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Abstract 

Background: Large language models (LLMs) have significantly enhanced the Natural 
Language Processing (NLP), offering significant potential in facilitating medical literature 
review. However, the accuracy, stability and prompt strategies associated with LLMs in 
extracting complex medical information have not been adequately investigated. Our study 
assessed the capabilities of GPT-3.5 and GPT-4.0 in extracting or summarizing seven crucial 
medical information items from the title and abstract of research papers. We also validated 
the impact of prompt engineering strategies and the effectiveness of evaluating metrics. 
 
Methodology: We adopted a stratified sampling method to select 100 papers from the 
teaching schools and departments in the LKS Faculty of Medicine, University of Hong Kong, 
published between 2015 and 2023. GPT-3.5 and GPT-4.0 were instructed to extract seven 
pieces of information, including study design, sample size, data source, patient, intervention, 
comparison, and outcomes. The experiment incorporated three prompt engineering strategies: 
persona, chain-of-thought and few-shot prompting. We employed three metrics to assess the 
alignment between the GPT output and the ground truth: BERTScore, ROUGE-1 and a 
self-developed GPT-4.0 evaluator. Finally, we evaluated and compared the proportion of 
correct answers among different GPT versions and prompt engineering strategies. 
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Results: GPT demonstrated robust capabilities in accurately extracting medical information 
from titles and abstracts. The average accuracy of GPT-4.0, when paired with the optimal 
prompt engineering strategy, ranged from 0.688 to 0.964 among the seven items, with sample 
size achieving the highest score and intervention yielding the lowest. GPT version was shown 
to be a statistically significant factor in model performance, but prompt engineering strategies 
did not exhibit cumulative effects on model performance. Additionally, our results showed 
that the GPT-4.0 evaluator outperformed the ROUGE-1 and BERTScore in assessing the 
alignment of information (Accuracy: GPT-4.0 Evaluator: 0.9714, ROUGE-1: 0.9429, 
BERTScore: 0.8714). 
 
Conclusion: Our result confirms the effectiveness of LLMs in extracting medical 
information, suggesting their potential as efficient tools for literature review. We recommend 
utilizing an advanced version of LLMs to enhance the model performance, while prompt 
engineering strategies should be tailored to the specific tasks. Additionally, LLMs show 
promise as an evaluation tool to assess the model performance related to complex 
information processing.   

Introduction  

Large language models (LLM), including the GPT series, have emerged as a promising tool to 
revolutionize many domains in medicine [1-2]. LLMs distinguished themselves from 
traditional natural language processing models by their ability to generate responses that align 
with users’ expectations [3], without requiring dedicated fine-tuning on specialized tasks [4]. 
Medical evidence summarization is one of these areas where GPT is promising to improve the 
traditional process of extracting information from the vast amount of medical research papers 
[5-7]. 
  
Medical literature screening is one of the major application domains of automatic medical 
information summarization and extraction. Before the advent of ChatGPT, one prominent 
approach to streamlining the screening process involved recommending articles based on 
relevance, thereby facilitating the prioritization of manual screening or providing suggestions 
for inclusion and exclusion [8]. Numerous software tools have been developed to realize these 
functions, such as Rayyan [9], RobotReviewer [10], and SWIFT-Review [11]. These tools 
utilized machine learning techniques related to Natural Language Processing (NLP) [12], and 
the Supportive Vector Machine (SVM) was the prevailing algorithm [13]. Research has also 
demonstrated the cost efficiency of employing these automated tools with text-mining-based 
single screening, reducing workload by over 60% compared to alternative methods [14]. 
However, the reliability and transparency of applying artificial intelligence to literature review 
have long been a concern. At the current stage, multiple studies have highlighted the necessity 
of incorporating manual screening while leveraging the existing tools [12-13]. The updated 
PRISMA guidance for reporting systematic reviews also expressed concerns about the 
erroneous exclusion of relevant studies using machine learning tools while recognizing its role 
in priority screening [15]. 
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LLMs exhibit the potential to expand functionalities and enhance accuracy beyond existing 
tools. A recent study conducted by Matsui et al. (2023) has demonstrated that, with an 
appropriate prompt setting, GPT-3.5 can achieve exceptional sensitivity in literature screening, 
close to human evaluators, and even surpass them when confronted with a massive volume of 
articles.[16] LLMs can also be applied to less-explored steps of medical literature review, such 
as the risk of bias assessment and data extraction.[17] In another experiment, Hill et al. (2023) 
showcased the accurate performance of Microsoft Bing AI in retrieving information and 
constructing study characteristics tables from full-text PDF files.[18] Additionally, Shaib et al. 
(2023) attempted to synthesise medical evidence from multiple documents, although the 
current results are less optimistic than summarisation from single documents.[5] 
 
Despite the promising potential of LLMs in the literature review, there remain a need for 
comprehensive empirical research addressing common concerns surrounding LLMs, including 
their evidence level and consistency [19]. The ability to extract complex information from 
research papers is essential in validating the reliability of LLMs for assisting medical 
literature review. Furthermore, while prompt engineering was recommended as a useful 
strategy to increase the performance of ChatGPT [20], its role in the context of medical 
literature review has yet to be thoroughly investigated. 
  

In this study, we aim to design an experiment to answer the above questions. The research 
objectives of this study can be summarised as follows. 

