Supplementary methods

All acute COVID-19 samples from hospitalized participants were collected
between April 2020 and April 2021. All non-COVID AKI samples from hospitalized
participants were collected between May 2021 and August 2021. AKI was defined by
KDIGO creatinine criteria. Urine specimen was collected in sterile midstream specimen
collection container (ThermoScientific, Cat. No. 070020). For the instrument controls, we
pooled urine from 400 (100 healthy, 100 AKI, 100 CKD and 100 AKI+CKD) samples from
the ASSESS AKI cohort . Samples were processed according to the workflow shown in
Figure S29. Since samples were assessed over the course of several months during the
pandemic from two different medical centers, triplicates of a singular instrument control
were used in each run to account for LC-MS instrument variability and batch to batch
variation. Each of the TMT-16 plex contained thirteen samples in addition to three
instrument controls. Estimated glomerular filtration rate (eGFR) of the COVID-19 samples
was calculated using the peak serum creatinine values as per the recommendations
published previously 2.

Urine processing at Mount Sinai Hospital

Urine was processed in a BSL2+ facility according to guidelines provided by the
Institutional Biosafety committee (IBC) at the Mount Sinai Hospital. Urine was spun down
at 2000 rpm for 15 minutes at 4°C and the supernatant was aliquoted and stored at -80°C
until use or for long term storage. For samples that were notimmediately processed, urine
was snap frozen in dry ice and stored at -80°C until ready to use.

Urine processing at University of Michigan

Urine was spun down at 200xg for 15 minutes at 4°C and the supernatant was
filtered using a 30-micron mesh filter. Urine supernatants were then aliquoted and stored
at -80°C until use or for long term storage. 8 samples that were collected more than 18
days after hospitalization were excluded from the analysis.

Urine processing for proteomics

Urine protein was precipitated in a BSL2+ facility using a previously published
protocol 3. Briefly, urine supernatant is mixed with acetone (Sigma, Cat. No. 179124) and
trichloroacetic acid (TCA, Sigma, Cat. No. 91228) at a ratio of 1:8:1 (Urine:Acetone:TCA).
After incubation for 1h at -20°C, the samples were spun down at 4000xg for 1 hour at
4°C. The supernatant was disinfected according to biosafety guidelines and discarded,
and the urine protein pellet was washed twice with ice-cold acetone to remove TCA and



centrifuged at 12,000xg for 15 minutes. The pellet was air dried for 15 minutes,
resuspended in rehydration buffer containing 7M Urea (Sigma, Cat. No. U5378), 2M
Thiourea (Sigma Cat. No. T8656), 50 mM Dithiothreitol (DTT, Thermofisher, Cat. No.
R0861) and 1% CHAPS (Thermofisher, Cat. No. 28300). Protein content was quantified
using Bradford assay (Sigma, Cat. No. B6916) against BSA standards, and aliquots were
stored at -80°C until further use.

For proteomic analysis, urine protein samples boiled with LDS sample buffer (Life
Technologies, Cat. No. BO007) and then loaded on SDS-PAGE gels (Life Technologies,
Cat. No. NW4122BOX) at 30 ug protein per lane. After protein separation, the protein
gels were fixed in 50% methanol (Fisher Scientific, Cat. No. A412-4) and 10% acetic acid
(Fisher Scientific, Cat. No. A38-212) for 30 minutes and then stained with Coomassie R-
250 (BioRad, Cat. No. 1610436) for an hour. The gels were further processed for isobaric
tagged TMT-16 plex proteomics at the Center for Advanced Proteomics research at
Rutgers University.

Isobaric TMT-16 Plex LC-MS/MS analysis

The gels were cut into small blocks, washed with a solution of 30% acetonitrile
(ACN) and 70 % of 100 mM triethylammonium bicarbonate (TEAB) to remove
contaminants, and treated with 25 MM dithiothreitol (DTT, at 55 °C for 30 min) and then
with 50 mM iodoacetamide (IAM, at room temperature in the dark for 30 min) to reduce
disulfides and alkylate thiols, respectively. The gel blocks were then dehydrated with ACN
(9 mL) to remove DTT and IAM, and trypsin was added for in-gel digestion, which was
carried out at 37 °C for 16 hours. To extract the ensuing peptides, 1 mL of 0.1%
trifluoroacetic acid was added, followed by 1 mL of ACN three times. The peptide solution
was dried using a Speedvac. The peptides from each sample were then labeled with one
of the TMT-16 tags (ThermoScientific, Cat. No. A44520) as per the manufacturer's
instructions for 2 hours at room temperature. After neutralizing the remaining TMT
reagents with hydroxylamine, the TMT-labeled peptides were mixed and separated using
high pH RPLC chromatography (Waters XBridge BEH C+s column, 5 pym, 4.6x250 mm).
Sixty 1-min fractions were collected and combined into 12 fractions. Each fraction was
dried using a Speedvac and purified using C1g cartridges.

