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A B S T R A C T

A late post-traumatic seizure (LPTS), a consequence of traumatic brain injury (TBI),
can potentially evolve into a lifelong condition known as post-traumatic epilepsy (PTE).
Presently, the mechanism that triggers epileptogenesis in TBI patients remains elusive,
inspiring the epilepsy community to devise ways to predict which TBI patients will de-
velop PTE and to identify potential biomarkers. In response to this need, our study col-
lected comprehensive, longitudinal multimodal data from 48 TBI patients across multi-
ple participating institutions. A supervised binary classification task was created, con-
trasting data from LPTS patients with those without LPTS. To accommodate missing
modalities in some subjects, we took a two-pronged approach. Firstly, we extended a
graphical model-based Bayesian estimator to directly classify subjects with incomplete
modality. Secondly, we explored conventional imputation techniques. The imputed
multimodal information was then combined, following several fusion and dimension-
ality reduction techniques found in the literature, and subsequently fitted to a kernel-
or a tree-based classifier. For this fusion, we proposed two new algorithms: recur-
sive elimination of correlated components (RECC) that filters information based on the
correlation between the already selected features, and information decomposition and
selective fusion (IDSF), which effectively recombines information from decomposed
multimodal features. Our cross-validation findings showed that the proposed IDSF al-
gorithm delivers superior performance based on the area under the curve (AUC) score.
Ultimately, after rigorous statistical comparisons and interpretable machine learning
examination using Shapley values of the most frequently selected features, we recom-
mend the two following magnetic resonance imaging (MRI) abnormalities as potential
biomarkers: the left anterior limb of internal capsule in diffusion MRI (dMRI), and the
right middle temporal gyrus in functional MRI (fMRI).

© 2024
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1. Introduction

1.1. Background
Post-traumatic epilepsy (PTE) constitutes a subtype of ac-

quired epilepsy, originating from a traumatic brain injury (TBI)
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inflicted by an external force, such as an accident or a fall. A
notable risk factor for PTE is the incidence of a post-traumatic
seizure (PTS), particularly a late PTS (LPTS), which transpires
a minimum of one week after the injury. (Gugger and Diaz-
Arrastia, 2022). Presently, there is a deficiency of efficient phar-
macological interventions capable of preventing PTE seizures,
underlining the necessity for researchers in the field of epilepsy
to identify potential biomarkers and devise methods to pre-
dict the likelihood of TBI patients developing LPTS (Piccenna
et al., 2017). TBI causes extensive damage to both functional
and structural features. Therefore, to comprehend the effects
of TBI comprehensively, a multimodal approach is essential.
(Sharp et al., 2011). The Epilepsy Bioinformatics Study for
Antiepileptogenic Therapy (EpiBioS4Rx) (Vespa et al., 2019)
is at the forefront of this initiative, aiming to conceptualize and
conduct preclinical trials of antiepileptogenic therapies, lever-
aging multimodal information. This lays the groundwork for
future planning of clinical trials.

1.2. Related Work

Multimodal Fusion: For classification tasks utilizing mul-
tiple modality information, three major approaches are found
in the literature. They are, namely: late, intermediate, and
early fusion. Late fusion involves combining predictions from
multiple different base learners (Base), or heterogeneous en-
semble classification, and it has been shown to be an effi-
cient way of improving predictive accuracy in machine learn-
ing (ML) (Wolpert, 1992). As a form of late fusion, stacking
involves learning how to best combine the classifiers, in addi-
tion to combination using simple statistics, such as voting or
averaging (Džeroski and Ženko, 2004). Džeroski et al. claimed
that heterogeneous base learners, stacked with a final meta clas-
sifier, can perform comparably, if not better, to the best of the
individual classifiers (Džeroski and Ženko, 2004). In the sec-
ond major approach, intermediate fusion, features or informa-
tion extracted from the individual modalities are aggregated,
and subsequently fed to a single classifier. Since fusion in this
method occurs in the feature space, it is often more interpretable
and also allows the application of multivariate information the-
oretic fusion (Brown, 2009). The final approach, early fusion,
involves representing the raw individual modality information
collectively in a common space. From this aggregated informa-
tion, an ML pipeline can then extract relevant features and per-
form the desired classification. Early fusion can be challenging
to implement, since meaningful aggregation of different types
of modalities (e.g. spatial and temporal) is not always straight-
forward (Zhang et al., 2020). Past studies involving magnetic
resonance imaging (MRI) and electroencephalography (EEG)
have found intermediate and late fusion to be less affected by
noise, misregistration, and to have lower complexity; compared
to early fusion (Lewis et al., 2007; Zhang et al., 2020).

Missing Data: While acquiring data from all modalities for
each subject is ideally desirable, it is often not feasible. This
creates a challenge of handling such missing modality informa-
tion. Missing data has historically been dealt with imputation:
using the existing data to make estimates for the missing val-
ues. Imputation techniques generally take either the form of a

univariate approach that considers each missing feature/modal-
ity in isolation across all subjects (such as mean imputation), or
a multivariate approach that considers the other available fea-
tures/ modalities, which could be within a subject or across all
subjects (such as k-nearest neighbor, kNN imputation (Schef-
fer, 2002)). Following imputation, standard fusion and classifi-
cation pipelines can be implemented. Aside from conventional
imputation, contemporary approaches include jointly perform-
ing data imputation and self-representation learning (Liu et al.,
2021), or graphical model estimators that marginalize missing
attributes (Murphy, 2012).

Seizure Classification: TBI causes widespread damage to
both functional and structural features. Since each imaging
modality tends to pick up only certain items from this entire
set of features, it is essential to consider multiple modalities for
such classification (Sharp et al., 2011). Whereas many studies
have investigated a unimodal strategy for seizure classification,
few have involved a multimodal approach. Two such studies
explored non-TBI seizure classification from EEG and struc-
tural MRI (Memarian et al., 2015), and from EEG and electro-
cardiography (ECG) (Yang et al., 2022). Akrami et al. exam-
ined PTE classification, utilizing functional MRI (fMRI) and
T2-weighted fluid-attenuated inversion recovery (T2-FLAIR)
for lesion information (Akrami et al., 2021). However, to
our knowledge, no earlier work investigated the classification
of LPTS from an incomplete multimodal dataset, proposed
suitable novel fusion algorithms, and searched for modality-
specific potential biomarkers. Aside, the current work builds
on our earlier preliminary works in preprocessing and analyz-
ing the data (Akbar et al., 2020, 2021; Faghihpirayesh et al.,
2021) from the ongoing multi-center EpiBioS4Rx cohort.

1.3. Contributions
In the current study, we initiate a binary classification task

to distinguish between subjects experiencing LPTS and those
who do not, in selected subjects from the EpiBioS4Rx cohort.
We elaborate on our data collection and preparation strategies
in Section 2, for diffusion-weighted MRI (dMRI), EEG, and
fMRI. While making meaningful inferences involving multi-
modal fusion is a challenging problem, it is complicated further
by the absence of information about certain modalities in cer-
tain subjects. This work attempts to address that missing data
challenge as well. Furthermore, we strive to identify potential
biomarkers within each modality. To encapsulate our unique
contributions:

1. We pioneer a binary LPTS classification task leveraging a
multimodal dataset of dMRI, EEG, and fMRI. Addition-
ally, we incorporated lesion information from T2-FLAIR
during the fMRI preprocessing.

2. In response to missing modality in certain subjects, we ex-
tend a graphical model-based Bayesian estimator for direct
classification using the incomplete original dataset. Simul-
taneously, we explore various univariate and multivariate
imputation techniques to create imputed datasets.

3. We implement several techniques from intermediate and
late fusion for integrating multimodal information from
the imputed datasets. Regarding intermediate fusion, we
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introduce two novel algorithms: one that filters multivari-
ate information based on correlation between the previ-
ously selected features/ components, and another that se-
lectively fuses information following the decomposition of
the available multivariate information.