1. To implement and assess the capability of large language models in 
extracting critical information from titles and abstracts of medical research papers. 

2. To compare GPT-3.5 and GPT-4 performance in the aforementioned task. 
3. To validate the effects of prompt engineering strategies on the performance 

improvement of LLMs in the aforementioned tasks. 
 

Methodology 

Study design 

The scope of this study encompassed 100 research papers randomly selected from the 
publication pool of the Li Ka Shing Faculty of Medicine, University of Hong Kong.  The 
chosen papers consisted solely of original research articles published between January 1, 2015, 
and December 31, 2023, with their titles and abstracts fully available on Scopus. To ensure 
representativeness, we adopted a stratified sampling method to randomly select papers from 
each department in proportion to the total number of publication records affiliated with that 
department. The paper’s affiliation is the institution affiliated with the corresponding author. 
The departments and their related domains of the paper selected are presented in 
Supplementary Material 1. 
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Figure 1 presents the overall study design. All titles and abstracts were obtained from the 
Scopus online dataset and pre-processed to remove unreadable characters. Two researchers 
manually labeled the information to be extracted according to pre-defined criteria, to obtain the 
ground truth. To ensure accuracy, we employed cross-checking of their results to establish the 
ground truth. 
 
Subsequently, the titles and abstracts were proceeded to GPTs to extract information. We 
implemented several prompt sets to compare the effectiveness of prompt engineering. The 
assessment of the information extraction performance was based on semantic similarity 
between GPT’s output and ground truth, measured by several NLP metrics and a 
self-developed independent GPT evaluator. Finally, we perform a statistical analysis on the 
results. 
 
Figure 1. Flowchart of overall study design; 
  

 

 
 
To compare the performance of GPT-3.5 and GPT-4.0, our study conducts independent 

evaluations using the latest model versions at the time of study: gpt-3.5-turbo-0125 and 

gpt-4-0125-preview, referred to as GPT-3.5 and GPT-4.0 in later script. These models 
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represent the most advanced version of their respective series and are provided by OpenAI 

through the API platform. Experiments will be executed using Python scripts to interact with 

the OpenAI API. Each model will receive prompts via individual API requests without the 

conversation history, maintaining the independence of each interaction and preventing prior 
context from influencing the model's performance. All experiments would be repeated five 

times to evaluate the performance stability. In total, there are 8,000 experiments. 
 

This design aims to yield a fair and thorough comparison of the two models, highlighting their 
respective strengths and limitations in processing and analyzing medical research literature. 
 

Information Extraction 

Information extraction is a pivotal stage in a literature review. It not only facilitates the 
identification of related papers, but also has the potential to enhance the transparency of LLM’s 
decision as an intermediate step in automatic literature screening. In this study, we identified 
seven important items in literature screening as representative samples, including study design, 
sample size, data source, and PICOs (Patient, Intervention, Comparison Outcomes). Their 
respective definitions are provided in Table 1.  
 
Table 1. Definition of Information to extract (Duke University, 2019) [21] 
Item Definition 
Study design Type of study, such as randomized controlled trail, cohort study, 

case-control study and systematic review 
Sample size The number of participants involved in the study, and the basic 

characteristics of the participants. 
Data source Source of the experimental data, such as databases, previous 

studies or surveys 
Patient The patient involved in the experiment with some most important 

characteristics of patients 
Intervention Main intervention, exposure, or prognostic factor in the 

experiment 
Comparison Main alternative group being considered. 
Outcomes The outcome that the experiment trying to accomplish, measure, 

improve or affect. 
 
We believe these elements are the basis of efficient and precise literature screening, providing 
researchers with a clear and standardized framework for evaluation. Particularly, the PICOs, as 
the gold standard for clinical study assessment, offer a systematic approach to identify relevant 
research questions and assess the quality of studies. 
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Validation on the effects of Prompt Engineering   

Prompt engineering is an essential mechanism for optimizing the interaction with LLMs, 
serving to refine and enhance users’ query in order to improve the performance on tasks. In this 
section, we will examine and identify the effect of several prompt engineering strategies 
discussed in current directions of research, including Adopting a Persona, Chain of Thought 
and Few-shot Learning.  
 
Adopting a Persona [22-23] is often achieved by instructing the LLMs to adopt the role of an 
expert in the related field of research. Chain of Thought [24-25] asks the model to explain the 
reasoning or the rationale behind each step in its problem-solving process. Though our task 
may not involve complicated logical reasoning, we are interested in investigating whether 
incorporating requests for justification could lead to improved performance and greater 
transparency. Few-shot Learning [26-27] refers to the process in which we provide LLMs with 
expert output examples for similar tasks, which can serve as a guide for the model's responses. 
 

We adopted the following approach for our study. We first established a standard prompt 
without any specialized engineering strategy to serve as a control. This prompt simply asked 

the LLM to perform the task without additional instruction or context. We then selected three 
prompt engineering strategies as mentioned previously. For each strategy, we crafted a series of 

prompts that incorporated the specific tactic. After that, we systematically removed one 

strategy at a time from the prompts, creating various ablated conditions for comparison against 

the baseline prompt and each other. For each prompt condition, we then evaluate the LLM’s 

performance using several metrics. 

 
The table below outlines the specific prompts that have been designed for each of these prompt 

engineering strategies. 
 
