data preparation, output data processing, parameter estimation and
other tasks were created in R. A downloadable R package containing updated versions of the relevant
functions is available at https://mrc-ide.github.io/YEP.

2 SEIRV model

2.1 Overview

We used a compartmental model in which the population of a region (formed of one or more sub-
national regions defined by version 3.6 of the Database of Global Administrative Areas2) was divided
into susceptible (S), exposed (E), infectious (I), recovered (R) and vaccinated (V) groups. The
population was further divided by age into annual subgroups up to age 100. The key variable
parameters were:

• The force of infection due to spillover from the sylvatic reservoir and/or importation of infec-
tions from outside a region, λS
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• The basic reproduction number for mosquito-mediated human-to-human transmission, R0

• The reported vaccination effectiveness (i.e. the proportion of reported vaccinations which
result in an individual becoming protected), veff

• The probability of a severe infection being reported and confirmed via lab testing as a case,
PR,S

• The probability of a fatal infection being reported and confirmed via lab testing as a case,
PR,D

Note that it was assumed that mild or asymptomatic infections are not reported as cases.
Fixed parameters included:

• The yellow fever incubation time in mosquitoes tINC (set to 5 days)

• The latent period in humans between exposure and the onset of infectiousness tL (set to 5
days)

• The period of infectiousness in humans tINF (set to 5 days)

• The proportion of infections which cause severe symptoms PS (set to 12%)

• The proportion of severe infections which lead to death PS,D (set to 39%)

• The time increment dt between each time point at which calculations are carried out (set to 5
days)

2.2 Initial conditions

The initial population in each age group was derived from available population data3. The propor-
tion initially vaccinated in each age group was derived from available data on estimated population
immunity due to vaccination4. The proportion recovered in each age group was set to give herd
immunity within that age group at the start of the modelled period (in 1940, for the work described
here), reflecting a situation prior to widespread vaccination where yellow fever was endemic. Immu-
nity was set as a function of age, using equation 1, where FR(A) and FV (A) are the fractions of the
population in age group A who have infection-induced and vaccine-induced immunity respectively
and λest is an estimated force of infection calculated by non-linear fitting to give an overall immunity
level across all ages of 1-1/R0.

FR(A) = (1− exp(λest(A+ 0.5)))− FV (A) (1)

2.3 Calculation of parameters from environmental covariates

The epidemiological parameters λS and R0 were calculated from environmental covariates CENV

including population, non-human primate density and temperature suitability5 (see section 2.2.2 in
the main text). The calculation was carried out using linear formulae (Equations 2) with coefficients
Mλ,I and MR,I for each covariate CENV,I . It should be noted that the dependence on temperature
is nonlinear as it is assumed that λS and R0 are linear functions of the temperature suitability index,
a nonlinear function of mean temperature estimated previously5.
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λS =
∑

(CENV,IMλ,I),

R0 =
∑

(CENV,IMR,I).
(2)

The estimation of the coefficients Mλ,I and MR,I using observed data is described in section 3.
λS values for regions in Brazil were multiplied by the adjustment factor FBrazil to take into account
NHP surveillance (see section 2.1.1 in the main text).

2.4 Calculations and outputs

The numbers of people in each subgroup S, E, I, R and V divided by age group A (with each age
group being 1 year wide, so that age group 1 encompasses people aged 0-12 months) were adjusted
over time as shown in Equations 3 below. Note that population adjustment was not applied to
groups E and I to reduce complexity, due to the small proportion of the population in groups E and
I at any given time.

dS(A)

dt
= −ENEW (A)−RV,S(A) + ∆PS(A),

dE(A)

dt
= ENEW (A)− E(A)

tINC + tL
,

dI(A)

dt
=

E(A)

tINC + tL
− I(A)

tINF
,

dR(A)

dt
=

I(A)

tINF
−RV,R(A) + ∆PR(A),

dV (A)

dt
= RV,S(A) +RV,R(A) + ∆PV (A).

(3)

The number of new infections ENEW of susceptible people was calculated using a total force of
infection λTOT calculated from λS and R0 (Equation 4). New infections were drawn from a binomial
distribution, with the number of susceptible people in an age group as the number of tests and the
force of infection as the probability of “success” (Equation 5).

