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Abstract
Increasingly efficient methods for inferring the ancestral origin of genome regions are needed to gain
new insights into genetic function and history as biobanks grow in scale. Here we describe two near-
linear time algorithms to learn ancestry harnessing the strengths of a Positional Burrows-Wheeler
Transform (PBWT). SparsePainter is a faster, sparse replacement of previous model-based ‘chromo-
some painting’ algorithms to identify recently shared haplotypes, whilst PBWTpaint uses further ap-
proximations to obtain lightning-fast estimation optimized for genome-wide relatedness estimation.
The computational efficiency gains of these tools for fine-scale local ancestry inference offer the pos-
sibility to analyse large-scale genomic datasets in completely novel ways. Application to the UK
Biobank shows that haplotypes better represent ancestries than principal components, whilst linkage-
disequilibrium of ancestry identifies signals of recent changes to population-specific selection for many
genomic regions associated with immune responses, suggesting new avenues for understanding the
pathogen-immune system interplay on a historical timescale.

Introduction

Modern human populations are complex mixtures between ancient contributing source groups1. Ge-
netic admixture is the process of mixing groups that were genetically distinct due to genetic drift,
which can create new distinct populations2,3. The process is ubiquitous and spans scale in space and
time, from the admixture with Neanderthals around 50,000 years ago when modern humans migrated
out of Africa4, to native Americans mixing with primarily European and African immigrants over the
last 500 years to form the majority of United States ancestry5, and the fine-scale geographical regional-
isation within a single country such as the UK6. The identification of chromosomal regions originating
from a specific population is known as local ancestry inference (LAI)7, which can be used to map
disease loci8, investigate the relationships between modern populations, improve association studies9,
and study demographic histories10.
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Genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs)
associated with human complex traits and diseases11, but the SNP frequencies are likely to be associ-
ated with particular ancestries. Local ancestry may then either be viewed as a confounder of the SNP
effect9, or treated as a predictor as in ‘Ancestral GWAS’12. In this framing, local ancestry inference
examines the ancestral origin of risk loci in terms of a population and a time — for instance, risk alleles
associated with multiple sclerosis originated from pastoralists dwelling on the Pontic Steppe, which
were brought into Europe by the Yamnaya-related migration around 5,000 years ago12. Other examples
include the relationship between platelet count in Hispanics and an Amerindian-origin variant of the
ACTN1 gene13, a link between quantitative red blood cell traits and African- and Amerindian-origin
loci in the HBA1/2 gene14, and kidney disease in African-origin variants of the APOL1 gene15.

It is hard to perform LAI accurately and efficiently. Various LAI software have been developed
since the 21st century, and the majority16 are based on the Li and Stephens hidden Markov model
(HMM)17, including HAPMIX7, ChromoPainter18, LAMP-LD19, MOSAIC3 and FLARE20. HAP-
MIX pioneered this application but is limited to modelling two ancestries. In comparison, Chro-
moPainter enables the accurate analysis of admixtures from multiple groups but is slow. LAMP-LD is
faster but can be unstable16. The distinctive feature of MOSAIC is that the knowledge of the intricate
connections between reference haplotypes and ancestral mixing groups is not required3. Recently,
through the on-the-fly compression of reference panels, saved checkpoints and composite reference
haplotypes, FLARE greatly improves the computational performance compared with the previous LAI
software20. Other approaches for local ancestry inference are also possible, among which PCAdmix,
a Principal Components-based algorithm21, and RFMix22, which employs a discriminative modelling
strategy, are popularly used.

Our technical contribution is providing two algorithms that fulfil different use cases. Both are
significantly faster than anything previously reported, especially for identifying fine-scale population
structure. The most rapid is orders of magnitude faster, opening the application to hundreds of thou-
sands or even millions of samples as presented by the most challenging modern biobanks and associa-
tion studies. These approaches avoid storing the entire genotype information in memory, instead using
the Positional Burrows-Wheeler Transform (PBWT)23,24 to extract only a sparse set of the longest hap-
lotype matches to the reference panel at each position. In PBWTpaint, only the longest set-maximal
matches are retained, which we will show is sufficient for genome-wide ancestry. In SparsePainter, we
extract a richer set of haplotypes on which we show that a sparse implementation of the Li and Stephens
HMM model17 can be run with a negligible accuracy cost by using a Hash Map data structure25.