Table 2 Prompt Setting for information extraction  
Group Prompt 
Control # Context 

[a] You will be provided with titles and abstracts of medical papers, and 
your task is to parse it into structured data, including Study Design, Data 

Source, Sample Size, Patient, Intervention, Comparison and Outcomes, and 

separate them by semicolon. 
 
# Input 
[insert paper title and abstract] 
 
# Instruction 
Please read, extract and concisely report the following key details from 

the abstract: 

Study Design: What type of methodology was employed in the study? 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 21, 2024. ; https://doi.org/10.1101/2024.03.20.24304572doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.20.24304572


Sample Size: How many participants were included in the study? 

Data Source: Where was the data for this study sourced from? 

Based on the Study Design, if the paper is a review paper OR a laboratory 

study, please marks Patient, Intervention, Comparison and Outcomes all as 

NA. Else, answer the following PICO question: 

- Patients: Who is the study's targeted patient or population group? 

- Intervention: What is the key intervention that the study assesses? 

- Comparison: Is there a comparison group or control used, and what does 

it consist of? 

- Outcomes: What outcomes are being measured to determine the 

intervention's success? 

Answer “NA” if any of the item is not mentioned in the abstract. 

 
# Output 
Please [b1] output the structured data separated by semicolon, such as: 
[b2] 
Study Design: [output]; 

Data Source: [output]; 

Sample Size: [output]; 

Patient: [output]; 

Intervention: [output]; 

Comparison: [output]; 

Outcomes: [output]; 

[c] 
 

Strategy 1: 
Persona 

# Inserted at [a] 
Imagine you are an expert in research methodology. Your role is essential 

in supporting a team of researchers by meticulously extracting critical 

information from medical paper abstracts. You have been trained to identify 

and collate specific elements that are crucial for the team's meta-analysis 

and database entry tasks. 

Strategy 2: 
Chain of 
thought 

# Inserted at [b1]  
present a concise reasoning for each step you take, and how you arrive at 

the final structured data. Also, please 

 

# Inserted at [b2] 
Reasoning: [output]; 

 

# Inserted at [b3] 
Reasoning: The abstract explicitly indicates that the study is a 

retrospective cohort study. The sample size is explicitly mentioned, 

consisting of three distinct groups with their respective counts. The data 

source is not explicitly named, so we mark it with NA. Since this is a cohort 

study (an epidemiological study) instead of a review paper or a laboratory 

study, we proceed with identifying the PICO elements. The patient 

population is women with PCOS, PCO, and age-matched controls undergoing 

IVF. The intervention is the IVF treatment itself. The comparison is made 

between the women with PCOS, those with PCO, and the age-matched controls. 

The outcomes being measured include various obstetric complications and 

outcomes such as GDM, GHT, PET, IUGR, gestation at delivery, baby's Apgar 
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scores, and NICU admissions; 

Strategy 3: 
Few-shot 
Prompting 

# Inserted at [c] 
Here is an example for your reference: 

# Input 

Title: Obstetric outcomes in women with polycystic ovary syndrome and 

isolated polycystic ovaries undergoing in vitro fertilization: a 

retrospective cohort analysis 

Abstract: Objective: This retrospective cohort study evaluated the 

obstetric outcomes in women with polycystic ovary syndrome (PCOS) and 

isolated polycystic ovaries (PCO) undergoing in vitro fertilization (IVF) 

treatment. Methods: We studied 104 women with PCOS, 184 with PCO and 576 

age-matched controls undergoing the first IVF treatment cycle between 2002 

and 2009. Obstetric outcomes and complications including gestational 

diabetes (GDM), gestational hypertension (GHT), gestational proteinuric 

hypertension (PET), intrauterine growth restriction (IUGR), gestation at 

delivery, baby's Apgar scores and admission to the neonatal intensive care 

unit (NICU) were reviewed. Results: Among the 864 patients undergoing IVF 

treatment, there were 253 live births in total (25 live births in the PCOS 

group, 54 in the PCO group and 174 in the control group). The prevalence 

of obstetric complications (GDM, GHT, PET and IUGR) and the obstetric 

outcomes (gestation at delivery, birth weight, Apgar scores and NICU 

admissions) were comparable among the three groups. Adjustments for age 

and multiple pregnancies were made using multiple logistic regression and 

we found no statistically significant difference among the three groups. 

Conclusion: Patients with PCO±PCOS do not have more adverse obstetric 

outcomes when compared with non-PCO patients undergoing IVF treatment. © 

2014 Informa UK Ltd. All rights reserved: reproduction in whole or part 

not permitted. 