4. Lastly, we identify modality-specific potential biomarkers.
This is achieved through statistical comparisons and inter-
pretable machine learning analyses (using Shapley values)
of the most frequently selected features distinguishing the
LPTS groups.

The structure of the remainder of the paper is as follows: Sec-
tion 3 presents our empirical findings, Section 4 summarizes
our discussion, and Section 5 offers conclusions drawn from
our work.

2. Methods

2.1. Data Collection

2.1.1. Acquisition
This work was approved by the UCLA Institutional Review

Board (IRB#16 − 001576) and the local review boards at each
EpiBioS4Rx Study Group institution. Written informed con-
sent to participate in this study was provided by the participants’
legal guardian/next of kin.

According to the EpiBioS4Rx protocol (Vespa et al., 2019),
moderate-to-severe TBI subjects with frontal and/or temporal
hemorrhagic contusion and Glasgow Coma Scale (GCS, sever-
ity of injury, lower is severer) score between 3 − 13 were eligi-
ble for enrollment. A total of 48 subjects (12 female, 36 male;
age = 42.1±19.3 years; GCS = 7.7 ± 4.4), enrolled in 8 different
sites, were chosen for this work. Of these subjects, 17(35%) ex-
perienced at least one LPTS, whereas the remaining 31 did not
experience any for the entire two-year follow-up period, which
is the minimum duration needed to identify about 80 − 90% of
the subjects who will eventually develop PTE (Temkin, 2009).
Even though the modalities of interest for this work are dMRI,
EEG, and fMRI, the acquired data from the subjects included
other MRI sequences such as T1-weighted, T2-weighted, T2-
FLAIR, etc. The following three sections will summarize the
preprocessing steps involved in preparing our three data modal-
ities of interest for the extraction of relevant features.

2.1.2. dMRI Preprocessing
dMRI scans corresponding to multiple diffusion gradient val-

ues and directions were collected. Acquired dMRI data was
processed in the Oxford FMRIB Software Library (FSL) (Jenk-
inson et al., 2012), to estimate diffusion tensor imaging (DTI)
parameters, such as fractional anisotropy (FA) maps, in subject-
specific spaces. Since FA features have been reported earlier to
be promising in characterizing PTS (Gupta et al., 2005), we fo-
cused on extracting and utilizing FA features in this work.

The collected individual subject FA images were then trans-
formed to a common Montreal Neurological Institute (MNI)
space by registering to a standard HCP 1065 DTI FA template,
following Pipeline 1 in (Akbar et al., 2021). Finally, tract-based
spatial statistic (Smith et al., 2006) of each registered image was

carried out using the mask and distance map obtained from the
standard template, to extract mean FA values along 63 white
matter (WM) tracts and bundles obtained from the JHU-DTI
atlas (Zhang et al., 2010). These mean FA values are recorded
as the dMRI features (xd).
Exclusion Criteria: Of the total 48 subjects in our study, 45
had valid dMRI scans for analysis. From these 45 subjects, we
further excluded 4 as they did not meet the two-year follow-
up requirement stipulated by (Temkin, 2009). This left us with
a final sample of 41 subjects. Within this group, 14 subjects
(representing 34% of the sample) developed LPTS, while the
remaining 27 subjects (representing 66% of the sample) did not.

2.1.3. EEG Preprocessing
Epileptiform abnormalities (EAs) such as seizures, peri-

odic discharges (PDs), and abnormal rhythmic delta activity
(ARDA), are potential biomarkers of epileptogenesis (Vespa
et al., 2016; Faghihpirayesh et al., 2021). Kim et al. (Kim et al.,
2018) showed that the presence of EAs in the EEG signal during
the acute period following TBI independently predicted PTE
in the first year post-injury. Clinicians annotated the obtained
EEG to denote the presence of three such EAs (Seizure, PD,
and ARDA), which formed our EEG features (xe).
Exclusion Criteria: Of the total 48 subjects in our study, 10
had valid EEG recordings (following review by EEG experts)
for analysis. All subjects met the two-year follow-up require-
ment stipulated by (Temkin, 2009). Within this group, 7 sub-
jects (representing 70% of the sample) developed LPTS, while
the remaining 3 subjects (representing 30% of the sample) did
not.

2.1.4. fMRI Preprocessing
To incorporate lesion information in the rs-fMRI pre-

processing, we manually segmented damaged brain tissue
into parenchymal contusions and brain edema with ITK-
SNAP (Yushkevich et al., 2006) from the acquired 3D T2-
FLAIR scans. Brain contusion was defined as a lesion with
abnormal signal intensity and hemorrhagic volume > 1 ml,
and brain edema was defined as a region surrounding or in
the proximity of the contusion with hyperintense signal com-
pared with the WM signal on T2-FLAIR images (Chang et al.,
2006). Each segmentation was carried out by a student re-
search assistant and reviewed for clinical accuracy by one of
two medical physicians with research experience in neurora-
diology (Bennett et al., 2023). For each TBI subject, we ob-
tained a 3D lesion mask including contusion and edema. For
this work, the lesion incorporation served to obtain a more ac-
curate preprocessing pipeline, in which brain alterations related
to TBI were not mislabeled as brain tissues such as WM, cere-
brospinal fluid (CSF), and grey matter (GM). Therefore, we did
not consider the edema and contusion separately within each
3D mask. Then, to use the lesion masks in the rs-fMRI pre-
processing pipelines, we performed affine registration on each
mask using the MNI 152 template with the Linear Registration
Tool (FLIRT) of FSL (Jenkinson et al., 2012). Affine trans-
formations were used because they allowed us to maintain the
morphological characteristics of the lesions better while at the
same time obtaining robust registrations.
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The preprocessing used a modification of the unified segmen-
tation normalization of SPM12 (Ashburner and Friston, 2005)
as accessed through the CONN toolbox (Whitfield-Gabrieli and
Nieto-Castanon, 2012). The literature on normalization sug-
gests that SPM12’s unified segmentation normalization outper-
forms other pipelines when applied to simulated lesions (Crin-
ion et al., 2007). However, further work (Andersen et al., 2010)
showed that to achieve the best performance, information about
the lesion should be included, motivating the inclusion of the
lesion mask in preprocessing.

The fMRI preprocessing pipeline incorporates information
about the lesion by performing SPM12’s unified segmentation
normalization using a lesion-modified tissue probability map
(TPM). As discussed in (Andersen et al., 2010), modifying the
TPM performs implicit cost function normalization because it
ultimately causes SPM to ignore the lesion areas during nor-
malization. The TPM normally provides a prior probability of
a given voxel belonging to one of 6 tissue classes; GM, WM,
CSF, skull, soft tissue, and other (Ashburner, 2009). SPM12’s
default TPM was augmented for each subject with a 7th tissue
class corresponding to the MNI lesion mask for that subject,
thereby setting the prior probability of GM, WM, or CSF in the
lesion areas to 0. The modified TPM was created by a new func-
tion in the CONN toolbox, conn createtpm. Finally, using
the AAL3 atlas (Rolls et al., 2020), the means of the positive
(x f−p) and negative (x f−n) parcel-to-parcel correlations (Faria
et al., 2012), and the mean of the lesion volume overlap with
parcellations (x f−o) were recorded as the fMRI features.
Exclusion Criteria: Of the total 48 subjects in our study, 36
had valid fMRI scans for analysis. From these 36 subjects, we
further excluded 4 as they did not meet the two-year follow-
up requirement stipulated by (Temkin, 2009). This left us with
a final sample of 32 subjects. Within this group, 12 subjects
(representing 38% of the sample) developed LPTS, while the
remaining 20 subjects (representing 62% of the sample) did not.