λTOT = λS +
R0

tINF

∑
(I)

P
, (4)

ENEW (A) =

(
S(A)

λTOT

)
. (5)

Changes in S, R and V due to population ageing/death and new births (∆PS , ∆PR, ∆PV ) were
calculated using Equations 6. FS , FR and FV denote the proportion of the total population in a
given age group who are in group S, R and V . Note that YF deaths are assumed to be subsumed
into overall population dynamics; mortality due to YF was not explicitly included.
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∆PS(A = 1) = ∆P1(A = 1)−∆P2(A = 1)FS(A = 1),

∆PS(A > 1) = ∆P1(A)FS(i− 1)−∆P2(A)FS(A),

∆PR(A = 1) = −∆P2(A)FR(A),

∆PR(A > 1) = ∆P1(A)FR(i− 1)−∆P2(A)FR(A),

∆PV (A = 1) = −∆P2(A)FV (A),

∆PV (A > 1) = ∆P1(A)FV (i− 1)−∆P2(A)FV (A).

(6)

The numbers of people granted immunity via vaccination from subgroups S and R, RV,S and RV,R

were calculated as shown below (equation 7), based on the fractional vaccination rate (proportion
of the population in a given age group vaccinated in a given year) RV and the reported vaccination
effectiveness veff . RV in turn was calculated for each age group A and year Y from separately
calculated estimated population immunity (IV (A, Y )) due to vaccination4 (equation 8). FS,NV and
FR,NV denote the susceptible and recovered portions of the unvaccinated population (S+R). Note
that it was assumed here that susceptible and recovered individuals have an equal chance of being
vaccinated. Potential ”double vaccination” of already vaccinated individuals was already taken into
account in the separately calculated vaccination data.

RV,S(A) = RV (A)FS,NV (A)veff ,

RV,R(A) = RV (A)FR,NV (A)veff .
(7)

RV (A, Y ) = P (IV (A+ 1, Y + 1)− IV (A, Y )) (8)

The model outputs the values of S, E, I, R, and V for each age group at each time interval, along
with the number of newly infectious individuals C (equal to the number transferred from E to I)
across all age groups. These were used to calculate the following types of output data, corresponding
to the types of real-world epidemiological data used for parameter estimation:

• Seroprevalence values for one or more age ranges averaged over a given year,

• Annual reported and confirmed severe and fatal cases (calculated using PS , PR,S , PS,D and
PR,D) for a given year.

3 Parameter estimation methods

Estimation was conducted using both the stochastic model and its deterministic expectation; the
results were qualitatively similar and so the deterministic expectation was used for the final, real-
world data estimation.

3.1 Parameter set

The set of parameters estimated via the methods described below consists of the coefficients of the
environmental covariates Mλ,I and MR0,I along with the reporting probabilities PR,S and PR,D, the
reported vaccination effectiveness veff and, where relevant, the Brazil surveillance factor FBrazil

(see section 2.1.2 in the main text).
To ease chain mixing, a log transform was used for all parameters.
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3.2 Prior distribution

We assumed the prior distribution for each model parameter was a truncated normal distribution
defined by a mean value mu and standard deviation sigma with permitted maximum and minimum
values.

A logarithmic truncated normal distribution was used in the case of the coefficients of the environ-
mental covariates Mλ,I and MR0,I , and a non-logarithmic distribution in the case of the additional
parameters veff , PR,S , PR,D and FBrazil. Values of Mλ,I and MR0,I were restricted only to positive
values. The values of veff , PR,S , PR,D and FBrazil were further restricted to values between 0 and
1.

An additional prior was applied to values of R0 calculated from the environmental covariates; this
was calculated using a truncated normal probability formula with mean 4.8 and standard deviation
1 informed by Liu and Rocklov 20206.

3.3 Likelihood calculation

To assess a given set of model parameters, we calculate the likelihood of observing a complete set
of observed serological and/or annual case data based on the simulated data generated using the
parameter set. This was calculated across all the elements of the dataset, by adding together the
natural logarithm of the likelihood of observing each individual element to give the total logarithmic
likelihood.

The likelihood of observing one element of serological data taken from a survey (a number of
positive tests x for a total number of individuals tested t) was calculated using equation 9, where
Dbinom is a binomial probability density function and Psero is the seroprevalence in the relevant
region and age group, calculated from SEIRV data output from the model using the proportion
of individuals in the survey who were known to be unvaccinated. If all tested individuals are
unvaccinated, Psero is given by the ratio R/(S + E + I + R), but the calculation becomes more
complicated if some individuals’ vaccination status is unknown7. Equation 10 shows how Psero was
calculated in this case. FV,U is the proportion of the group tested in the survey for whom vaccination
status was unknown, and therefore a positive test result might be caused by the individual being
vaccinated.