# Output 

[b3] 
Study Design: Retrospective cohort study; 

Sample Size: 864; 

Data Source: NA; 

Population: Women with polycystic ovary syndrome (PCOS) and isolated 

polycystic ovaries (PCO); 

Intervention: In vitro fertilization (IVF) treatment; 

Comparison: Age-matched controls; 

Outcomes: Obstetric complications (GDM, GHT, PET and IUGR) and the 

obstetric outcomes (gestation at delivery, birth weight, Apgar scores and 

NICU admissions); 

 

Evaluation 

To evaluate the accuracy of the generated outcomes, we employed the established automatic 
metrics in NLP, including ROUGE-1[28] and BERTScore[29]. These metrics were specifically 

designed to measure the quality of generated text compared to the reference text produced by 

human. ROUGE-N, a metric based on n-gram analysis, examined the overlap of common 
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words and phrases between the two summaries. On the other hand, BERTScore uses contextual 

embeddings from a pre-trained large language model to derive a similarity score between the 

generated and reference texts. Unlike N-gram (ROUGE-1) method that relies on exact matches, 

BERTScore can account for semantic similarities at the word and sentence level. For both 
metrics, we utilize the F1-score – which is the harmonic mean of the precision and recall scores 

– as our final standard for analysis. The score ranges from 0 to 1, and is calculated as 
 

F1-score � 2 � Precision � Recall

Precision � Recall
  

where 

PrecisionROUGE � �1-gram Hyp. � 1-gram Ref.

�|Hyp. |   

RecallROUGE � �1-gram Hyp. � 1-gram Ref.

�|Ref. |   
And  

PrecisionBERT � 1
|��|  max

����
�x�

T����
������

� 

RecallBERT � 1
|�|  max

������
�x�

T����
����

 

 
in which x� represents the reference token and ��� represents the candidate token (hypothesis). 

 
Noticeably, recent research papers highlighted the inherent challenges in assessing the 
responses of LLM using traditional automatic metrics in NLP. Consequentially, we also 
designed an independent evaluation mechanism in the form of a separate and specifically 
tailored GPT algorithm to evaluate whether the generated responses correspond with the 
ground truth. To improve the stability of GPT’s measurement, the temperature of this machine 
was set to 0, and no history of previous output was incorporated as input. The detailed prompt 
is outlined below.   
 
Prompt of evaluation 
 
# Input 
Hypothesis: {h} 

Reference: {r} 

 
# Query 
You will be given a hypothesis and a reference that represent the {element} element 

extracted from a medical paper. Your task is to compare the semantic similarity between 

the hypothesis and the reference. The similarity score should be between 0 and 1, where 

0 means no similarity and 1 means the highest similarity 
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# Output 
Please output your similarity score in the format: The similarity score is {your_score} 

 
To ensure the validity of the evaluators, a cross-evaluation was performed on the element 
extracted by two independent researchers. Specifically, an accordance dataset is first produced 
by manually comparing the results for each label pair in the 100 papers, in which a score of 1 is 
assigned if the labels from both researchers matched (indicating agreement), and a score of 0 if 
they differed (indicating disagreement). Subsequently, each evaluator would compute the 
similarity for each pair of labels, which will then be compared against the true accordance data 
to assess the consistency. 
 
During this process, we also calculated threshold values for the metric score produced by the 
evaluators for each element category, in order to define what constitutes an acceptable level of 
agreement. Specifically, we iterate over the potential threshold value from 0 to 1 with stepsize 
of 0.01, and assign a True prediction for metric scores above the threshold, False for scores 
below. Then, we determine which threshold yields the highest accuracy rate of F1-score across 
all comparisons between the evaluators and the accordance ground truth, and select it as the 
eventual standard. 
 
To assess the overall performance of the models, we employed this predefined threshold to 
calculate the accuracy, sensitivity and specificity in GPT’s information extraction results. 
We defined the accuracy rate �����	�
  as the proportion of GPT’s outputs that align with the 
ground truth in the five repetitive trials. It is calculated separately across the 100 papers as 
follows 

��
����	�


� � 1
100 

� ∑ max
���

�0, ��
,� � threshold�##�

��

5
���

���

 

 
where ��,�  is the metric score for the ���  paper in trial � , and thresholds is the threshold 
calculated for the specific element nature. The average �����	�
  was employed to horizontally 
compare the GPT models and prompt engineering strategies. 
 
Given the risk of hallucination (producing information not grounded in the source material) 
and the possibility that not all elements of interest are present in a given abstract, we further 

define the following standard for a deeper analysis in sensitivity and specificity: 
 

- True Positive (TP): An element that is both present in the abstract as labeled in 
groundtruth and correctly extracted by ChatGPT.   

- True Negative (TN): An element that is neither present in the abstract nor falsely 
identified by ChatGPT.   

- False Positive (FP): An element that ChatGPT incorrectly reports as present in the 
abstract (hallucination).  

- False Negative (FN): An element that is present in the abstract but is missed or wrongly 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 21, 2024. ; https://doi.org/10.1101/2024.03.20.24304572doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.20.24304572


extracted by ChatGPT.  
 
And sensitivity and specificity is calculated as 

sensitivity � %&
%& � '( 

speci�icity � %(
%( � '& 

 
which measures the proportion of actual positives and negatives that are correctly identified by 
the GPT, respectively. 

Statistical Methods 

For each extracted item evaluated by one metric, a 2-way Analysis of Variance (ANOVA) 
model was used to analyze the impact of two factors, GPT versions and prompt engineering 
strategies. We summarized all p-values across items and evaluators in one table, to analyze the 
significance of GPT model and prompts effects on the performance. The statistical analysis 
was performed using the python package statsmodels (version 0.14.1) [30]. All significance 
level was set as 0.05, with all necessary assumptions for ANOVA, including normality and 
homogeneity of variances, being assessed and satisfied. 
 