2.2. Model Development

2.2.1. Data Partitions
While the goal of the study was to acquire all three modali-

ties of interest (xd, xe, x f ) for each subject, all subjects did not
have all modalities. Table 1 shows the number of subjects for
each combination of modalities, as well as the relative number
of subjects within each modality configuration. Out of the in-
cluded total N = 48 subjects, only seven had information avail-
able from all three modalities. Of the other 41 subjects, 21 had a
single missing modality, while the remaining 20 had two miss-
ing modalities.

From the total N subjects, we then created train and test par-
titions, following a five-fold cross-validation (CV). Any miss-
ing modalities were handled using methods described in Sec-
tion 2.2.3. We concatenated all D features (166×3 for the three
types of fMRI, 63 for dMRI, 3 for EEG) along the columns of
X̃i ∈ R1×D, for i ∈ n samples in each CV train fold. Each X̃i,
representing an individual subject, is then stacked vertically as
rows to give the training partition (Xtrain) for each CV round

Xtrain =
[
X̃1, X̃2, . . . , X̃n

]⊤
.

Each test partition (Xtest) is constructed in a similar manner with
m = N − n samples. The complete feature set, including the
train and the test sets, is denoted by X =

[
Xtrain,Xtest

]⊤, where
X ∈ RN×D. Similarly, the train-test partitions for the complete
set of LPTS labels y ∈ RN×1, corresponding to any CV round,
could be expressed as y =

[
ytrain, ytest]⊤.

2.2.2. Classification Framework
The comprehensive modeling framework employed for the

LPTS classification task is illustrated in Fig. 1. To begin, high-
dimensional features drawn from diverse modalities, symbol-
ized as xd, xe, x f , are concatenated. These combined features
then pass through an imputation stage, which estimates missing
data points using the available data. The data, now filled in,
proceed to the dimension reduction stage, which projects the
incoming high-dimensional data into a more tractable lower-
dimensional space. This reduced dataset is subsequently fit to
a classification stage that predicts the binary seizure label, de-
noted as ŷ. An all-encompassing fusion stage determines the
fusion technique to be utilized at any pertinent stage of the
pipeline. The (Yes/ No) choices indicate whether a stage is ac-
tive or not: if ’yes’, the stage employs one of several techniques
discussed in subsequent sections; if ’no’, the stage becomes a
passive conduit, with its output remaining identical to its input.

2.2.3. Imputation Techniques
Most classification techniques documented in the literature

are not equipped to handle missing data. To establish base-
lines for individual modalities and apply several relevant clas-
sification pipelines, we explored four standard techniques for
imputing missing modality features: mean, median, k-nearest
neighbors (kNN), and iterative imputation.

The mean and median imputation strategies substitute each
missing feature in X̃i with the mean and median, respectively,
of the non-missing values in the corresponding feature column
of Xtrain. For kNN imputation, each missing feature in X̃i is re-
placed with the mean value of the feature found in a specified
number of nearest neighbors sne (based on Euclidean distance
among the non-missing features) of X̃i within Xtrain (Troyan-
skaya et al., 2001). Iterative imputation, on the other hand, fills
the missing values in X̃i by modeling the d features with miss-
ing values as a function of the other D − d features in a round-
robin fashion, for a predefined number of iterations. For all the
imputation techniques utilized, we extracted information solely
from Xtrain (in an unsupervised learning environment), and not
from ytrain.

2.2.4. Dimensionality Reduction and Classifiers
When considering Xtrain as input, the feature dimension D is

considerably larger than n. Aside, by the inclusion of all fea-
tures, we risk hurting the final classification performance by
adding noise and overfitting by increasing complexity (Kohavi
and John, 1997). Consequently, it is advisable to reduce the di-
mensionality of such high-dimensional input. As such, we cas-
caded a standard dimension reduction technique at the start of
each classifier for all fusion approaches, except for the interme-
diate fusion techniques (Other) outlined in Sections 2.6.4-2.6.7,
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Table 1. Distribution of subjects by demographics, injury severity (lower is severer), available modalities, and LPTS labels.
Subjects Female Male Age GCS fMRI dMRI EEG LPTS No LPTS

5 1 4 41.0±22.1 6.6±5.0 ✓ 1 4
13 2 11 41.7±14.8 7.4±4.4 ✓ 2 11
2 0 2 41.0±19.8 3.0±0.0 ✓ 2 0

20 7 13 46.1±22.1 7.7±4.5 ✓ ✓ 7 13
1 0 1 67.0±0.0 9.0±0.0 ✓ ✓ 1 0
7 2 5 29.0±13.4 10.1±4.5 ✓ ✓ ✓ 4 3

Total: 48 12 36 42.1±19.3 7.7±4.4 32 41 10 17 31

Imputation
(Yes/ No)

Dimension
Reduction
(Yes/ No)

Classification

Fusion (Yes/ No)

xd

xe

x f

ŷ

Fig. 1. The overall modeling framework for the seizure classification task. High-dimensional features from the three different input modalities (xd , xe, x f )
are first concatenated, and then passed on to the first stage. The data is processed in each stage, and proceeds along in the direction of the arrows. The
final output on the right is the predicted binary seizure label (ŷ). The (Yes/ No) choices dictate whether a certain stage is active or not: if yes, it uses one of
the several techniques discussed later; if no, it becomes transparent where the output is the same as the input.

which inherently serve the purpose of dimension reduction. The
three standard reduction procedures adopted in this work are:
principal component analysis (PCA) (Hotelling, 1992), and K-
best features chosen by maximizing either the χ2-test score
(χ2

score) or the Fischer score ( fscore), between Xtrain and ytrain (Pe-
dregosa et al., 2011).

For all classification tasks, either as an interim individual
learner or as the final estimator, we evaluated both SVM and
AdaBoost classifiers. The choice of these two classifiers aligns
with previous studies, which have found both SVM (Jie et al.,
2015) and AdaBoost (Akbar et al., 2021) to be suitable for clas-
sification tasks involving neuroimaging features. For SVM, we
explored both linear and radial basis function (RBF) kernel vari-
ants.

The top K or k features/components to be chosen, for ei-
ther one of the standard techniques or the intermediate fusion
techniques, were varied in the search space as shown in Fig. 2.
The implementation difference lies in the selection of differ-
ent values for K per CV fold for the standard reduction tech-
niques, following a nested 5-fold CV within the training set,
whereas the same value for k was utilized (for computational
considerations) for all outer CV folds involving the intermedi-
ate reduction techniques. For the classifiers, the search space
for SVM RBF’s gamma (γ), L-2 regularization (ℓ2), and the
number of trees (tree) in AdaBoost can also be seen in Fig. 2.
All models were trained and tested in Python 3.7.4, with sup-
port from scikit-learn (Pedregosa et al., 2011) version 1.0.2,
CCA-Zoo(Chapman and Wang, 2021), and MMIDimReduc-
tion (Özdenizci and Erdoğmuş, 2021). The source code for this
work is open-source and available to the public. 1

1https://github.com/neu-spiral/Epileptogenesis.

K={2,3,
4,5,7,all}

k={1,2,
. . . ,10}

tree={10,50,100}

γ={0.01,0.1, 1
# f eatures }

ℓ2={0.01,0.1,1}

Other

AdaBoost
χ2

score

fscore

SVMPCA

Dimension
Reduction

ClassificationParameter
Search

Parameter Search

Fig. 2. Model pipeline showing the different dimension reduction tech-
niques and the classifiers, along with their parameter search spaces. The
Other block within dimension reduction contains our extension of an exist-
ing technique (Section 2.3), as well as our two proposed algorithms (Sec-
tions 2.6.6 and 2.6.7).