Having access to local ancestry information at scale presents novel opportunities for identifying ge-
nomic features that are of biological significance. Within SparsePainter we are able to efficiently com-
pute Linkage Disequilibrium of Ancestry (LDA), LDA score (LDAS) and Ancestry Anomaly Score
(AAS)12 at scale, which are recently proposed summary statistics of local ancestry that are predicted
under recent population-specific selection. LDA is the correlation of ancestries between SNP pairs,
which measures whether recombination events between ancestries are more frequent than those within
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ancestries. LDAS calculates the total LDA of each SNP on the chromosome weighted by genetic
distance. A lower LDAS indicates the haplotype inherited from the reference population is shorter
than expected. We identify two mechanisms that generate low LDAS and both involve a change in
selection between the pre-existing and admixed population. The first involves selection on a nearby
locus, leading to balancing selection at the level of haplotypes. The second is against a locus that was
high frequency in at least one contributing population. AAS is the degree of difference between the
estimated average ancestry probabilities and the genome-wide average, which detects signals of recent
selection for loci experiencing changes in ancestry frequencies.

We benchmarked SparsePainter against ChromoPainter and FLARE, which demonstrates that Sparse-
Painter is faster both empirically and in scaling, particularly at fine scale, i.e. as the number of reference
populations grows. Even more astonishingly, PBWTpaint is faster than all methods by orders of mag-
nitude in identifying genome-wide haplotype structure within a single dataset, which is its specific
capability.

In exploring population structure within the UK Biobank (UKB) with PBWTpaint, we construct
haplotype principal components (HCs) which we compare to the widely-used SNP-based principal
components (PCs). HCs are better associated with birthplace and seem to capture more nuanced ge-
netic variation than PCs, revealing distinct ancestral patterns among ethnic backgrounds and significant
regional distinctions within the UK and Ireland, suggesting potential for more refined population strat-
ification in genetic studies. Using 1000 Genomes Project (1000GP) Data26 as reference, we can apply
the LDAS and AAS statistics to identify genes that show signals of recent changes to population-
specific selection. This approach, applied genome-wide, identifies a number of genes that are almost
entirely immune-related, pointing to population-specific immune response as a central driver of selec-
tion acting on historical timescales.

Results

Method Overview
There are two main approaches to ancestry inference. The first is unsupervised learning, which ad-
dresses the goal of learning fine-scale population structure. Examples include clustering18, unsuper-
vised admixture models27,1, or dimensionality reduction such as Principal Component Analysis (PCA)
based on either genotype28,29 or haplotype data18. Here, the data are not typically curated and we
aim to form the largest dataset possible for the analysis. The second approach is supervised learning,
in which target individuals are compared to carefully curated reference populations, and recently ad-
mixed individuals (which are the majority of individuals) are not directly used. The goal of supervised
learning divides into ancestry estimation which can be used analogously to unsupervised genome-wide
ancestry profiles30, or local ancestry estimation in which the ancestry of particular sections of DNA is
inferred.

These goals are met by two tools that facilitate a completely new scale of haplotype-based ancestry
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Fig. 1: An overview of the functionalities of SparsePainter and PBWTpaint. PBWTpaint performs
all-vs-all painting, for use in fine-scale structure estimation via unsupervised learning approaches, such
as clustering (plot from Lawson et al. (2012)18 and PCA. Under supervised learning, SparsePainter
performs reference-vs-reference painting for admixture estimation and target-vs-reference painting for
local ancestry inference, such as LDAS and AAS (plots at right from Barrie et al. (2024)12).

analysis, as described in Fig. 1. The first of these is PBWTpaint, a direct extension of the PBWT23

which rapidly identifies long matches. This uses two innovations to achieve extreme computational
performance for unsupervised learning of a single dataset, comparing each individual to every other
in all-vs-all painting. First, PBWTpaint only considers a very limited subset of possible matches
representing the maximally shared haplotypes at any locus (called set-maximal). Further, the copying
model, which via the HMM allows copying from any sample, is replaced with an approximation that
only considers overlapping set-maximal matches. These approximations make for an approximately
linear-time cost and mega-scale analyses are straightforward. Larger datasets uncover longer, more
recent matches, and any inaccuracies due to modelling approximations average out over the whole
genome for genome-wide analyses.

The second tool is SparsePainter, which is designed to perform accurate local ancestry inference
efficiently. Whilst SparsePainter can perform all-vs-all painting, it is optimised for either painting a
reference panel against itself (reference-vs-reference painting), or painting target individuals using a
reference panel (target-vs-reference painting). Individuals from the reference and target datasets are
exchangeable (see Methods): informally this makes downstream analysis unbiased by whether sam-
ples were in the reference. There are two primary outputs of SparsePainter. The first is local ancestry
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estimates, which are the probabilities that a haplotype at a particular chromosomal location is inherited
from each ancestral individual or population. The second is the expected fraction of the total genome
shared most recently between a target and each reference ancestral individual or population. Sparse-
Painter can efficiently compute the selection statistics LDA, LDAS and AAS.