LC-MS/MS analysis of the peptides was performed using a Tribrid Fusion Lumos
Orbitrap Mass Spectrometer with an UltiMate 3000 RSLC nano system from Thermo
Scientific. Peptides were separated on an Acclaim PepMap C1s column (75 pm x 50 cm,
2 um, 100 A) using a 3H binary gradient, from 2 to 95% of Solvent B (85% ACN in 0.1%
FA), at a flow rate of 300 nL/min. The eluted peptides were then introduced into the MS
system for data-dependent analysis in positive ion mode. Full scans of the peptides were
got in an m/z range of 350 to 1600 with a resolution of 120,000, using a maximal injection
time of 50 ms. The MS/MS scan used a quadrupole isolation window of 0.7 m/z, with HCD



being used for peptide fragmentation and a normalized HCD collision energy of 34%. The
peptide fragments were detected in the Orbitrap analyzer at a resolution of 50,000, with
the AGC target set to a normalized target of 150% and the dynamic maximum injection
time selected. The dynamic exclusion was set to 60 seconds.

The tandem spectra were analyzed using the SEQUEST search engine through
the Proteome Discoverer platform (version 2.4, Thermo Scientific) and matched to the
Uniprot human database (which was updated on 11/12/2020 and contained 74,848
entries). TMT MS? reporter-based quantitation method was used for protein identification
and measurement, with methionine oxidation set as a dynamic modification and cysteine
carbamidomethylation, TMT labeling of peptide N-termini, and lysine side chains set as
static modifications. The Percolator module was used to validate peptide identification
with a false discovery rate of less than 1%. Protein quantification was normalized based
on the total amounts of peptides and included both unique and razor peptides.

ML training and validation parameters

Eight COVID-19 samples collected more than 18 days after hospitalization were
excluded from ML analysis. Participants with reported clinical outcomes of admission to
the intensive care unit (ICU), mechanical ventilation (MV), acute kidney injury (AKI),
incidence after hospitalization, length of stay over 21 days (LOS>21) and/or death were
considered severe outcome. The samples were first randomly divided into the discovery
set and the validation set in a 2:1 ratio while maintaining a similar proportion of severe
outcomes cases. The discovery set was used to derive prediction set of genes and the
validation set was untouched during training process and was only used for validation of
composite outcome prediction. Limma test, as described previously 4, was first performed
in the discovery set to obtain differential abundant proteins between severe and mild
outcomes cases. Then we selected important proteins (features) with respect to the
composite outcome (severe vs mild) using Boruta feature selection method °. The
selected proteins (features) were used for random forest model construction within the
discovery set. Parameter “mtry” was tuned using grid search and “ntree” were tuned
within range [500,1000,1500,2000,2500] via 10-fold cross validation, and were
determined by the highest accuracy (mtry=1, ntree=500). Final random forest model was
applied to both the discovery set and the validation set for receiver operating
characteristic curves (ROC)/Area under the ROC curve (AUC) calculation. The cut off
was determined in the discovery set by the nearest distance between ROC curve and
point (0.1) and applied to the validation set to obtain True Positive Rate (TPR), False
Positive Rate (FPR), Positive Predictive Value (PPV), and Negative Predictive Value
(NPV).



Plasma Proteomics analysis

As defined in a previously published manuscript & 7, blood collected in CPT tubes
were centrifuged within two hours of blood collection at room temperature for 15 minutes
at 1500-1800 RCF (Relative Centrifugal Force). The plasma layer (under the top whitish
layer of mononuclear cells and platelets) was aspirated without disturbing the cell layer,
aliquoted and stored at —80 °C. AKI was defined according to Kidney Disease Improving
Global Outcomes (KDIGO) criteria, with baseline creatinine determined based on
previous measurements or eGFR. Clinical data, including demographic and laboratory
information, were obtained from institutional electronic health records (EHR). Disease
severity was assessed by supplemental oxygen requirement. The SomaScan platform
was employed for proteomic analysis, quantifying protein expression levels 8. Standard
preprocessing protocols, including normalization and calibration, were applied to the data,
ensuring quality control and removal of samples with intrinsic issues. The relative
fluorescence unit (RFU) values were log2 transformed for analysis.