2.3. No Imputation: Extended Naive Bayes (NB-extend) Late
Fusion Model

In this section, we propose an extension to the conventional
Naive Bayes (NB) classifier (Murphy, 2012) within our graphi-
cal model framework to address missing modalities in the orig-
inal, incomplete dataset. As illustrated in Fig. 3, we postulate
that the resulting physical state of the subject is captured by the
different observed modalities (xd, xe, x f ), given the LPTS label
(y). The intent of multimodal fusion using the different modal-
ities is to maximize the likelihood of accurately identifying the
true LPTS label, based on the evidence gathered. In our NB-
extend approach, we consider the features from each modality
to be conditionally independent of one another, such that

p(xd, xe, x f |y) = p(xd |y)p(x f |y)p(xe|y). (1)

Under the conditional independence assumption, it is pos-
sible to integrate out the contribution of any missing modali-
ties, i.e., by marginalizing over all possible values of x j given
y, where j ∈ M and M = {d, e, f }. This formulation can be di-
rectly extended to the missing modality scenario. For instance,

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted March 18, 2024. ; https://doi.org/10.1101/2022.10.22.22281402doi: medRxiv preprint 

https://github.com/neu-spiral/Epileptogenesis
https://doi.org/10.1101/2022.10.22.22281402
http://creativecommons.org/licenses/by/4.0/


6 Md Navid Akbar et al. / (2024)

y

xd xe x f

Fig. 3. Graphical model depicting the hypothesized relation of the observed
modalities (shaded circles: xd , xe, x f ), with LPTS label as the latent state
(clear circle: y).

suppose xe is the missing modality, Eq. (1) becomes p(xd, x f |y)
which is equivalent of marginalizing over all possible values of
xe given y, leading to:

p(xd, x f |y) = p(xd |y)
( ∫

p(xe|y)dxe

)
p(x f |y) (2)

where
∫

p(xe|y)dxe = 1.
The maximum a-posteriori estimation of choosing the pre-

dicted label ŷ of a given subject is then taken to follow

ŷ = arg max
l∈{0,1}

p(xd, xe, x f |y = l)p(y = l)
p(xd, xe, x f )

, (3)

where l = 0 (no LPTS), l = 1 (LPTS), and

p(x j|y) =
p(y|x j)p(x j)

p(y)
∀ j ∈ M. (4)

Since p(x j) and p(xd, xe, x f ) are not functions of y, the opti-
mization objective in (3) is equivalent to

ŷ = arg max
l∈{0,1}

p(y = l)
∏
j∈M

p(y = l|x j)
p(y = l)

. (5)

In this work, output from each individual modality base learner
(elaborated in Section 2.4) was used to approximate p(y|xi), and
p(y = l) is estimated from the train set.

2.4. With Imputation: No Fusion Model

We developed M individual modality base learners, using the
data with imputation and without explicit fusion (disregarding
the cross-modality information lookup during imputation). The
imputed features from each j-th ( j ∈ M) modality were passed
through a standard reduction technique and then fitted to a clas-
sifier, as outlined earlier in Fig. 2.

2.5. With Imputation: Late Fusion Model

In this section, we will discuss the implementation of the late
fusion ensemble classification on the imputed data. We begin
by collecting the probabilities p(ŷ j) corresponding to the pre-
dictions

ŷ j = l ∀ l ∈ {0, 1}

from each j-th modality classifier (base learner), as introduced
in Section 2.4. We then summed these probabilities for l = 0
and l = 1, and utilized maximum likelihood to estimate

ŷ = arg max
ℓ∈{0,1}

∑
j∈M

p(ŷ j = l). (6)

This manner of probabilistic fusion (soft) takes into account
the confidence in the predictions of the individual base learn-
ers. This is in contrast to another comparable implementation,
where each learner directly estimates the output label, and the
fusion ultimately involves only majority voting (hard) among
the estimated labels (Wolpert, 1992).

2.6. With Imputation: Intermediate Fusion Models
In this section, we will discuss the implementations of several

existing intermediate fusion techniques, as well as propose two
novel techniques at the end.

2.6.1. Feature Union
In this approach, all D features from the three modalities

were concatenated to give Xtrain ∈ Rn×D. Subsequently, Xtrain
was passed through a standard reduction technique to extract K
features, and then fitted to a classifier.

2.6.2. Sequential Feature Selection (SFS)
For the selection of features from such high D dimensional

data, standard univariate feature selection techniques ignore the
mutual information among features. Multivariate feature selec-
tion techniques, however, consider a group of features in its
entirety. Unfortunately, searching for the globally optimal sub-
set with exhaustive search is O(2n), and can be computationally
intractable. As a result, it is common practice to resort to algo-
rithms striving to obtain a locally optimal, but perhaps globally
sub-optimal, feature set with a lower complexity (Dash and Liu,
1997). The wrapper method, a multivariate feature selection
technique, attempts to find a set of highly important features
by fitting a particular classifier on all features in a nested CV
within the train set (Erdogmus et al., 2007). Wrapper meth-
ods have been demonstrated to provide superior performance
(compared to filter methods in feature selection) in classifica-
tion tasks involving high-dimensional neuroimaging data with
limited samples (Jie et al., 2015).

In SFS, a multivariate wrapper technique, we greedily choose
features for classification, either by forward selection or by
backward elimination. For the first round in forward selection,
based on the score of the wrapper classifier, the most informa-
tive feature is added. In the case of backward selection, the
least informative feature is removed. Forward selection thus in-
volves a bottom-up search strategy, which begins with an empty
set, and during each iteration, a new feature is added to the cur-
rent set so the loss function is reduced (Kohavi and John, 1997).
On the contrary, backward elimination, follows a top-down ap-
proach, starting with the complete set D, features are removed
one at a time such that the reduction in performance is kept at a
minimum (Kohavi and John, 1997). Choosing either forward or
backward selection, we retain kSFS features. Selected features
are collected as ZSFS ∈ Rn×kSFS (kSFS ≤ D), and subsequently
fitted to a final classifier. SFS has an average complexity of
O(n2).

2.6.3. Stochastic Mutual Information Gradient (SMIG)
In this method, we aim to learn a feature transformation

network ϕ⋆ : Rn×D 7→ Rn×kSMIG such that the high n × D-
dimensional input feature space is mapped to a lower n ×
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kSMIG-dimensional transformed feature space (Özdenizci and
Erdoğmuş, 2021). This mapping is done while maximizing the
mutual information between the transformed set and the train
labels ytrain as

ϕ⋆ = arg max
ϕ∈Ω

{I(ZSMIG, ytrain)}, (7)

where I(·) is the information/ mutual information function,
ZSMIG contains the transformed training samples, andΩ denotes
the function space for possible feature mappings ϕ. The param-
eters of this ϕ⋆(·) network is updated iteratively by a technique
known as SMIG (Özdenizci and Erdoğmuş, 2021).

2.6.4. Canonical Correlation Analysis (CCA)
We hypothesized that by looking in the directions of the max-

imal correlations of the input modalities, we would be able to
extract information about their shared space, which might help
the classification task, since the y was assumed to be the under-
lying common latent state in Fig. 3. In CCA, two sets of vari-
ables are linearly combined to obtain canonical variates such
that the correlation between the linear combinations is max-
imized (Hotelling, 1992). This technique was thus utilized
to combine our input modalities in a three-fold combination:
(xd, xe); (xd, x f ); and (xe, x f ).