PBWTpaint
Storing the genotype information of all the samples in memory is a problem for large datasets. The
Positional Burrows-Wheeler Transform (PBWT)23 is a data structure to transform a binary matrix Xik

(with 2N haplotypes and K SNPs) into a sequence of run-length compressed arrays per SNP, in each
of which the haplotype values at the SNP are sorted according to the reversed haplotype prefixes pre-
ceding the SNP. From a PBWT, long matches can be efficiently extracted using the ReportMatches
algorithm, and set-maximal matches with the ReportSetMaximalMatches algorithm, in O(NK) oper-
ations for all haplotypes at the same time. Our models are built on these matches.

For each target individual i, PBWTpaint iterates through the M(k) matches at a locus k (which
are typically very sparse, and sparse by construction for set-maximal matches). For each matched
reference haplotype j we extract the start sjk and end ejk positions of the maximal exact match to j

covering k, i.e. sjk is the location just after the first upstream mismatch, and ejk is the location just
before the first downstream mismatch. From these, we compute a weight wjk = (k − sjk)(ejk − k),
i.e. the weight increases linearly with distance from each end of the match, and quadratically with the
total length of the match for positions at the midpoint of the match. This is normalised over matches
j to give a local ancestry probability pjk = wjk/

∑2N
l=1wlk, which is summed over loci k to produce

a genome-wide ancestry estimate pj . We also provide estimates of the total number of recombination
events, as well as regional bootstraps, to enable clustering with FineSTRUCTURE18.

From PBWT to an accurate Sparse Data Matrix
For local ancestry inference, the longest haplotype matches at the target locus are the most important,
since short matches appear within any ancestry due to statistical noise and incomplete lineage sorting,
i.e. ancient structure shared across ancestries rather than recent genealogical relationships. As such,
short matches provide little useful information for tracing local ancestry.

Whilst the original PBWT algorithm finds long matches only within the same database, it has been
extended to report long matches between different haplotype sets24. For accurate and efficient local an-
cestry inference we detect all matches longer than some threshold L, but there may be no genome-wide
‘correct’ L. Some target haplotypes will only have short matches if they diverged a long time ago, and
few or even no matches are longer than L. Other target haplotypes will share extremely long segments
of DNA with many reference haplotypes leading to many matches being retained, the shorter of which
(also longer than L) are not helpful for inferring ancestry. To address this barrier, we revisited the ‘long
match query’ algorithm of PBWT and proposed the Algorithm ‘ReportLongestMatches’ which aims
to find at least Q longest matches at each position for a target sample i (Methods). With this algorithm,
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we maintain a particular sparsity level at each location while also preserving the longest matches to
guarantee accuracy.

Using Hash Map to perform HMM Forward-Backward Algorithm in sparse form
SparsePainter stores haplotype matches in a Hash Map data structure that implements an associative
array abstract data type for efficient key-value storage and retrieval25, facilitating O(1) storage and
lookup of values (here painting probabilities) based on unique identifiers or keys (here haplotype in-
dices). We then employ a sparse approximation to Li and Stephen’s hidden Markov model (HMM)
by vectorising the forward and backward probabilities and assuming a vanishing mutation rate (Meth-
ods). The forward and backward computation is only required within the Q longest matches to the
target haplotype at each locus, allowing efficient computation of the local ancestry probabilities and
the expected genome shared. Compared with computing and storing the probabilities at all N haplo-
types, our approach reduces both memory usage and compute time from O(N) to O(Q).

Simulation overview
We used SLiM 3.7.131 to simulate genetic data on 100 megabases throughout 3000 generations, aim-
ing to compare the accuracy, speed and memory utilization of SparsePainter, ChromoPainter, FLARE
and PBWTpaint in terms of local ancestry and genome-wide estimates. These comparisons are suffi-
cient because Browning et al. (2023)20 demonstrated through simulation that for the specific task of
supervised local ancestry inference FLARE matches MOSAIC in terms of accuracy and surpasses it in
computational efficiency, and outperforms RFMix both in speed and accuracy. In our study, we used
four distinct simulation models (see Methods for details):

• Simulation 1: A hierarchical model designed to assess the speed, memory usage, and accuracy of
PBWTpaint, SparsePainter, and ChromoPainter for within reference (supervised or unsupervised)
painting;

• Simulation 2a: An evolutionary process that generates from 2 to 100 different local ancestries, to
investigate the scaling of SparsePainter and ChromoPainter in target-vs-reference painting;

• Simulation 2b: A less-separated version of Simulation 2 with limited populations, to assess the
accuracy of target-vs-reference painting for SparsePainter, ChromoPainter, and FLARE;

• Simulation 2c: A larger-scale version of Simulation 2b to investigate how SparsePainter balances
accuracy against speed and memory utilization in target-vs-reference painting.