For prevalent acute kidney injury (AKI) analysis, log2 transformed normalized
protein values were subjected to multivariable linear regression using the Limma
framework. Models were adjusted for age, sex, history of chronic kidney disease (CKD),
and supplemental oxygen requirement at the time of specimen collection, as defined
previously 6. P-values were adjusted using the Benjamin-Hochberg procedure to control
the false discovery rate (FDR) at 5%. This research was reviewed and approved by the
Icahn School of Medicine at Mount Sinai Program for the Protection of Human Subjects
(PPHS) under study number 20-00341.

Urine sediment scRNA sequencing

Cells isolated from urine sediments were further processed using single-cell
sequencing analysis, as reported previously °. Briefly, cell pellet after removal of urine
supernatant was washed with 1 ml cold X-VIVO™10 medium once (Cat#: 04-743Q,
Lonza) and then centrifuged for 5 minutes at 200 x g at 4°C. The cell pellet was then
resuspended in 50 yl DMEM/F12 medium supplemented with HEPES and 10% (v/v) FBS.
About 50,000 cells were loaded onto the single-cell droplet based RNAseq platform and
next generation sequencing was carried out on a NovaSeq6000 (lllumina) machine
generating a 200 million reads per sample.

Kidney Organoid Generation

Induced pluripotent stem cell (iPSC) line ISMMS 102i used in this study is publicly
available from WiCell research institute. Kidney organoids were generated from 102i
using a modified protocol adapted from Takasato et al '° (Figure S30). Briefly, iPSCs



were first induced towards intermediate mesoderm (IM) cells in 2D culture by activating
the Wnt signaling pathway using 7uM CHIR (Stemgent, Cat No. 04-0004) in STEMdiff
APEL2 Medium (Stem Cell Technologies, Cat. No. 05275) medium for 4 days, followed
by switching to APEL2 with 200 ng/mL FGF-9 (R&D, Cat No. 273-F9-025), 1uM CHIR
and 1 pg/mL Heparin (Sigma, Cat No. H4784). Deviant from the original protocol, after 7
days in culture, the cells were seeded in a U-bottom 96-well plate (Life Technologies, Cat
No. 174925) at a density of 25,000 cells per well. The spheroids were cultured in APEL2
with 200 ng/mL FGF-9, 1uM CHIR and 1 ug/mL Heparin until day 5. After 5 days, growth
factors were withdrawn, and the organoids were grown in APEL2 medium with 1 pg/mL
Heparin for 13 days at which point they are ready to be used for further experiments.

SARS-CoV-2 infection of Kidney organoids

Kidney organoids differentiated for 25 days were infected with SARS-CoV-2,
isolate  USA-WA1/2020 (BEI Resources NR-52281) under BSL3 containment in
accordance with the biosafety protocols developed by the Icahn School of Medicine at
Mount Sinai. Virus particles at 10* PFU were used for infection and media supernatants
were collected at days 2, 4 and 6 post infection for viral titer quantification using TCID50
assay, as previously described '* 12,

Whole mount Immunofluorescent staining

Organoids were moved to an optical bottom 96-well plate, fixed at RT for 1 hour
with 4% paraformaldehyde (PFA) (Electron Microscopy Sciences, Cat No. 15710), and
blocked at RT for 3h using blocking buffer consisting of 10% bovine serum albumin
(Sigma, Cat No. A8806), 10% donkey serum (Sigma, Cat No. S30) and 0.3% Triton-X
(Sigma, Cat No. X100). After 3h, blocking buffer was replaced with primary antibodies
prepared at dilutions listed in Table S4 and incubated overnight at 4°C. The organoids
were then washed two times with PBS for 1h each and a third wash for 3h. The
corresponding secondary antibodies (dilution 1:250) and Lotus Tetragonolobus Lectin
(LTL, 1:200) (Vector Laboratories Cat. No. FL-1321-2) were added and incubated at RT
for 2 hours. Samples were washed for 30 minutes three times with PBS and then Hoechst
33342 (ThermoScientific, Cat No. 62249) was added at 1:5,000 dilution at RT for 30
minutes. The stain was again replaced thrice with PBS and imaged in an optical bottom
plate or a glass bottom dish (Cellvis Cat No. D35-14-1.5N) using Zeiss LSM780 laser
scanning confocal microscope on 20X water immersion objective.