LogLikesero = log(Dbinom(positives = x, samples = t, prob = Psero)). (9)

Psero = FV,U ((R+ V )/(S + E + I +R+ V )) + (1− FV,U )(R/(S + E + I +R)). (10)

The likelihood of observing one element of annual severe or fatal case data (a number of recorded
severe or fatal cases Cobs) was calculated using equation 11, where Dnbinom is a negative binomial
probability density function and Cmodel is the calculated number of cases.

LogLikecase = log(Dnbinom(x = Cobs, µ = Cmodel)). (11)

The total logarithmic posterior probability of observing the data for a given parameter set was
calculated by adding the total logarithmic likelihood (LogLikesero+LogLikecase to the total loga-
rithmic prior probability pprior.

3.4 Markov Chain Monte Carlo sampling

Adaptive Markov chain Monte Carlo (MCMC) sampling was used to estimate the posterior dis-
tribution of the parameter values within a Bayesian framework. At each iteration of the Markov
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chain, a new proposed set of model parameters Cprop was generated using a random multivariate
normal function (Equation 12), where the mean values C are the previous parameter values and the
standard deviation values σ are calculated from the covariance covchain of the chain so far (Equation
138).

Cprop = Rmvnorm(n = 1, µ = C, σ = σ), (12)

σ =
(2.382).covchain

nparams
. (13)

For each repetition, the total posterior probability was calculated as described in section 3.3
for the proposed set of model parameters. An ”acceptance probability” paccept was then calculated
using Equation 14, where Postprop is the calculated logarithmic posterior probability of the proposed
parameter set and Postcurrent is the calculated logarithmic posterior probability of the most recent
accepted parameter set (this was initially set to −Inf). The proposed parameter set was accepted
or rejected based on this acceptance probability if a random sample from Unif(0,1) was less than
paccept.

paccept = exp(Postprop − Postcurrent). (14)

Multiple chains were run in parallel for comparative purposes, using different starting parameter
values. Outputs from one or more selected chains (those converging to the highest likelihood, with
convergence assessed visually from graphs of likelihood by iteration, or by the Gelman-Rubin statis-
tic) past the chosen burn-in points were combined into a single posterior distribution of parameter
values.

4 Validating the parameter estimation using simulated data

4.1 Simulated data generation

To test the efficacy of our MCMC methods for estimating model parameters, the approach was
applied to simulated data.

The model was used to generate serological and case data for 25 regions. The modelled regions all
used the same population and vaccination data, but used different values of environmental covariates
V ar1−5 to produce different values of λS and R0 from a set of 10 environmental coefficients (5
governing λS and 5 governing R0, one for each covariate). Initial conditions were applied naively
with immunity defined by 1− (1/R0) across all ages.

Values of the environmental coefficients were chosen randomly to give a variety of λS and R0

values across the 25 regions within realistic ranges (daily λS varies in the approximate range 10−8 to
10−6, while R0 varies from around 0 to 2.5, as shown in 3). The values of PR,S and PR,D were set at
10% and 20% respectively. Reported vaccination effectiveness veff was fixed at 100% throughout,
and FBrazil was not used.

Serological and case data was generated for 25 regions for the years 1980-2000. This represents
more data than was available for any real-world region; as described in section 4.2, a selection of
this data was used for estimation, to represent the sparseness of real-world data.
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4.2 Parameter estimation results from simulated data

The model was estimated from the the simulated data (see section 4.1). To account for the sparseness
of real-world data, only the following simulated data was used:

• Serological data from regions 1-15 in the year 1985,

• Annual observed severe and fatal case data from regions 17-25 in the period 1990-1999.

Latin hypercube sampling9 was used to set the initial values of the environmental coefficients
governing λS and R0 as well as of the reporting probabilities for severe and fatal cases, by sampling
from a designated parameter space and calculating the likelihood obtained for each set of parameter
values. The 4 parameter sets giving the highest likelihood were used as inputs for 4 Markov chains.
Each chain was run for 100,000 iterations with 5 stochastic repetitions per iteration.