Results 

Paper selection and Data source 

Figure 2 represents the distribution of paper affiliation as a result of stratified sampling. The 
collected dataset covered the six teaching schools in HKU LKS Faculty of Medicine, Public 
Health, Nursing, Pharmacology and Pharmacy, Biomedical Sciences, Chinese Medicine and 
Clinical Medicine, and it included at least one paper for each school. Among them, the School 
of Clinical Medicine took 74% of the papers, and thus the affiliation of these papers was traced 
down to clinical departments, represented in green in Figure 2.  
 
Figure 2. Paper affiliation distribution 
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The selected papers also provided comprehensive coverage across study types, sample size, 
publication year, and abstract length. The labeled ground truth indicated that the dataset 
consisted of 22 retrospective studies, 13 laboratory studies, 10 prospective studies, 7 case 
reports, 5 reviews, 4 randomized controlled trials, and other types of study design. The sample 
size ranged from 0 to 229428, with seven papers analyzing over 10,000 samples. Publication 
time was evenly distributed from 2015 to 2023. The average length of the inputted abstract was 
1719.54 characters, with a standard deviation of 427.85. 

Evaluator Performance 

The process of selecting the optimal threshold is presented in supplementary material 2.  
 

We randomly select the content and metric scores from three evaluators of 10 paper * 7 
elements from different combination of models (GPT-3.5, GPT-4.0), prompt types and trials, 
and manually marked down the accordance between extracted information and ground truth as 
a test set. Table 3 presented are performance metrics for three different evaluators to assess the 
quality of semantic similarity rating, and they are compared based on their accuracy, precision, 
and recall. 
 
Table 3. Accuracy, precision and recall of evaluators. 
 

 
BERT ROUGE-1 ChatGPT-4.0 

Accuracy 0.8714 0.9429 0.9714 

Precision 0.8983 0.9643 0.9821 

Recall 0.9464 0.9643 0.9821 

 
The ChatGPT Evaluator outperforms the other two evaluators in all three metrics. It is the most 
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accurate and provides the highest precision and recall. The BERTScore Evaluator has the 
lowest accuracy and precision but maintains a high recall. The lower precision could imply that 
while BERT can identify many of the true positives, it may also mistakenly label some distinct 
elements as similar. Its relatively lower accuracy suggests that it doesn't perform as 
consistently across all cases compared to the other evaluators. 
 
The high recall rates across all evaluators suggest that they are generally good at identifying 
relevant, semantically similar elements. In contrast, the variation in precision and accuracy 
indicates differences in their ability to exclude non-similar elements and correctly label the full 
range of elements, respectively. 
 

Overall Performance 

In our experiment, GPTs achieve considerable accuracy in extracting information from papers 
across medical disciplines. Measured by the BERTScore, GPT-4.0 achieves over 80% 
correctness in five out of the seven items, and GPT-3.5 achieves over 80% in three items. 
Supplementary Material 3 includes a comprehensive table summarizing the average 
proportions of correctness, covering all 7 items under 8 prompt settings, generated by GPT-3.5 
and GPT-4.0 and measured by the three different metrics. For clarity, Table 4 selectively 
presented each item's optimal performance and corresponding prompt engineering strategy. 
The results also compare the optimal performance between GPT-3.5 and GPT4.0. 
 
Table 4. Optimal performance for each item and the corresponding prompt engineering 
strategies. Mean and standard deviation across the five trials. 
  

Items GPT 
model 

�
�������

 

(BERT) 

�
�������

 

(GPT) 

�
�������

 

(ROUGE) 

Optimal Prompt 
Engineering Strategies 

Study 
Design 

GPT-3.5 0.798 
(0.4) 

0.862(0.86) 0.798(0.4) Alpha(BERT/ROUGE/
GPT) 

GPT-4.0 0.796(0.3
4) 

0.86(0.86) 0.796(0.34) Beta+Gamma(BERT/R
OUGE), Alpha(GPT) 

Sample 
Size 

GPT-3.5 0.992(0.0
8) 

0.955(0.95) 0.992(0.08) Alpha+Gamma(BERT/
ROUGE), Alpha(GPT) 

GPT-4.0 0.964(0.1
6) 

0.97(0.97) 0.964(0.16) Gamma(BERT/ROUGE
), Alpha(GPT) 

Data 
Source 

GPT-3.5 0.804(0.3
8) 

0.716(0.72) 0.804(0.38) Alpha(BERT/ROUGE/
GPT) 

GPT-4.0 0.852(0.3
2) 

0.773(0.77) 0.852(0.32) Gamma(BERT/ROUGE
/GPT) 

Patient GPT-3.5 0.844(0.3
3) 

0.8(0.8) 0.844(0.33) Alpha(BERT/ROUGE/
GPT) 

GPT-4.0 0.924(0.2 0.864(0.86) 0.924(0.24) Control(BERT/ROUGE
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4) /GPT) 

Interve
ntion 

GPT-3.5 0.568(0.4
1) 

0.595(0.6) 

0.568(0.41) 

  

Alpha+Beta+Gamma(B
ERT/ROUGE), Control 
(GPT) 

GPT-4.0 0.688(0.4
1) 

0.722(0.72) 0.688(0.41) Gamma(BERT/ROUGE
/GPT) 

Compar
ison 

GPT-3.5 0.764(0.3
9) 

0.809(0.81) 0.67(0.46) Alpha+Gamma(BERT/
ROUGE), Alpha(GPT) 