Kidney organoid scRNA-seq



Kidney organoids after day 4 of infection were dissociated using Accutase (Stem
Cell Technologies, Cat No. 07920). The single-cell suspension obtained from 7 organoids
were pooled into one sample and 6000 cells were loaded onto the 10X Chromium Next
GEM Chip (10X Genomics, Cat No. 1000127) per manufacturer’s instructions. After GEM
preparation in a Chromium controller, library construction was carried out using 10X
Chromium Next GEM single-cell library kit (10X Genomics, Cat. No. 1000165). scRNA-
seq was performed on a NovaSeq6000 (lllumina) machine generating a 200 million reads
per sample.

SCRNA-seq data analysis

The raw sequencing data was processed with Cellranger count (version 5.0.0) 3.
To quantify COVID gene expression, a reference genome was built with Cellranger mkref
combining human hg38 and SARS-CoV-2 from the Ensembl database. The gene-cell
count matrix was subject to Seurat package for quality control (QC), normalization,
clustering, and visualization '*. Genes expressed in less than 3 cells were considered as
noise and removed from further analysis. Cells with < 200 genes expressed or with > 50
precent transcripts from mitochondrial genes were considered as low quality and
removed, while cells with > 5000 genes expressed were considered as doublets and
filtered out. The expression profile after QC was normalized with the read depth for each
cell and multiplied by the scale factor 10,000, then log transformed. To investigate the
organoid tissue similarities, COVID genes were excluded for clustering analysis. The KNN
graph was built with the first 15 PCAs with FindNeighbors and unsupervised clustering
was conducted by FindClusters using Louvain algorithm with resolution 0.8. The clusters
were further annotated with the markers in previous organoid single cell studies . The
differentially expressed genes (DEG) between infected and non-infected sample of each
cell was identified by FindMarker implemented in Seurat package and genes with p-value
<= 0.01 were considered as significantly dysregulated.

KPMP analysis

Fully annotated scRNA-seq data (file KidneyTissueAtlas/521c5b34-3dd0-4871-
8064-61d3e3f1775a_PREMIERE_Alldatasets _08132021.h5Seurat) was downloaded
from the KPMP Kidney Tissue Atlas (https://atlas.kpmp.org/). Cell identity was assigned
based on the "subclass.|1" classifications. To determine the specificity of each gene within
kidney cell types, the average expression for each cell type was calculated and divided
by the sum of average expression for all cell types.

The validation of the urinary features used in this study in the KPMP AKI cohort
was determined from publicly available and normalized urinary SomaScan proteomics
downloaded from https://atlas.kpmp.org/ (6696930a-f707-430d-a964-



110aefa93c62_Urine  Biomarker Data-SomaScan-2022\Urine  Biomarker Data-
SomaScan-2022\Data\SS-2342467_2023-11-30_Urine. ANMLNormalized.xlsx). Patient
identifiers in the SomaScan data was matched to the corresponding clinical data (also
publicly available from https://atlas.kpmp.org/; 1d64f325-eca1-4a9f-a89a-
6b62b96c4d28 20231129 OpenAccessClinicalData.csv) to identify patients as
belonging to the healthy reference or AKI group. For each feature, the fold change was
calculated by taking the average abundance value in all AKI patients divided by the
average abundance in all healthy reference patients.

Integrated multiomic data analysis

Functional enrichment analysis of DAPs/DEGs were performed by Enrichr
package '6'8, DAPs/DEGs were first ranked by the absolute value of log (fold change)
and top features with a maximum p-value of 0.05 were used for subsequent analysis.
Enriched biological functions were determined by fisher-exact test using the information
of biological process category in Gene Ontology (GO) '°. Top DAPs and DEGs from
multiple datasets employed in this study were analyzed using the standard enrichment
module in MBCO to visualize functionally overlapping pathways 2°. The top 25% SCPs
were considered for all analyses and functionally related SCPs were connected by a
dashed line. All MBCO networks were visualized using hierarchical clustering in yED
(https://www.yworks.com/products/yed). The kidney specific functional network in the
Humanbase interface (https://hb.flatironinstitute.org/) was used to identify tissue specific
functional neighborhood networks 2'.

