Supplemental Materials: Fine-Grained Forecasting of COVID-19 Trends at the County Level in the United States

Tzu-Hsi Song , Leonardo Clemente , Xiang Pan , Junbong Jang , Mauricio Santillana*, and Kwonmoo ${\rm Lee}^{**}$

*Mauricio Santillana: m.santillana@northeastern.edu *Kwonmoo Lee: Kwonmoo.Lee@childrens.harvard.edu

This PDF File includes:

- Tables S1 to S4
- Figures S1 to S7

Models	$1^{\rm st}$ day		7 th day		14 th day	
	RMSE	RRMSE(%)	RMSE	RRMSE(%)	RMSE	RRMSE(%)
Autoregressive*	2919.32 ± 20428.46	$78.63 {\pm} 686.99$	$3600.42 \pm 1.31 \times 10^{13}$	$101.39 \pm 5.41 \mathrm{x} 10^{11}$	$15141.28 \pm 5.32 \mathrm{x} 10^{23}$	$591.01 \pm 2.45 \times 10^{22}$
GRU*	$2614.1 {\pm} 5706.59$	$75.69 {\pm} 38.71$	2681.13 ± 5703.73	$76.08 {\pm} 42.74$	$2905.47 {\pm} 5716.06$	82.43 ± 34.63
$LSTM^*$	2769.32 ± 5701.13	$71.69{\pm}19.52$	$2764.88 {\pm} 5721.4$	72.11 ± 18.9	2940.21 ± 5707.36	$79.55 {\pm} 16.32$
biLSTM*	2340.29 ± 5475.5	$68.51 {\pm} 15.85$	2521.58 ± 5473.84	$70.93{\pm}16.95$	2743.3 ± 5483.12	77.91 ± 19.24
biLSTM	371 ± 1047.57	$12.44{\pm}15.04$	1189.43 ± 1806.38	28.9 ± 14.01	1940.18 ± 3216.91	$49.46{\pm}17.18$
FIGI-Net	$290.31 {\pm} 908.81$	$9.17{\pm}13.59$	$1149.66{\pm}1850.66$	$\textbf{26.94}{\pm}\textbf{14.48}$	$1935.36{\pm}3458.21$	$49.12{\pm}16.47$

Table S1: Comparison of Forecasting Models with different training format at State Level

*: directly use State data for model training

Table S2: Comparison of FIGI-Net against the baseline models in 1 week horizons at the county level.ModelsRMSERRMSE

modelb	IUUDE	101011012	
Autoregressive	$212.18 \pm 2.44 \times 10^{10}$	$83.32 \pm 4.16 \times 10^9$	
Persistence	$81.24 {\pm} 302.06$	$37.38{\pm}14.77$	
GRU	$48.4{\pm}254.14$	26.32 ± 88.23	
LSTM	$52.09 {\pm} 240.49$	$26.69 {\pm} 61.04$	
TC-LSTM	57.32 ± 281.55	$28.39{\pm}19.87$	
TC-biLSTM	40.4 ± 222.56	$20.27{\pm}16.62$	
biLSTM	$36.63{\pm}180.55$	$18.57 {\pm} 57.39$	
FIGI-Net	$34.16{\pm}190.24$	$17.13{\pm}16.49$	
CDC	$157.49 {\pm} 1285.95$	76.24 ± 78.71	

 Table S3: Comparison of FIGI-Net and baseline models for the 2 week horizon task at the county level

 Models
 BMSE

Models	RMSE	RRMSE	
Autoregressive	$99.79 \pm 6.78 \text{x} 10^5$	$45.25 \pm 1.17 \text{x} 10^5$	
Persistence	$125.12{\pm}510.7$	$61.67{\pm}11.62$	
GRU	$63.89 {\pm} 305.64$	$33.3{\pm}116.39$	
LSTM	$72.64{\pm}317.59$	$32.85 {\pm} 48.7$	
TC-LSTM	71.7 ± 334.39	$36.8 {\pm} 25.69$	
TC-biLSTM	$69.59 {\pm} 311.8$	$34.03{\pm}22.64$	
biLSTM	$59.25 {\pm} 283.61$	$29.88 {\pm} 31.89$	
FIGI-Net	$58.43{\pm}282.14$	$29.36{\pm}21.21$	
CDC	$157.58 {\pm} 1090.97$	76.49 ± 66.24	

Table S4: Comparison of training duration identification for the proposed model across 1-week and 2-week forecasting horizons