For mathematical formulation, let us assume the combination
(xd, x f ). If we can express two linear functions u = a⊤x f and
v = b⊤xd, and if the covariance (Hotelling, 1992)

Cov(xd, x f ) =
[
Σ11 Σ12
Σ21 Σ22

]
, (8)

it can be shown that their correlation is maximized when[
−λΣ11 Σ12
Σ21 −λΣ22

] [
a
b

]
= 0, (9)

where the eigenvalues λ ∈ {ρ1 ≥ . . . ≥ ρs+t} are in descending
order. The maximum correlation was obtained with λ = ρ1, and
it provided our first pair of variates u1 = a⊤1 x f and v1 = b⊤1 xd.
From the obtained D such pair of variates, we then selected
kCCA pairs to form ZCCA ∈ Rn×kCCA (kCCA ≤ D), and fitted ZCCA
to a final classifier.

2.6.5. Generalized Canonical Correlation Analysis (GCCA)
CCA can only linearly combine two sets of variables. GCCA,

however, can combine more than two variables (Tenenhaus and
Tenenhaus, 2011). In our case, GCCA combined (xd, xe, x f )
directly. GCCA attempts to solve the following optimization
problem

max
α1,...,αJ

J∑
j,q=1, j,k

c jqg
(
corr(α⊤j X j, α

⊤
q Xq)

)
s.t. Var(α⊤j X j) = 1, j = 1, . . . , J,

(10)

where corr(·) is the Pearson correlation function, g(·) is the
identity function, c jq = 1 represents the connections between
modality feature matrices {xd,Xe,X f }, and J=3.

Similar to CCA, we then selected kGCCA pairs of variates
from the total D pairs, to give ZGCCA ∈ Rn×kGCCA (kGCCA ≤ D),
and fitted ZGCCA to a final classifier.

Algorithm 1: RECC for a given selection algorithm
Input : Pearson correlation coefficient threshold ρthresh, column

components ZRECC ∈ Rn×k1 (sorted by decreasing order of
importance by the selection algorithm, k1 ≤ D)

Output: column components ZRECC ∈ Rn×k2 (k2 ≤ D)
1 Initialize j = k1, ZRECC
2 while j > 1 do
3 for i = 1 . . . ( j − 1) do
4 ρ← corr(ZRECC[:, i],ZRECC[:, j])
5 if ρ ≥ ρthresh then
6 ZRECC ← ZRECC - ZRECC[:, j]
7 end
8 end
9 Decrement j

10 end
11 return ZRECC

I(y; x1)

I(y; x2)

I(y; x1) ∩ I(y; x2)

I(y; x1, x2)

Fig. 4. Structure of multivariate information that two sample modalities x1
and x2 would likely provide about the LPTS label y.

2.6.6. Recursive Elimination of Correlated Components
(RECC)

Background: In CCA, each of the kCCA pairs of canonical
variates chosen is uncorrelated to each other, since the pairs
maintain orthogonality among themselves (Hotelling, 1992).
However, there is no such imposed constraint on some of the
other dimension reduction techniques like SFS or SMIG. As
such, there exists a possibility that the chosen set of k fea-
tures/projections (components) will likely contain a set of com-
ponents, which are highly correlated with each other. The in-
clusion of such components might negatively impact the classi-
fication performance (Kohavi and John, 1997).

Proposition: To limit the inclusion of redundant components,
we introduce a novel technique, RECC, designed to exclude
less critical but highly correlated components from our analy-
ses. As outlined in Algorithm 1, our approach initiates with a
set of components ZRECC ∈ Rn×k1 , arranged in descending order
of importance based on a predetermined selection algorithm.
Starting with the component of least importance, we compute
the Pearson correlation coefficient (ρ) of this component against
all other components of higher importance. If the computed co-
efficient reaches or surpasses a predefined threshold (≥ ρthresh),
we eliminate this component from ZRECC. We continue this
comparison, and elimination if applicable, until all components
in ZRECC have been analyzed. The remaining components in
ZRECC ∈ Rn×k2 are then fitted to the final classifier.

2.6.7. Information Decomposition and Selective Fusion (IDSF)
Background: Our earlier hypothesis in Section 2.6.4 was

that by utilizing information from the shared space among the
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Algorithm 2: IDSF for one decomposition algorithm
and one selection algorithm prepared by RECC

Input : Column components Zshared ∈ Rn×k1 (k1 ≤ D, decomposed
information shared by modalities obtained using
algorithm-1), column components Zunique ∈ Rn×k2 (k2 ≤ D,
decomposed information present uniquely within modalities
estimated by applying RECC on algorithm-2)

Output: fused components ZIDSF ∈ Rn×k3 , where k3 ≤ D
1 Initialize ZIDSF = Zshared
2 for j = 1 . . . k2 do
3 ZIDSF ← ZIDSF + Zunique[:, j]
4 end
5 return ZIDSF

modalities, we would hope to observe a better classification per-
formance, since the LPTS label y was also assumed to be a
shared latent state. However, the possibility exists that a con-
siderable fraction of the information, useful for classification, is
present uniquely in a space not shared by the individual modal-
ities (Williams and Beer, 2010). This is illustrated in Fig.4.
The total information provided by two sample modalities x1 and
x2 about y may be denoted by the mutual information measure
I(y; x1, x2). However, it is also important to understand how ex-
actly x1 and x2 contribute to this aggregate information. Three
primary scenarios may arise (Williams and Beer, 2010) when
examining the individual contributions of x1 and x2. Firstly, x1
and x2 may offer common shared information as

S hared(x1, x2) = I(y; x1) ∩ I(y; x2). (11)

where ∩ is the intersection operator. Secondly, x1 might offer
unique information, Unique(), not provided by x2, or vice versa.
An example of the former case is

Unique(x1) = I(y; x1) − S hared(x1, x2). (12)

Finally, the combination of x1 and x2 may provide synergistic
information that is not available from either alone, but only ob-
tained when both are considered together (e.g. an XOR gate for
binary inputs)

S ynergistic(x1, x2) =I(y; x1, x2) − S hared(x1, x2) (13)
− Unique(x1) − Unique(x2).

Proposition: The preceding discourse highlights the potential
benefits a classifier may accrue from an amalgamation of shared
and unique information derived from multiple modalities. We
chose not to delve into synergistic information, due to the inher-
ent complexities associated with its extraction. Building upon
this multivariate information structure, we lay the groundwork
for our proposed IDSF algorithm. This method aims to integrate
shared information, represented by ZShared (for instance, canon-
ical variates sourced from CCA), with the estimated unique in-
formation symbolized by ZUnique (such as components singled
out by RECC). This amalgamation results in ZIDSF, which is
subsequently fitted to the final classifier. A detailed depiction
of the IDSF technique is provided in Algorithm 2.

2.7. Evaluation Metrics
Model Performance: For evaluating models on the test parti-

tions in each CV fold, we use mean area under the receiver oper-
ating characteristic (ROC) curve (AUC) as the primary metric.

Hanley et. al. demonstrated AUC to be an effective measure
of accuracy, with a meaningful interpretation in medical diag-
nosis (Hanley and McNeil, 1982). We thus used AUC to rank
the models. Aside, AUC helps choose a desired operating point
(sensitivity, specificity) in the ROC curve, where

sensitivity =
T P

T P + FN
, and specificity =

T N
FP + T N

,

where T P, FN,T N, and FP are the true positive, false nega-
tive, true negative, and false positive, respectively. Two tech-
niques have been suggested in literature (Hajian-Tilaki, 2013)
to choose the best operating point (for equal weights to sensi-
tivity and specificity), including the highest

Youden index = sensitivity + specificity − 1, (14)

and the lowest Euclidean distance from the upper left corner
(0,1) of the ROC curve, as

dUL =

√
(1 − sensitivity)2 + (1 − specificity)2. (15)

As a secondary metric to assess model performance on this
slightly imbalanced dataset, but not to rank them, we used
weighted F1-score as given by

F1 =
2∑

i=1

mi

m
2 ∗ T P

2 ∗ T P + FP + FN
, (16)

where mi is the number of samples belonging to the i-th class,
in the current test fold.