The top 150 DAPs/DEGs from the urine proteomics, urine sediment and kidney
organoid scRNA-seq datasets and the top 450 DAPs from plasma proteomics dataset
were used to ensure a similar proportion of the proteome is employed for the functional
overlap analysis. The plots were generated using ggplot in R. Protein—protein interaction
(PPI) network was constructed using the Network X package in Python v3.4.10 to display
a Minimum Spanning Tree (MST) using Prim’s algorithm. Top 50 urine sediment sScRNA-
seq DEGs and plasma and urinary proteomics DAPs were ranked by log2 fold-change
and at 5% FDR to create the interaction network. Protein interactions were annotated
from the STRING database to build a functional network 22. We called this network the
‘truth set’. Permutation testing of this set against randomized network cluster of 50 DEGs
from urine sediment scRNA-seq, 50 plasma and 50 urine DAPs and was conducted along
with hypothesis testing at a 5% FDR threshold. A histogram of the mean values of
the permuted network scores was plotted along with the mean value of the truth set and
two-tailed cutoff to identify significantly enriched network clusters from the truth set.
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Supplementary Tables

Table S1: Demographics of severe and mild COVID-19 samples

Demographics Total Mild Severe

Age, year, mean + SD 58 £+ 15 57 £ 14 58 + 17

Sex, female/total (%) 39.3 35.8 46

Race, n/total (%)

Asian 5.73 6.17 4.87

Black 27.87 30.86 21.95

White 40.16 35.8 48.78

Hispanic 0.8 1.23 0

Not reported 254 24.69 26.82

Baseline eGFR (ml/min/1.73 m?), | 71.67 £ 33.68 | 79.1 £ 29.1 57 £37.9

mean + SD

Table S2: Features identified using the Boruta feature selection method
Accession | Importance | Gene Description p p.adj Log2FC Odds
Symbol Ratio

094910 7.34522915 | ADGRL1 Adhesion G protein- | 2.83E- 0.01306 | -0.417566734 | 0.08690
2 coupled receptor L1 05 0871 704

043490 6.82345349 | PROM1 Prominin-1 3.06E- 0.01306 | -0.389791982 | 0.04041
2 05 0871 3

AOAOAOMS | 6.51685631 | PLS3 Plastin-3 0.02410 | 0.15716 | -0.234264162 | 0.09866

Qo 4 8612 6064 46

Q15223 4.85202059 | NECTIN1 Nectin-1 0.00029 | 0.02085 | -0.35681949 | 0.14985

4101 8332 783

B1AKC9 4.81067663 | EPHB2 Receptor  protein- | 0.00087 | 0.02510 | -0.313390911 | 0.08481
1 tyrosine kinase 7962 6991 353

P11684 4.25002886 | SCGB1A1 Uteroglobin 0.01787 | 0.14116 | 0.674266899 | 1.36289
1 0519 7197 063

QBUXT71 411129319 | PLXDC2 Plexin domain- | 0.00056 | 0.02212 | -0.321354845 | 0.02553
5 containing protein 2 | 9995 6152 036

P31025 3.74052118 | LCN1 Lipocalin-1 0.00556 | 0.07161 | 0.543814933 | 2.00956
1 9905 001 486

Q9BQ51 3.53305122 | PDCD1LG2 | Programmed cell | 0.00045 | 0.02085 | -0.32479881 0.09988
7 death 1 ligand 2 1324 8332 319

K7EPJ4 3.38822505 | CILP2 Cartilage 6.81E- 0.01453 | -0.504393948 | 0.08570
8 intermediate  layer | 05 82 248

protein 2

Q8WW52 3.25961275 | FAM151A Protein FAM151A 0.00215 | 0.03855 | -0.378602379 | 0.22040

4 9912 4912 379




AOCAO87WV | 3.156412643 | PTPRJ Protein-tyrosine- 0.00045 | 0.02085 | -0.192464054 | 0.06666
Cc6 4 phosphatase 6222 8332 445

Table S3: Prediction accuracy of ML algorithm using Mount Sinai Hospital as discovery
cohort and University of Michigan as validation cohort

Site AUC Sensitivity | Specificity | PPV NPV TP | TN | FP | FN

Mount Sinai Hospital - | 0.874 0.5 0.949 0.733 | 0.872 |11 |75 | 4 11
Discovery set

University of Michigan - | 0.599 0.154 0.929 0.8 0.371 | 4 13 | 1 22
Validation set

Table S4: List of Antibodies used for immunofluorescence staining of kidney organoids

Antibodies Species Vendor Catalog # | Dilution
E-cadherin (CDH1) Mouse BD Biosciences 610181 1:200
Uromodulin (UMOD) Sheep R&D Systems AF5144 1:250
Synaptopodin (SYNPO) | Mouse Progen 65294 1:400
Podocalyxin (PODXL) Goat Novus Biologicals AF1658 1:200
Angiotensin converting
enzyme 2 (ACE2) Goat R&D Systems AF933 1:400
SARS-CoV-2 Center for Therapeutic Antibody
Nucleocapsid (N) Mouse Discovery, ISMMS 1C7C7 1:500
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Figure S1: Levey-Jennings plot of number of proteins identified in each TMT-16