Some settings for estimation from simulated data were different from those described in sections
3.2 and 5. Reported vaccination effectiveness veff was fixed at 100% in simulated data generation,
as noted above, and was therefore not estimated as a variable parameter, and FBrazil was fixed due
to not being required. The total number of parameters to be estimated using MCMC was therefore
12. No prior was applied to calculated values of R0, and priors were applied to the logarithmic rather
than actual values of PR,S and PR,D. The logarithmic mean prior applied to the values of Mλ,I ,
MR0,I , PR,S and PR,D was 0 with standard deviation 30 in all cases (a very loose prior allowing for
free exploration of the parameter space). The only restriction on maximum and minimum values of
the parameters was the restriction of PR,S and PR,D to values between 0.01 and 1.

Figure 1 shows how calculated posterior probability varied with successive MCMC iterations for
the 4 Markov chains using the 4 different starting parameter sets.

The 4 displayed chains converge on the same range of likelihood values, with the Gelman-Rubin
convergence parameter10 having a value of 1.24 (below the suggested threshold for convergence
of 1.3). Parameter values were therefore combined from all 4 displayed chains (using values from
approximately 50,000 to 100,000 iterations, i.e. the second half of each chain) to confirm that the
MCMC approach correctly estimates the epidemiological parameters used to create the ”observed”
data. Values of λS andR0 were calculated from the environmental coefficient parameters as described
in section 2.3.

Violin plots of obtained values of the coefficients used to generate λS and R0 values from the
values of the environmental covariates are shown in Figures 2a-b in black, along with the correct
original values in red. Figure 2c shows a violin plot of values of PR,S and PR,D obtained in the
same way, again compared with the correct original values. It can be seen that the MCMC approach
produces broad ranges of parameter output values encompassing the correct values.

Violin plots of λS and R0 values for each simulated region (obtained via calculation using the
environmental coefficients shown in figures 2a-b) are shown in figures 3a-b for each region in black,
along with the correct original values (obtained from the real coefficient values) in red. The spread
of values was lower than for the enviromental coefficients, giving a closer match These results show
that the MCMC approach produces distributions of values which can be used to duplicate the
epidemiological parameters underlying the data.

Figures 4a-c below illustrate the matching of the simulated serological and annual severe/fatal
case data to values generated using parameters output from the chain. 1000 sets of parameter values
taken from regular intervals from the dataset taken from the second half of each of the 4 chains were
used to generate new data, with 95% (blue) and 50% (green) bounds of the resulting distributions
of values shown on the graphs below.
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Figure 1: Calculated posterior probability by iteration for 4 Markov chains based on selected simu-
lated serological and annual reported severe and fatal case data.

5 Parameter estimation based on real data

5.1 Data

Serology data to be used for parameter estimation was compiled from 17 cross-sectional surveys11–19

carried out between 1985 and 2019 in a total of 13 countries (Central African Republic, Cameroon,
Democratic Republic of the Congo, Republic of the Congo, Ethiopia, Kenya, Nigeria, Rwanda,
Sudan, South Sudan, Chad, Uganda, Zambia) in Africa. The data in each survey was gathered in
one or more 1st-level sub-national regions (from a single region in some surveys to several groups
of regions or an entire country in others), which was taken into account in matching model results
with it. This data set matched that used for previous modelling work5;20;21 with the addition of one
recent survey18. In the majority of surveys, all tested individuals were unvaccinated, but in a small
number, some individuals’ status was unknown. This can affect the interpretation of the data7 and
the proportion of vaccinated individuals was therefore estimated within the modelling process (see
section 3.3).

Public data compiled by the Pan American Health Organization22 was used as the source of
annual reported numbers of cases and deaths in South American countries. Similar data is available
for other countries23; selected data for 11 African countries was used for validation (see section
5.3). Data from 6 countries (Bolivia, Brazil, Colombia, Ecuador, Peru, Venezuela) was used for
estimation, with these countries being chosen for the relatively high number of reported cases (≥50
per country in the period 1990-2015). Data from countries with lower case counts was omitted due
to the difficulty of estimating based on very sparse data and the likelihood that some countries with
low case counts experience yellow fever only in a few regions.
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(a) Coefficients of environmental covariates used to calculate λS

(b) Coefficients used to calculate R0

(c) Severe and fatal case reporting probabilities

Figure 2: Violin plots of parameter values (black) obtained from Markov chains shown in Figure 1
(iterations 50,000-100,000), compared with values used to create simulated data (red): a) coefficients
of environmental covariates used to calculate λS b) coefficients used to calculate R0 c) severe and
fatal case reporting probabilities. The y-axes in plots (a) and (b) are truncated to remove coefficient
values very close to zero.
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(a) λS values by region