Feature Contribution: For interpreting the top models, the
SHapley Additive exPlanations (SHAP) framework is used. In-
troduced by (Lundberg and Lee, 2017), it builds upon the con-
cept of Shapley values from cooperative game theory. By using
SHAP values, one can fairly distribute the contribution of each
feature to a prediction for a specific instance. These values en-
able a better understanding of the inner workings of complex
ML models, such as decision trees, SVMs, and even deep learn-
ing networks. Mathematically, the SHAP value ϕ j of feature j
is computed as the average marginal contribution of the feature
across all possible combinations of features:

ϕ j( f ) =
∑

S⊆F\{ j}

|S |!(|F| − |S | − 1)!
|F|!

[ f (S ∪ { j}) − f (S )], (17)

where F is the set of all features, S indicates all feature subsets
obtained from F that do not include feature j, and f is the ML
model. We use the kernel method of SHAP calculation (Lund-
berg and Lee, 2017).

3. Results
2

3.1. Model Performance
Imputation: Based on our preliminary classification results

with the four different imputation techniques, kNN imputation

2The code used to generate the results is made publicly available at https:
//github.com/neu-spiral/Epileptogenesis.
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Table 2. Performance of the different dimensionality reduction techniques, for different stages of fusion, with both original and imputed features.
Imputation Fusion Modalities Method Features/ Classifier AUC F1

Components
No Late xd, xe, x f−o NB-extend ( fscore) Varied A,A,A 0.710 0.645

Yes
(KNN,
sne = 1)

None
xd Base (χ2

score) Varied AdB 0.664 0.611
xe Base (PCA) Varied SVM 0.670 0.639

x f−o Base (PCA) Varied SVM 0.619 0.509
Late xd, xe, x f−o Soft Ensemble (Džeroski and Ženko, 2004) Varied A,A,S 0.756 0.616

Intermediate

xd, xe, x f−p Feature Union (Brown, 2009) All AdB 0.736 0.651
xd, x f−p CCA (Hotelling, 1992) 7 SVM 0.784 0.584

xd, xe, x f−n GCCA (Tenenhaus and Tenenhaus, 2011) 8 SVM 0.654 0.514
xd, xe, x f−o SFS (Jie et al., 2015) (fwd) 5 SVM 0.676 0.581
xd, xe, x f−o SMIG (Özdenizci and Erdoğmuş, 2021) (lin) 4 SVM 0.699 0.629
xd, xe, x f−o RECC-SFS (fwd) 5/Varied (ρ=0.5) SVM 0.710 0.603
xd, xe, x f−o RECC-SMIG (lin) 3/Varied (ρ=0.5) SVM 0.753 0.753

* lin=linear, fwd=forward, Varied=different number of features/components selected by grid search/ ρthresh in each CV fold,
A=AdB=AdaBoost, S=SVM.

outperformed the other three. For this reason, all subsequent
results in this section, wherever data was imputed, was done
using the kNN imputer, with sne = 1.

NB-extend: The comparison of the mean AUC and the mean
weighted F1 performances, on the test sets from all five CV
folds, for the different fusion techniques (except IDSF) are
summarized in Table 2. The first row shows the classifica-
tion performance of our extended NB-extend estimator with
late fusion, where the original input features (no imputation)
were used to fit individual modality base learners. NB-extend
(AUC=0.710) outperformed the individual modality base learn-
ers (AUC={0.664,0.670,0.619}), using imputed features with-
out any fusion, and which form the next three rows of Table 2.

Late Fusion: Of the techniques using imputed features and
fusion, we first list the performance of the soft late fusion
estimator. This probabilistic estimator also performed better
(AUC=0.756) than the individual modality base learners. It
even performed better than both the late fusion NB-extend esti-
mator (no imputation), and the intermediate fusion (union of all
modality features) classifier (AUC=0.736), in the subsequent
row of Table 2.

Intermediate Fusion: The last six rows of Table 2 correspond
to the dimension reduction techniques involving intermediate
fusion, as discussed earlier in Sections 2.6.4-2.6.6. Among
them, the first four rows presented existing techniques in litera-
ture, and the best performance (AUC=0.784) was achieved with
CCA. Even though GCCA took into account all three modali-
ties (xd, xe, x f−n), compared to CCA’s two (xd, x f−p), we noticed
it lagged in performance (AUC=0.654) substantially compared
to that of CCA. Of the two SFS implementations discussed
(forward and backward), forward selection performed better
(AUC=0.676), and was thus recorded. Similarly, between the
two implementations of SMIG (linear and non-linear), linear
performed better (AUC=0.699) and was recorded. Finally, the
last two rows in Table 2 demonstrated the improvement in
performances with our proposed RECC (AUC={0.710, 0.753}),
when applied on the original SFS and SMIG implementations,
respectively. The best F1 score (0.753) was obtained with
RECC-SMIG, indicating a potential choice for the best model,

Fig. 5. AUC performance of RECC-SFS and RECC-SMIG combinations
from the last two rows in Table 2, as a variation of the Pearson coefficient
threshold ρthresh, with SVM classifier and modalities xd , xe, x f−o.

if F1 score is more important in the model selection.
Proposed RECC: To obtain a better understanding of how the

choice of ρthresh affected the AUC performances of the RECC
combinations corresponding to the last two rows in Table 2, we
plotted AUC vs. ρthresh in Fig. 5. The standard implementa-
tions of SFS and SMIG corresponded to ρthresh = 1. As we
lowered ρthresh, we noticed the AUC performances go up until
they peaked at ρthresh = 0.5 for both RECC implementations,
and then started to go down. At ρthresh = 0.15, the performance
of RECC-SMIG almost returned to its SMIG baseline, whereas
that of RECC-SFS remained higher than its SFS baseline.

Proposed IDSF: In Table 3, we recorded the best AUC per-
formances for each combination of the two decomposition al-
gorithms (CCA and GCCA) with the two selection algorithms
(SFS and SMIG) prepared by RECC, using intermediate fusion
with IDSF. We found the best IDSF performance (AUC=0.792),
also the best among all tested models, was obtained with CCA
and RECC-SFS. Just as seen earlier with CCA and GCCA,
IDSF with CCA was superior to IDSF with GCCA. Interest-
ingly, while individually both SMIG and RECC-SMIG per-
formed considerably better than SFS and RECC-SFS earlier,
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Table 3. Performance of IDSF (with its inputs) in intermediate fusion with imputed features.
Modalities Shared Components Modalities Unique Components Classifier AUC F1

xd, x f−p CCA 7 xd, xe, x f−o RECC-SFS (fwd) 5 (Varied,ρ=0.5) SVM 0.792 0.619
xd, x f−p CCA 6 xd, xe, x f−o RECC-SMIG (lin) 1 (Varied,ρ=0.5) SVM 0.783 0.584
xd, x f−p GCCA 1 xd, xe, x f−o RECC-SFS (fwd) 5 (Varied,ρ=0.5) AdB 0.663 0.677
xd, x f−n GCCA 8 xd, xe, x f−o RECC-SMIG (lin) 4 (Varied,ρ=0.5) AdB 0.670 0.642

* lin=linear, fwd=forward, Varied=different number of components were selected by ρthresh in each CV fold, AdB=AdaBoost.

Fig. 6. ROC curve for the best performing model (solid black line) using
IDSF-CCA-RECC-SFS. The ROC plots for the classification performance
with SFS, RECC-SFS, and CCA are also shown: as purple, yellow, and
green dotted lines, respectively. The best operating point (as per highest
Youden index=0.68 and lowest dUL=0.23) is shown in a red circle. The
classifier is SVM and information from all three modalities is used.

their IDSF performances were closely matched. Aside, while
IDSF improved on the performances of the decomposition al-
gorithms on all occasions, it did not necessarily do so over that
of the selection algorithms (e.g. IDSF with GCCA and RECC-
SMIG). Finally, the best F1 score (0.677) for IDSF was ob-
tained with GCCA and RECC-SFS.