Plex set of the urine proteomics
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Figure S2: Principal component analysis (PCA) plots of instrument controls and

COVID-19 samples across (A) sample collection site and (B) TMT-16 plex set
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Figure S3: Gene Ontology biological processes (GOBP) enrichment analysis heatmap

of top 150 (A) upregulated and (B) downregulated differentially abundant proteins

(DAPs) in COVID-19 vs healthy urine samples
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Figure S4: GOBP enrichment heatmap of top 150

DAPs in severe vs mild COVID-19 urine samples
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Figure S5: Correlation of prediction accuracy and (A) number of days hospitalized at

urine collection; (B) outcome
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Figure S6: GOBP enrichment analysis of the 12 features from urine proteomics

(GO:0051130)
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Figure S7: Kidney cell type specificity heatmap of ML features from the Kidney
Precision Medicine Project (KPMP) database scRNA-seq dataset
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Figure S8: Estimated glomerular filtration rate (eGFR) in severe versus mild
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Figure S9: (A) Uniform Manifold Approximation and Projection (UMAP) on cosine
distance metric; (B) K-means clustering of unscaled principal component analysis

(PCA) plot; (C) Stacked bar graph of distribution of outcomes in each cluster
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Figure $10: GOBP enrichment analysis heatmap of top 150 (A) upregulated and (B)
downregulated DAPs in non-COVID AKI vs healthy urine samples
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Figure S11: Abundance of (A) Albumin and (B) Cystatin C in healthy, mild and severe
COVID-19 and non-COVID AKI urine samples
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Figure S12: Log2 fold-change urinary abundance of ML features in AKI samples
from an external dataset from the KPMP database
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Figure S14: HumanBase kidney-specific functional module discovery analysis of top
150 DAPs from urine and 450 DAPs from plasma proteomics datasets
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Figure S15: Kidney cell type specificity heatmap from scRNA-seq dataset in the KPMP
database of (A) cell adhesion (B) cell migration and (C) response to oxidative stress
associated genes from the functional overlap analysis
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Figure $16: Histogram of the mean values of the permuted network scores along with
original interaction score (red) of top 50 differentially expressed genes (DEGs) from
individual cell clusters in the urine sediment single-cell RNA sequencing (scRNA-seq)
and top 50 DAPs from urine and plasma
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Figure S17: GOBP enrichment heatmap of DEGs in severe vs mild urine sediment
scRNA-seq dataset LOH/DCT/CNT/PC cluster (hybrid cluster of loop of Henle, distal

tubule, connecting tubule and principal cells)
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Figure $S19: HumanBase kidney-specific functional module discovery analysis of top
150 DAPs from urine and top 450 from plasma proteomics and top 150 DEGs from
the urine sediment scRNA-seq LOH/DCT/CNT/PC cluster
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Figure S20: HumanBase kidney-specific functional module discovery analysis of
overlapping proteins from the protein-protein interaction (PPI) network of urine and
plasma proteomics datasets and urine scRNAseq LOH/DCT/CNT/PC cluster
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Figure S21: Viral titer quantification using supernatants from infected organoids on 2-,
4- and 6-days post infection (dpi)
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Figure S22: Cell type clusters identified from the kidney organoid scRNA-seq
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Figure S23: GOBP enrichment heatmap of top 150 DEGs in infected vs mock kidney
organoids
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Interaction of top 150 DEGs from kidney organoid scRNAseq and the top

Figure S24

datasets
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Figure S25: HumanBase kidney-specific functional module discovery analysis of top
150 DAPs from urine and plasma proteomics and top 150 DEGs from the kidney
organoid scRNAseq dataset
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Figure S26: Abundance of TMPRSS2 in mild and severe COVID-19 samples
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Figure S27: Receiver operating characteristics (ROC) curves of COVID-19 severity
prediction using Mount Sinai Hospital cohort as (A) discovery set and University of
Michigan cohort as (B) validation set
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Figure S28: (A) List of ML features identified and (B) GOBP enrichment analysis of
biomarkers from ML model using Sinai cohort as discovery set and Michigan cohort

as validation set
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Figure S29: Schematic showing urine sample processing workflow for urinary
proteomics
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Figure S30: Schematic of iPSC-derived kidney organoid generation
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