(b) R0 values by region

Figure 3: Violin plots of epidemiological parameter values (black) obtained from Markov chains
shown in Figure 1 (iterations 50,000-100,000), compared with values used to create simulated data
(red): a) λS values by region b) R0 values by region.
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(a) Serological data

(b) Reported cases

(c) Reported deaths

Figure 4: Selected simulated data (black) for regions used for MCMC parameter estimation, com-
pared with distribution of values generated by 1000 parameter value sets drawn from the overall
distribution (blue = 95% confidence interval, green = 50% confidence interval. a) Serological survey
data) b) Annual reported case data c) Annual reported death data
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Parameter Median CI (lower) CI (upper) Prior type Prior mean Prior st. dev.

Mλ,aegypti 3.75e-07 2.96e-07 4.58e-7 Log 0 30
Mλ,LC10 5.44e-14 1.13e-21 1.55e-08 Log 0 30
Mλ,logpop 3.35e-14 1.54e-29 1.32e-09 Log 0 30
Mλ,MIR 2.06e-13 3.20e-29 2.51e-08 Log 0 30
Mλ,NHP 4.75e-12 2.51e-25 4.72e-09 Log 0 30

Mλ,temp−suit 8.61e-09 6.78e-09 1.08e-08 Log 0 30
MR,aegypti 2.12e-01 1.87e-01 2.38e-01 Log 0 5
MR,LC10 8.92e-04 1.09e-05 1.96e-02 Log 0 5
MR,logpop 6.73e-02 5.95e-02 7.45e-02 Log 0 5
MR,MIR 6.60e-03 1.78e-04 6.06e-02 Log 0 5
MR,NHP 3.62e-02 2.95e-02 4.26e-02 Log -7 5

MR,temp−suit 7.67e-03 6.83e-03 8.24e-03 Log 0 5
veff 6.08e-01 5.59e-01 6.51e-01 Value 0.975 0.05
PR,S 1.66e-02 1.45e-02 2.03e-02 Value 0.1 0.05
PR,D 2.58e-02 2.31e-02 2.94e-02 Value 0.1 0.05
FBrazil 7.44e-03 2.84e-05 2.56e-02 Value 0.1 0.05

Table 1: Table summarizing parameter output distributions and prior settings. Prior mean veff
value taken from Jean etal 24

5.2 Results

The parameters to be estimated consisted of coefficients used to calculate λS and R0 from 6 en-
vironmental covariates (see section 2.2.2 in the main text), along with the reported vaccination
effectiveness veff , the probabilities of reporting of severe and fatal cases PR,S and PR,D and the
Brazil adjustment factor FBrazil. Starting parameter values for 4 Markov chains were estimated
via Latin hypercube sampling and likelihood maximization, as with estimation from simulated data
(section 4.2). Estimation on the real-world data was carried out with the model run determinis-
tically, using the initial conditions described in section 2.2 (age-stratified herd immunity). Prior
settings were as described in section 3.2, with the mean and standard deviation values used for the
prior for each parameter summarised in Table 1 below.

Figure 5 shows how calculated likelihood varied with successive MCMC iterations for the 4
Markov chains. As with the generated data, all 4 chains converge on the same range of posterior
values within the period shown; as a result, all 4 were used to generate a combined distribution of
output parameter values, with the burn-in value for each chain being set at 60,000.

Figures 6a-b show the distributions of the values of the coefficients of the environmental covariates
used to calculate λS and R0, as obtained from the post-burn-in portions of all four chains in Figure 5.
The y-axes of these figures are truncated at the indicated minimum values to remove very low values
effectively equivalent to zero (i.e. negligible effect of the relevant covariate on λS or R0 for parts of the
distribution). Figure 6c shows the values of reported vaccine effectiveness, reporting/confirmation
probabilities of severe and fatal cases, and Brazil adjustment factor obtained in the same way.