Training Length	1 week		2 week	
framing Length	RMSE	R^2	RMSE	R^2
30 days	$24.45{\pm}14.31$	0.864	29.79 ± 11.45	0.861
45 days	26.28 ± 14.49	0.944	26.42 ± 13.33	0.912
60 days	$19.04{\pm}13.28$	0.968	$24.97{\pm}14.59$	0.933
75 days (Optimal)	14.39 ± 11.23	0.977	$22.71{\pm}12.46$	0.937
90 days	$12.74 {\pm} 9.66$	0.978	20.26 ± 12.66	0.943

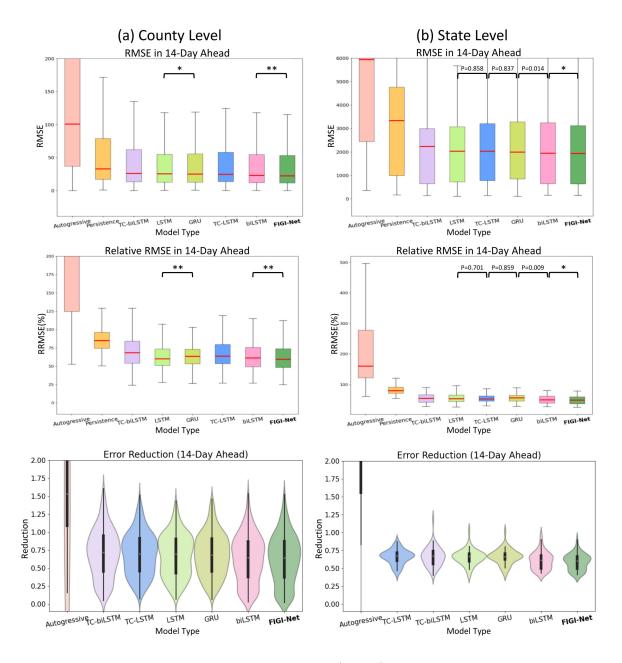


Figure S1: Comparison of Root Mean Squared Error (RMSE), relative RMSE, and error reduction across various models is conducted for a 14-day forecast horizon, analyzed at both (a) county and (b) state levels. The performance assessment reveals that the deep learning-based model exhibits comparable forecasting capability within the 14-day horizon. Furthermore, the FIGI-Net model demonstrates a significant reduction in forecasting errors, approximately 35% at the county level and 50% at the state level, when compared to the persistence model.

: p-value < 0.005

*: p-value<0.001

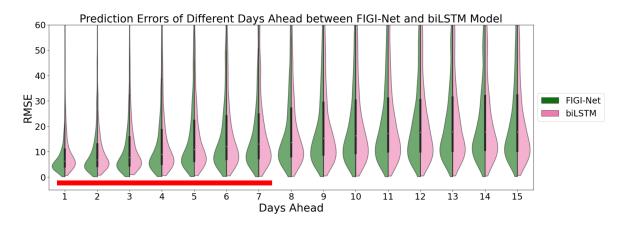


Figure S2: Comparison of RMSE between FIGI-Net and biLSTM across various forecast horizons. Our results indicate that our model yields lower prediction errors for infection numbers within the first 7 days of prediction compared to biLSTM (as indicated by the red line).

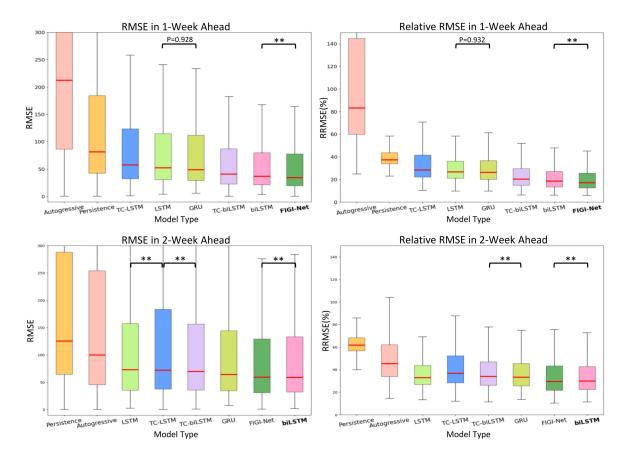


Figure S3: Comparison of various models at the county level across 1 and 2 week ahead horizons. The models are sorted in descending order based on their RMSE values. Notably, our FIGI-Net model demonstrates accurate prediction performance and places among the top 2 with lowest RMSE. *: p-value<0.001

Figure S4: Evolution of prediction error for FIGI-Net at state level. Each column represents the average relative RMSE (each average is computed using a non-overlapping 15-day period between April 2020 and April 2022) across US states for the 1-day and 14-day horizons, compared to the national reported infection trend. We can clearly observe that Missouri, Montana, and Nebraska have large RRMSE values during March 2021 to May 2021 in 1-day ahead prediction. In addition, we can observe that the RRMSE errors increase before the early stage of the next outbreaks (red rectangle).