ROC Analysis: To examine the effect of the proposed algo-
rithms RECC and IDSF in terms of operating points, mean ROC
curves (from the 5-fold CV) are plotted in Fig. 6 for the best
model from Table 3, as well as for the individual techniques
that went into the best model from Table 2. The variation of
the best ROC curve (IDSF) is estimated by a binomial distri-
bution approximation, for a 95% level of confidence (Sourati
et al., 2015). We noticed that just like RECC-SFS improved
on standard SFS, IDSF (AUC=0.79) improved on the perfor-
mance over its two input techniques: CCA (AUC=0.78) and
RECC-SFS (AUC=0.71). It also obtained the best operating
point (0.01, 0.67: shown in a red circle), according to the high-
est Youden index (0.68) and the lowest dUL (0.23).

3.2. Feature Importance
Wilcoxon Rank-Sum Test: In a bid to evaluate if the most im-

pactful features from the classification tasks could also serve as

potential biomarkers, we compared the distribution of these fre-
quently selected features across the two LPTS groups. These
features, derived from the top-performing algorithm on each
dataset (both original and imputed), were aggregated from all
five cross-validation folds. Table 4 showcases this comparison
through a two-tailed non-parametric Wilcoxon rank-sum test.
The most frequent features from various modalities, along with
their Bonferroni corrected p-values (Dunn, 1961), are listed in
Table 4. Notably, both cluster 90 (right middle temporal gyrus)
in x f−o, chosen by NB-extend using original features, and SS–R
(sagittal stratum right) in xd, chosen by IDSF from imputed fea-
tures, achieved statistical significance at the 5% level (p<0.05).
However, post-adjustment for multiple comparisons through
the Bonferroni correction, none of the shortlisted features ex-
hibited significant differences between the two seizure groups.

SHAP Analysis: To delve deeper into the role of individ-
ual features in LPTS prediction, we employed the SHAP tool-
box (Lundberg and Lee, 2017), fitted with the Xtrain from each
fold to interpret the Xtest for the corresponding fold. The lead-
ing models without and with imputation are NB-extend and
IDSF (CCA-RECC-SFS), as earlier seen in Table 4. It is worth
noting that SHAP values cannot be computed for missing en-
tries in NB-extend, and IDSF only offers access to a limited
number of features per fold. To establish a middle ground
for easy comparison between these models, SHAP values were
computed on the imputed data (used by IDSF), utilizing the
AdaBoost classifier (same configuration as NB-extend). The
resultant SHAP values for all the five folds (the entire dataset
with xd, xe, x f−o) are depicted in Fig.7. The mean SHAP values
illustrated in Fig.7(a) represent the overall influence of individ-
ual features, whereas the swarm plot in Fig.7(b) demonstrates
the effects of the value of individual feature instances on pre-
dicting the binary LPTS labels. From Fig.7(a), it is observed
that ALIC-L (anterior limb of internal capsule left) from xd had
the most profound impact and was also previously identified
as a potential biomarker in Table 4. Fig.7(b) further reveals
that higher values of ALIC-L tended to predict no LPTS, while
lower values predicted LPTS. Cluster 90 from x f−o had the sec-
ond most significant effect on the seizure outcome prediction
task, as it previously possessed the smallest unadjusted p-value
among all tested features in Table4. Furthermore, Fig. 7(b) in-
dicates that higher values of cluster 90 suggest potential LPTS,
while lower values suggest otherwise.

3.3. Biomarker Visualization
Given the significant influence and clear implications of

ALIC-L on model prediction as depicted in Fig.7, we selected
this potential biomarker for visualization. Fig.8 portrays the
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Table 4. Comparison of selected features between the two LPTS groups using a two-tailed Wilcoxon rank-sum test.
Imputation Subjects Model Modality Potential Biomarker(s) Unadjusted Comparisons Corrected

p-value p-value

No
41 NB-extend xd ALIC-L,FX/ST-R,IFO-R >0.05 3 >0.05
32 NB-extend x f−o Clusters (37,48,57,66) >0.05 5 >0.05
32 NB-extend x f−o Cluster 90 0.025 5 0.125

Yes
48 IDSF (CCA-RECC-SFS) xd SS-R 0.047 2 0.094
48 IDSF (CCA-RECC-SFS) x f−o Cluster 48 >0.05 2 >0.05

* The p-values were first calculated for the two seizure groups for each feature at a 5% level of significance (p<0.05), and subsequently
adjusted using Bonferroni correction.
Regions (xd): ALIC-L = anterior limb of internal capsule left, FX/ST-R = fornix/stria terminalis right, IFO-R = inferior fronto-occipital
fasciculus right, and SS-R = sagittal stratum (including inferior longitudinal fasciculus and inferior fronto-occipital fasciculus) right.
Clusters (x f−o): 37 = left middle cingulate and paracingulate gyri, 48 = right calcarine fissure and surrounding cortex, 57 = left inferior
occipital gyrus, 66 = right inferior parietal gyrus (excluding supramarginal), and 90 = right middle temporal gyrus.

(a) Bar plot. (b) Swarm plot.

Fig. 7. SHAP values of feature importance on the imputed data, using AdaBoost on the test sets (Xtest) from all five folds. The mean SHAP values in
(a) represent the overall absolute impact of individual features, whereas (b) demonstrate the effects of the value of individual feature instances on the
predictive power of the model. In (b), -0.5 imply the strongest possible impact of a feature for a prediction of no LPTS, whereas +0.5 imply the strongest
possible impact for a prediction of LPTS, with 0 representing the baseline (no impact).
New regions (xd): CGH-L = cingulum (hippocampus) left, RLIC = retrolenticular part of the internal capsule, and SS-R (sagittal stratum right).
New clusters (x f−o): 4 = Superior frontal gyrus right, 28 = anterior orbital gyrus right, 33 = insula left, and 42 = hippocampus.

dMRI FA maps of two subjects within the MNI space: Subject
32 exhibits one of the highest values of ALIC-L (0.64, indicat-
ing no LPTS), while Subject 4 shows one of the lowest (0.41,
indicating LPTS). White contours delineate the boundaries of
ALIC-L, and yellowish-green contours indicate the lesion loca-
tions. High values of ALIC-L, corresponding to a brighter tract
and signifying robust white matter connectivity in Subject 32,
suggest the absence of LPTS. Conversely, low values of ALIC-
L, corresponding to a darker tract and signifying compromised
white matter connectivity in Subject 4, denote LPTS. Interest-
ingly, even though the traumatic lesion is closer to ALIC-L in
Subject 32 compared to Subject 4, this proximity does not seem
to affect the value/ brightness of ALIC-L, hence, not impacting
its connectivity.

4. Discussion

4.1. Clinical Diagnosis

In Figure 6, we note superior AUC performance from our
proposed IDSF algorithm, albeit the marginal improvement
over CCA (with an AUC of 0.79 compared to 0.78). However,
the operating points of the two curves vary substantially, as de-
picted in Figure 6. The choice of the optimal operating point of-
ten relies on clinical decision-making factors. These can range
from the importance of correctly diagnosing LPTS (prioritiz-
ing sensitivity), correctly identifying no LPTS cases (prioritiz-
ing specificity), or maintaining an equivalent cost-benefit ratio
for accurate and erroneous diagnoses (equating sensitivity and
specificity) (Hajian-Tilaki, 2013).