Table 1 summarises the median and 95% CI values for each parameter.
As discussed in section 3.1 in the main text, a distribution of 1000 values drawn from the combined

posterior distributions of the 4 chains was used to calculate values for the number of expected yellow
fever deaths worldwide in 2018. The figure reported in the main text (median 58,900 with a CrI of
15,100-137,500) reflects a distribution of values of severe case rate PS and severe case fatality rate
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(a) All values

(b) Posterior distribution after burn-in

Figure 5: Calculated likelihood by iteration for 4 Markov chains based on available real-world
serological and annual reported severe and fatal case data. a) All values b) Posterior distribution
after burn-in.
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(a) Environmental coefficients- FOI

(b) Environmental coefficients- R0

(c) Other parameters

Figure 6: Violin plots of distributions of environmental coefficient (a-b) and other parameter (c)
values calculated from post-burn-in portions of Markov chains displayed in Figure 5. The y-axes in
a-b are truncated at indicated minimum values to remove values close to zero.
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PS,D taken from the source used for previous work being used for comparison25. If the fixed values
of 12%25 and 39%26 used for MCMC estimation were used for these parameters, the median number
of deaths was 52,800 with a 95% CrI of 48,300-58,500.

The number of deaths estimated from previous work in the literature can be adjusted to reflect
the more recently estimated median severe case fatality rate26 and compare to the above figure,
giving median values of 42,00021, 65,00020 and 30,00027.

5.3 Validation of parameter estimate results against additional data

To validate the results of parameter estimation against other data outside that used for the estimation
itself, reported case values for 11 African countries (Burkina Faso, Central African Republic, Cote
d’Ivoire, Cameroon, Democratic Republic of the Congo, Ghana, Guinea, Liberia, Mali, Senegal,
Sierra Leone) were simulated based on 1000 parameter sets drawn from the combined post-burn-in
posterior distributions of the Markov chains. These were then compared with reported case data
documented by the World Health Organization23 (Figure 7). As with the South American case
data (Figure 3 in the main text), the model produces case numbers which lie in between the upper
and lower extremes of the real data, with the largest discrepancies being for individual years with
very high case numbers, probably representing major outbreaks. For countries where there are
substantial differences between observed and modelled values over extended periods (e.g. Cameroon
and Liberia), differences in case reporting/confirmation may be partially responsible.

6 Additional probability maps

As discussed in the main text (section 3.2), the probability was calculated that the basic reproduction
number R0 exceeded certain values in each region of interest, based on the results of the MCMC
estimation of the model parameters from real data. Figure 6a in the main text shows the probability
that R0 ≥ 0.7 across selected regions in Africa; Figure 8 displays the probability that R0 exceeds
0.7 for the same regions in Africa. The probability that R0 ≥ 0.5 is 100% or close to it for all but a
few regions (see Figure 4b in the main text).

Figure 9 shows the probability that R0 ≥ 0.7 across selected regions in Africa for different
vaccination coverage levels, based on distributions of values of R0 and veff obtained from the
MCMC results (compare Figure 7 in the main text).

Figure 10 shows the probability that R0 ≥ 0.5 across selected regions in Africa for different
vaccination coverage levels, based on distributions of values of R0 obtained from the MCMC results
(compare Figure 7 in the main text). These maps are based on a constant reported vaccination
efficacy veff of 97.5%, based on estimated median vaccine efficacy24, i.e. assuming that all reported
vaccinations are carried out correctly with vaccine efficacy being the only factor limiting overall
effectiveness. This naturally increases the overall effectiveness of vaccination at a given reported
coverage level, such that all regions in Africa have a 100% probability of R being reduced below 0.5
in this scenario if the coverage is 80% (not shown, as the map is uniform).
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Figure 7: Graphs showing reproduction of annual countrywide reported case data for 11 African
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Figure 8: Map of selected 1st-level sub-national administrative regions in Africa displaying proba-
bility that R0 is equal to or greater than 0.7
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(a) Probability R ≥ 0.7 (50% vaccination coverage)

(b) Probability R ≥ 0.7 (60% vaccination coverage)

(c) Probability R ≥ 0.7 (80% vaccination coverage)

Figure 9: Maps of selected 1st-level sub-national administrative regions in Africa displaying prob-
ability that projected R0 ≥ 0.7 for vaccination coverage a) 50% b) 60% c) 80% in 1-60 year olds,
based on distributions of values of R0 and veff obtained from MCMC results.
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(a) Probability R ≥ 0.5 (50% vaccination coverage, fixed veff )

(b) Probability R ≥ 0.5 (60% vaccination coverage, fixed veff )

Figure 10: Maps of selected 1st-level sub-national administrative regions in Africa displaying prob-
ability that projected R0 ≥ 0.7 for vaccination coverage a) 50% b) 60% in 1-60 year olds, based
on distributions of values of R0 obtained from MCMC results, with veff set to a constant value of
97.5%.
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