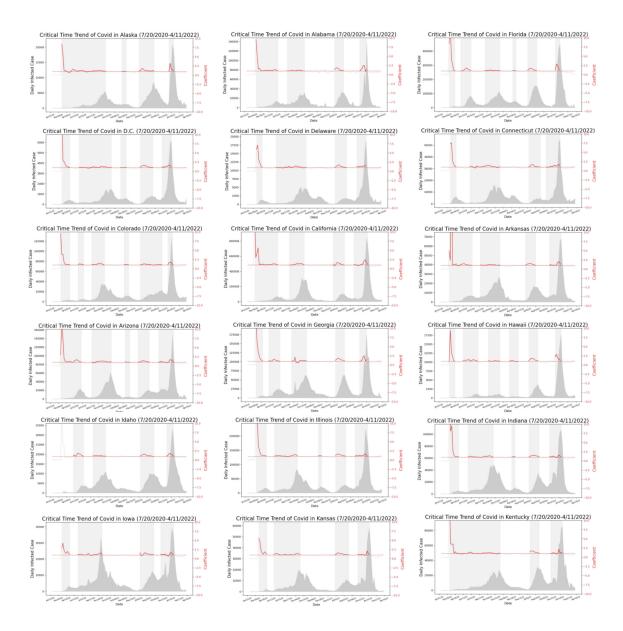


Figure S5: COVID-19 Critical Time Periods for each state in US (Part I). The critical time periods were created by independently quantifying the trend of COVID-19 confirmed cases across each state, and identifying the time periods when the value of the trend exceeded the threshold of 1.0 (marked with a red-dash line in every figure).

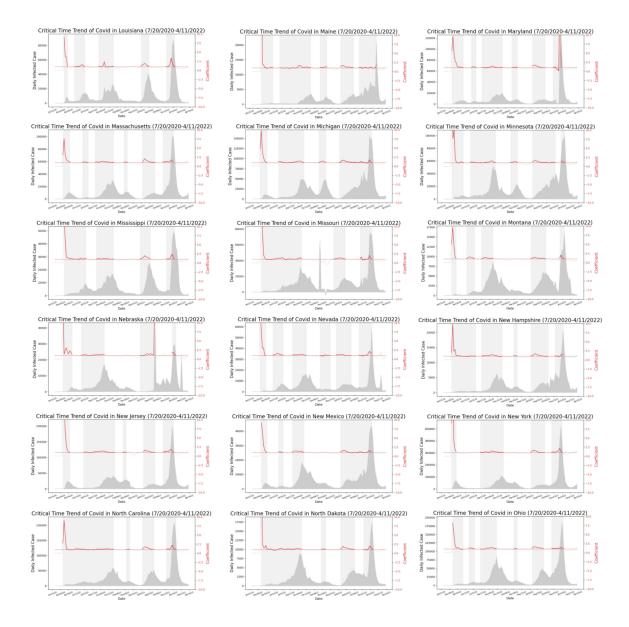


Figure S6: COVID-19 Critical Time Periods for each state in US (Part II).

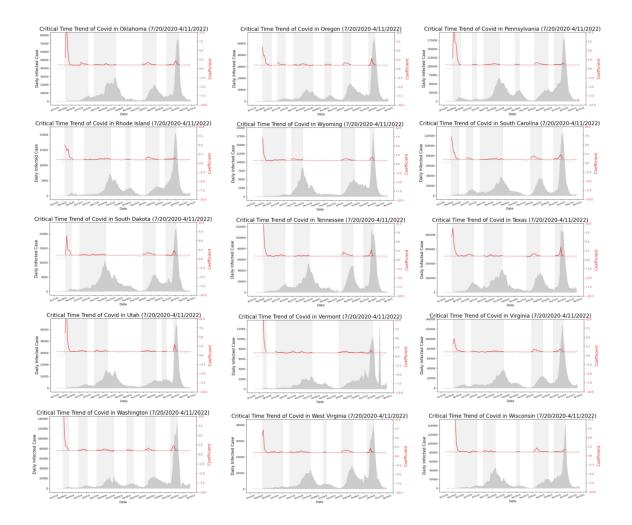


Figure S7: COVID-19 Critical Time Periods for each state in US (Part III).