GPT-4.0 0.804(0.3
6) 

0.845(0.85) 0.804(0.36) Gamma(BERT/ROUGE
), Alpha(GPT) 

Outcom
es 

GPT-3.5 0.706(0.3
7) 

0.638(0.64) 0.706(0.37) Alpha+Beta(BERT/RO
UGE), Alpha(GPT) 

GPT-4.0 0.864(0.3
1) 

0.825(0.83) 0.864(0.31) Alpha(BERT/ROUGE/
GPT) 

 
The performance of GPT in extracting information across seven items can be categorized into 
three distinct levels of complexity. The first level encompasses questions where a direct answer 
can typically be found in the raw text. The sample size is an example of this level, and both 
GPT-3.5 and GPT-4.0 achieve accuracy levels exceeding 0.95 in extracting sample size. The 
second level pertains to questions requiring understanding and summarization skills to extract 
answers. Most extracted items, including study design, data source, patient, comparison, and 
outcomes, belong to this category. Table 3 shows that GPT-3.5 achieves optimal performance 
from 0.7 to 0.8 for these items and GPT-4.0 from 0.8 to 0.9. Finally, intervention represents the 
third level, which demands a high level of understanding and domain expertise to discern the 
correct answer accurately from potentially misleading information. In this regard, GPT-3.5 
performed under 0.6 while GPT-4.0 demonstrated accuracy around 0.7. 
 
Figure 3 employs a violin plot to illustrate the distribution of model performance. Noticeably, 

the plots reveal bimodal distributions, with performance clustering at high and low accuracy 

extremes, representing that the GPT models are either all correct or all incorrect in their 

extractions. This observation demonstrates the stability of GPT’s performance in such 

information extraction tasks. Despite the common issue of the randomness of generative 

language models, these results demonstrated that GPTs are controllable and consistent in 

evidence summarization. 
 
Figure 3. Violin plots of the performance distribution of GPT-3.5 and GPT-4.0 on each item to 
extracted. Y label represents the metrics and the dashed lines inside violins represent the 
quartiles. 
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Performance of GPT-3.5 and GPT-4.0 

The GPT version is a statistically significant factor influencing model performance. As 

presented in Table 5, the ANOVA analysis reveals that 20 out of the 21 p-values assessing the 

impact of GPT are significantly lower than 0.05. The only exception of p-value is associated 
with the item Sample Size measured by BERTScore. 

 
Table 5. Summary of p-values in ANOVA analysis. For example, the first cell represents the 
p-value corresponding to the factor “GPT versions”, utilizing study design data evaluated by 
the ROUGE metric as input data for the ANOVA analysis. 

Evaluator Factor 
Study 

Design 

Sample 

Size 

Data 

Source 

Patient 
Inter- 

vention 

Comparison Outcomes 

 

ROUGE 

 

GPT <0.0001 0.0069 0.0107 <0.0001 <0.0001 0.0086 <0.0001 

Prompt 0.0721 0.0005 0.0000 
0.4689 0.9667 0.0022 

0.9982 

Interaction 0.0053 0.0134 
0.9352 0.7269 0.9860 0.6483 0.9986 

BERTScore 

GPT 0.0210 
0.8896 <0.0001 <0.0001 <0.0001 0.0001 <0.0001 

Prompt 0.3537 <0.0001 0.0000 
0.9949 0.9470 0.0007 

0.5658 

Interaction 0.0554 <0.0001 
0.9218 0.9934 0.9647 0.7438 0.2389 
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GPT 

GPT 0.0012 <0.0001 0.0011 <0.0001 <0.0001 0.0002 <0.0001 

Prompt 0.0026 <0.0001 <0.0001 
0.1556 0.8368 0.0434 

0.1503 

Interaction 0.0012 <0.0001 
0.9431 0.8998 0.9806 0.6406 0.3165 

 

 

In pair-wise comparison, GPT-4.0 tends to surpass GPT-3.5, particularly in complex tasks 
where direct answers are in the raw text. Table 4 demonstrated the significant edges of GPT-4.0 

over GPT-3.5, characterized by both enhanced proportion of correctness and a reduced standard 
deviation,  on Data Source (GPT-4.0: �

�������
 = 0.852; GPT-3.5, SD=0.32: �

�������
=0.852, 

SD=0.38), Patient (GPT-4.0: �
�������

 = 0.924, SD=0.24; GPT-3.5: �
�������

=0.844, SD=0.33), 
Intervention(GPT-4.0:  �

�������
= 0.688, SD=0.41; GPT-3.5: �

�������
=0.568, SD=0.41), 

Comparison (GPT-4.0:  �
�������

= 0.804, SD=0.36; GPT-3.5: �
�������

=0.764, SD=0.39), and 
Outcomes (GPT-4.0:  �

�������
= 0.864, SD=0.31; GPT-3.5: �

�������
=0.706, SD=0.37). However, 

it is worth noting that GPT-4.0 may not necessarily outperform its predecessors. For example, 
GPT-4.0 does not reach the same level as GPT-3.5 on Sample Size (GPT-4.0:  �

�������
= 0.964, 

SD=0.16; GPT-3.5: �
�������

=0.992, SD=0.08), even though the extraction is relatively simple 

and there tends to be a finite numeric answer in the abstract. 