In scenarios where the latter two cases hold greater signifi-
cance, the IDSF could be considered the superior model, given
its operational point demonstrated in the red circle in Figure 6.
This point corresponds to the highest Youden index and the
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Fig. 8. dMRI FA maps of two subjects in the MNI space: subject 32 had one of the highest values of ALIC-L (0.64, no LPTS), whereas subject 4 had
one of the lowest (0.41, LPTS positive). White contours indicate the perimeters of ALIC-L, whereas yellowish-green contours indicate the perimeters of
the lesion locations. The radiological directions are indicated as: P=posterior, A=anterior, S=superior, I=inferior, L=left, and R=right. The color map
corresponding to all the images is shown on the right.

minimal dUL, indicating the optimal balance between sensitiv-
ity and specificity. Nevertheless, determining the optimal model
may necessitate a more nuanced evaluation if the cost of false-
negative diagnoses is higher.

4.2. Biomarker Investigation
Identifying potential biomarkers through multiple data-

driven analyses has its inherent challenges. Notably, there is
a risk of overstated performance results due to inappropriate
evaluation frameworks (Barla et al., 2008), and a lack of ro-
bustness in identified biomarkers (Feng et al., 2004). Common
approaches to tackle such concerns include employing the AUC
for evaluation, implementing cross-validation, and using differ-
ent sets of subjects (e.g., subjects from multiple centers) (Mc-
Dermott et al., 2013): all of which we have adopted in this
work.

From our experiments, dMRI alterations in ALIC-L (ante-
rior limb of internal capsule left) had the most profound effect
on the classification task in Fig. 7(a), and was also earlier cap-
tured in Table 4 as one of the most frequently selected features.
Lower values of ALIC-L, indicative of a darker tract and com-
promised white matter connectivity, were associated with LPTS
(e.g. subject 04 in Fig. 8). Abnormalities of dMRI in ALIC-R
(ALIC right) have been documented earlier in subjects suffer-
ing from LPTS (Akbar et al., 2021), and that in ALIC (both
left and right) in temporal lobe epilepsy (TLE) (Meng et al.,
2010). ALIC, or more precisely ALIC left, is thus our strongest
candidate for a potential biomarker. Aside, fMRI alterations
in cluster 90 (right middle temporal gyrus) had the second most

profound effect on the classification task in Fig. 7(a), while hav-
ing the smallest unadjusted p-value in Table 4. The right tem-
poral lobe (containing the superior, middle, and inferior tem-
poral gyrus) has been previously reported as a brain biomarker
for early PTS (EPTS) and LPTS, following shape analysis with
structural MRI (Lutkenhoff et al., 2020) and EEG and structural
MRI (Irimia et al., 2017).

Interestingly, alterations in other regions, previously associ-
ated with seizure-related abnormalities, were also observed in
our study, as captured in Table 4 and Fig. 7(a). For example:
SS (sagittal stratum) from EEG and structural MRI has been
associated with PTS (Irimia et al., 2017; Sharma et al., 2021);
FX/ST (fornix/stria terminalis) from dMRI has been associated
with LPTS in humans (Akbar et al., 2021) and rats (Bao et al.,
2011); and CGH (cingulum hippocampus) from dMRI has been
associated with LPTS (Akbar et al., 2020) and TLE (Owen
et al., 2021).

Our findings align with several previous studies that reported
altered functional and structural connectivity in subjects with
epilepsy. A direct comparison, however, is not feasible due to
two key factors (La Rocca et al., 2023). First, ours is the first
multimodal study investigating potential biomarkers in patients
with seizures after TBI. Second, while most prior literature has
explored biomarkers by comparing subjects with epilepsy and
normal controls, our study focuses exclusively on a cohort of
TBI patients who have or have not developed LPTS. Further-
more, our study not only consolidated and validated previous
findings derived from unimodal analysis or non-TBI subjects
but also advanced the field by offering additional contributions.
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Specifically, our work exhibited the following:
i) Greater number of samples: Our study encompassed a sub-
stantially larger cohort of subjects than previous investigations,
with 48 subjects in our analysis. This sample size surpassed
the participant numbers in aforementioned TBI studies, such
as 39 subjects in (Sharma et al., 2021), 33 subjects in (Irimia
et al., 2017), 25 rats in (Bao et al., 2011), 22 subjects in (Akbar
et al., 2021), and 16 subjects in (Meng et al., 2010). Notably,
our dataset only fell short in size when compared to a non-TBI
study involving 94 subjects (Owen et al., 2021).
ii) Refined localization and modalities: Our research identified
more precise brain regions and modalities that warrant investi-
gation. For instance, we established a correlation between the
potential association of LPTS with greater values (lesion vol-
ume overlap) of cluster 90 in fMRI.
iii) Quantifiable impact: Leveraging an interpretable ML fea-
ture analysis, we quantified the influence of specific features on
model predictions. For example, our findings revealed that the
CGH-L exhibited a mean normalized impact of 0.055 on model
prediction, underscoring its importance in predicting LPTS.
By encompassing a larger cohort, identifying specific brain re-
gions and modalities, and quantifying the impact of features
through interpretable ML analysis, our work contributes to a
more comprehensive understanding of potential biomarkers in
the context of LPTS.

4.3. Limitations

Our study, while pioneering in its approach, acknowledges
certain constraints. Given the longitudinal nature of our study,
our analysis is limited to the currently available subjects who
have completed the necessary two-year follow-up (Temkin,
2009). As EpiBioS4Rx is projected to enroll a total of 300
subjects upon completion, we anticipate a substantial increase
in our sample size. This enhanced dataset will permit ro-
bust testing of our proposed methods and provide the oppor-
tunity to investigate other cutting-edge techniques, such as Em-
braceNet (Choi and Lee, 2019). Despite its potential for mul-
timodal classification in cases of missing data, EmbraceNet re-
quires a larger sample size to effectively train its deep network,
which houses significantly more parameters than the methods
outlined in our current work. Furthermore, we acknowledge
that the potential heterogeneity in the distribution of acquired
data from the different participating centers has not been thor-
oughly investigated in this study. Addressing this aspect will be
a focus of our future work.

Further, the impact of data imputation on the distribution of
the original features remains an unexplored facet in this study,
and will be addressed in future work. Although our proposed
IDSF algorithm (utilizing imputed features) showcased supe-
rior AUC performance, NB-extend (without imputation) proved
more valuable in identifying potential biomarkers. To balance
these divergent outcomes, we calculated SHAP values for a hy-
brid model configuration, which incorporates attributes from
both NB-extend and IDSF, though it does not fully embody ei-
ther.

With regard to potential biomarkers, it is plausible that other
candidates exist that have not been identified in this study.

These may have been overlooked either due to a lack of sig-
nificant group-level differences or due to their non-dominant
role in our SHAP analysis, possibly owing to the variations in
individual anatomical features (Singh et al., 2021).

5. Conclusions

In this study, we meticulously collected multicenter data of
TBI subjects and embarked upon the challenging task of binary
late seizure classification, leveraging key modalities (fMRI,
dMRI, EEG). We proactively addressed the issue of missing
data by formulating the NB-extend classifier (aligned with our
hypothesized graphical model), and implementing widely rec-
ognized imputation techniques. These approaches enabled the
utilization of established dimensionality reduction techniques
and machine learning classifiers.

In terms of AUC performance, while the NB-extend esti-
mator outperformed imputation-based individual modality base
learners, our proposed IDSF algorithm excelled within our ex-
perimental framework. IDSF was designed to capture both
shared and unique information embedded within multiple input
modalities. To ascertain the unique information in each modal-
ity, we introduced RECC, another novel technique that filters
out selected information based on its correlation.

Lastly, through rigorous statistical and SHAP analyses of the
most frequently selected features, we found evidence support-
ing dMRI abnormalities in the left anterior limb of the internal
capsule and fMRI alterations in the right middle temporal gyrus
as potential biomarkers of LPTS. These findings may ultimately
facilitate the early diagnosis and prevention of PTE, profoundly
transforming patient prognosis.
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