 
Figure 3 visually compares the performance distribution of GPT-3.5 and GPT-4.0 on the seven 
items. Noticeably, it can be found that the performance improvement of GPT-4.0 is brought by 
shrinking tails near 0, which means the occurrence of all false values. This can verify the fact 
that the enhanced ability of GPT-4.0 in extracting the expected information. 

Effects of Prompt Engineering Strategies 

Prompt engineering strategies are likely to influence model performance positively, but their 
effectiveness is not guaranteed. As presented in Table 5, the ANOVA analysis reveals that the 
impact of the GPT prompt is statistically significant for three extracted items, Sample Size, 
Data Source, and Comparison, measured by all three evaluators. There needs to be more 
evidence for other items to prove the impact of prompt engineering strategies. The discordance 
of impact can also be verified in Table 4, where different extraction tasks exhibit a different 
preference for specific prompt engineering strategies to achieve optimal performance. 
 
It is also noticeable that prompt engineering strategies may not have additive effects with each 
other. For example, in Figure 4, the combination Alpha+Beta does not perform as well as either 
Alpha or Beta. Combined strategies, such as Alpha+Beta+Gamma, may lead to inferior results 
compared to the simple one. The control set produces a considerably good performance, and it 
is the optimal strategy for GPT-4.0 to extract the patient information, as shown in Table 4. 
 
Figure 4. Violin plots of the performance distribution of GPT-3.5 and GPT-4.0 using different 
prompt engineering strategies. Y label represents the metrics and the dashed lines inside violins 
represent the quartiles. 
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The effects of GPT versions and prompt engineering strategies will likely interact. In ANOVA 
analysis, the interaction between the GPT version and prompt engineering strategies is 
statistically significant based on the Sample Size extraction, as assessed by all three 
evaluators (ROUGE, p < .001; BERTScore, p<.001; GPT, p<.001). However, for other items, 
interaction may exist but needs more statistical strength. Table 4 demonstrates that the optimal 
prompt engineering strategy differs between GPT-3.5 and GPT-4.0 for each item. In general, 
GPT-3.5 tends to favour the Alpha strategy, persona (optimal strategy for Study Design, Data 
Source, Patient). In contrast, GPT-4.0 tends to prefer the Gamma strategy, with few-shot 
prompting (optimal strategy for sample size, data source, intervention, comparison). 

Discission 

Our study presents a rigorous evaluation of GPT-3.5 and GPT-4.0 in extracting medical 
information from titles and abstracts. To ensure comprehensive coverage across various 
medical domains, a stratified sampling method was adopted for paper selection from almost all 
affiliated medical schools and departments of a university. We employed multiple evaluators, 
repetitive trials, and experiments on prompt engineering strategies to enhance the integrity of 
results. Our findings demonstrated that GPTs can effectively extract or summarize information 
described in the abstracts. Notably, GPT-4.0 exhibits robust performance in providing thorough 
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answers and understanding and summarizing abstracts. However, there is still room for 
improvement in accurately discerning information that requires sophisticated understanding 
and domain expertise. When combined with appropriate prompt engineering strategies, the 
accuracy level achieves over 0.8 in extracting information related to study design, sample size, 
data source, patient, comparison and outcomes. Moreover, the improvement in efficiency is 
remarkable by reducing 8 to 10 hours of human labor to under 5 minutes (GPT-3.5) or 40 
minutes (GPT-4.0). Our research pioneers the exploration of a new generation of Large 
Language Models in medical evidence summarization and offers potential applications in 
various scenarios. It provides empirical evidence to support the development of credible 
automatic tools for medical literature screening and review. With critical information extracted, 
automatic tools can strike a balance between efficiency and transparency. 
 
The field of large language models is rapidly advancing. Our investigations reveal that the 
effect of the GPT version on the accuracy of information extraction is significant when 
comparing GPT-3.5 and GPT-4.0 (Table 5). In particular, GPT-4.0 presents a more robust 
performance in summarizing complex information that may not be readily apparent in the raw 
text, such as the PICOs. On the other hand, the drawback of GPT-4.0 compared to its 
predecessor is associated with the time and cost. According to the OpenAI website, by March 
2024, the price of GPT-3.5 Turbo is one-twentieth of that of GPT-4.0 Turbo [31]. In our 
experiment, we found that the time required for GPT-3.5 to label 100 papers is approximately 
one-tenth of the time taken by GPT-4.0. This significant difference may be attributed to the rate 
limits imposed by the API, as noted on OpenAI's website. Specifically, the rate limit for 
GPT-4-turbo is 500 RPM (Requests Per Minute) for Tier 1 users, while GPT-3.5-turbo offers a 
higher rate limit of 3500 RPM [32].  
 
Prompt engineering strategies play an essential role in enhancing LLMs’ performance. This 
study find that the optimal prompt engineering strategies vary depending on the extraction 
tasks and GPT versions employed. Overall, two useful strategies are recommended to attempt: 
persona and few-shot prompting. Although, the chain of thought strategy might help guide 
multi-step tasks, it might not be effective in straightforward tasks like the information 
extraction in this study (Table 4). It is worth noting that the combination of prompt engineering 
strategies may not yield additive effects on the final results (Figure 4). Considering the cost 
associated with input tokens, it is recommended to use a conservative approach to employ 
prompt engineering strategy in prompt development. 
 
Moreover, this study extensively examines and compares the performance of evaluators 
utilized in the experiment, including two well-established NLP metrics, ROUGE-1 and 
BERTScore, and one newly developed GPT evaluator. Overall, the three evaluators provide 
consistent performance evaluation across various extraction items and prompt engineering 
strategies (Figure 3 and Figure 4). However, each metric has its limitations. ROUGE-1, as a 
basic metric relying on common words, is susceptible to issues like spelling variations and 
abbreviations. For example, when the output is “cluster randomised controlled trial” while the 
ground truth is “cluster randomized controlled trial”, ROUGE-1 assigns a score of 0.5, which 
tends to be labeled as a mismatch with the ground truth (record 17, Supplementary Material 5). 
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To overcome these limitations, BERTScore incorporates synonyms and offers a continuous 
scoring system. In this study, we employed a threshold to transfer from a continuous value to a 
binary label of a correct answer. While the threshold is optimized based on available data, it 
may not effectively decide on the alignment between the generated answer and ground truth. 
Take record 89 as an illustrative example (Supplementary Material 5). The labeled ground truth 
of record 89 is “survey,” and the generated answer by GPT-4.0 is “school-based survey.” In this 
case, the BERTScore output is 0.834 under the optimal threshold, resulting in a labeled 
mismatch with the ground truth.   
 
Our study revealed an interesting observation regarding the potential of GPT as a promising 
and unique tool to assess the accuracy of generated text compared to the ground truth. Notably, 
GPT evaluators can leverage their pre-trained knowledge base to evaluate text based not only 
on lexical similarity but also on semantic similarity. This ability effectively addresses some 
significant limitations of existing NLP metrics. To illustrate, consider the extracted 
intervention for record 26 as an example (Supplementary Material 6). The labeled ground truth 
is “Pre-emptive use of proton pump inhibitors (PPI),” while the generated output of GPT-4.0 is 
“Pre-emptive PPI (intravenous esomeprazole followed by high-dose oral esomeprazole).” In 
this instance, the generated answer is not only correct but also superior to the ground truth, as it 
integrates the information from another helpful sentence: “The PPI group received intravenous 
esomeprazole 4 h before the EST and then every 12 h for 1 day, followed by high-dose oral 
esomeprazole for 10 days.”[33]. However, both ROUGE-1 and BERTScore fail to label this 
correct answer due to a lack of overlapping words. In contrast, the GPT evaluator assigns a 
score of 0.85, acknowledging the reasonableness of the generated output. This outcome 
highlights the potential of the GPT evaluator that evaluating not merely the words but also 
meanings can offer a more authentic and accurate evaluation. We also found that GPT exhibits 
logical thought when evaluating the answer during development. For instance, it can 
distinguish the difference between the outcome of HbA1c and the drop of HbA1c. These 
properties allow GPT to be further developed into a powerful and systematic tool to evaluate 
the performance of complex information extraction. 
 
However, it is important to acknowledge several limitations in this study. First, while covering 
a wide range of medical domains, the labeled ground truth represents the assessment level of 
human evaluators. It may not necessarily serve as the golden standard due to a lack of domain 
knowledge. As a result, the performance of GPTs could be underestimated. To address this, 
future research is encouraged to validate GPT’s performance in one specific medical domain. 
When the targeted literature focuses on one area, domain knowledge can be provided as 
contextual information to enhance performance. Another limitation of this study is that we 
solely tested GPT from the abstracts. Given the exploding ability of LLMs in handling long 
text, figures, and tables, it is recommended that future researchers extend the GPT tools to 
operate on full text or PDF level. This expansion would extract more valuable information 
sources and open up broader possibilities for GPT to facilitate medical research.   
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Conclusion 

In this study, we have developed a robust method based on GPT for extracting or summarizing 
information from the abstract of medical research papers. We conducted thorough experiments 
to systematically evaluate the effects of GPT versions and prompt engineering strategies on the 
performance of models. The evaluation was carried out utilizing both well-established NLP 
metrics and a newly developed GPT evaluator. Notably, the GPT evaluator demonstrated its 
effectiveness and advantage by leveraging its capability of semantic understanding. Our result 
validates the potential of GPT as a reliable, stable, and accurate tool for summarizing medical 
evidence, particularly when appropriate prompt settings are employed. We encourage further 
research and studies to continue refining and advancing this tool, unlocking the potential of the 
new generation of technology in medical research. 

Supplementary Material 

Supplementary material 1 Summary table of selected papers 
Supplementary material 2 Optimal threshold and the process of grid search 
Supplementary material 3 Summary of model performance 
Supplementary material 4 ANOVA tables 
Supplementary material 5 Illustrative example of study design.  
Supplementary material 6 Illustrative example of intervention 
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Figure 1. Flowchart of overall study design; 
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Figure 2. Paper affiliation distribution 
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Figure 3. Violin plots of the performance distribution of GPT-3.5 and GPT-4.0 on each 

item to extracted. Y label represents the metrics and the dashed lines inside violins 

represent the quartiles. 
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Figure 4. Violin plots of the performance distribution of GPT-3.5 and GPT-4.0 using 

different prompt engineering strategies. Y label represents the metrics and the dashed 

lines inside violins represent the quartiles. 
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