Within-sample performance comparison
We first compared the efficiency of PBWTpaint (using all-vs-all painting) and SparsePainter and Chro-
moPainter (using reference-vs-reference painting) under Simulation 1. FLARE is excluded as it can
neither perform within-sample, nor genome-wide, comparisons. Performance is measured using the
recovery rate of an individual’s own population ancestry fraction using squared Pearson’s correlation
coefficient (denoted as r2) with the truth (Methods).
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Fig. 2: Speed and memory comparison between software. a-b, Speed and memory of admixture
estimates for reference-vs-reference painting between software with 5 or 10 local ancestries and dif-
ferent reference sizes with 5000 SNPs (Simulation 1). c-d, Speed and memory of painting 100 target
individuals between software with different numbers of local ancestries and reference sizes with 2100
SNPs (Simulation 2a).

Fig. 2a-b illustrates that both in theory and practice, ChromoPainter has a quadratic cost as a func-
tion of panel size, so scales poorly to larger reference sizes. SparsePainter is close to linear in both
speed and memory efficiency regardless of reference sizes. Whilst PBWTpaint also scales linearly, it
is orders of magnitude faster, and only introduces a minor trade-off in terms of accuracy (Fig. 3a).
Notably, PBWTpaint only retains accuracy for genome-wide estimation, as its simple model with set-
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Fig. 3: Accuracy of software and the trade-off between accuracy and computational cost in
SparsePainter. a, Self-recovery rate for reference-vs-reference painting with 5000 SNPs (Simulation
1). b, Accuracy of local ancestry estimates with 3600 SNPs and 50 target individuals sampled 13
generations after admixture (Simulation 2b). c-d: compute time and memory usage of SparsePainter
for painting with different sparsity and reference sizes under a 5-way admixture model (Simulation
2c).

maximal matches isn’t suitable for estimating local ancestries (Methods).

Target-vs-reference speed and memory comparison for LAI
As PBWTpaint neither can paint target samples against different reference panels, nor perform local
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ancestry estimates, we restricted our speed and memory comparison to SparsePainter, ChromoPainter
and FLARE with Simulation 2a. As all those software are based on the Li and Stephen’s hidden
Markov model, their computational costs for genome-wide and local ancestry estimates are expected
to be similar.

The speed and memory of SparsePainter and ChromoPainter remain largely unaffected by the num-
ber of true local ancestries. Conversely, whilst FLARE demonstrates impressive speed and efficient
memory usage with few local ancestries (npop ≤ 5), its efficiency dramatically diminishes compared
to SparsePainter when handling 20 or more local ancestries (Fig. 2c-d and Extended Data Fig. 2).
Impressively, when painting with 100 local ancestries, SparsePainter is at least 100 times faster and 10
times more memory-efficient than FLARE.

A recent study30 decomposed the UK Biobank into 129 distinct fine-scale reference ancestries. We
replicated their analysis with the 4334 reference individuals from non-restricted data sources (i.e. all
except POPRES) spanning 129 populations. For 1000 target individuals on chromosome 21 which
comprises 9522 SNPs, SparsePainter is dramatically faster and requires minimal memory (6 minutes
and 1.5GB) compared with ChromoPainter (272 minutes and 10.2GB) and FLARE (338 minutes and
14.2GB).

Target-vs-reference accuracy comparison for LAI and admixture estimation
While SparsePainter has demonstrated superior speed and memory than FLARE and ChromoPainter, it
is crucial to maintain accuracy. In Simulation 2b we examined the accuracy of local ancestry estimated
by both the squared Pearson’s correlation coefficient and the proportion of accurate local ancestry
predictions (Methods). Across all software, the accuracy of local ancestry estimation consistently
improves with increased reference sizes, irrespective of the admixture models with varying population
counts (Fig. 3b and Supplementary Fig. 2).

In typical scenarios with smaller reference sizes (100 samples per local ancestry), FLARE exhibits
marginally superior predictive performance, a trend that reverses (with these parameters) when there
are over 1000 individuals per local ancestry. As anticipated, SparsePainter displays a negligible accu-
racy drop compared to ChromoPainter, given that SparsePainter is essentially a sparse implementation
of ChromoPainter. Moreover, our results show a significant enhancement in accuracy when target in-
dividuals are sampled shortly post-admixture (after 3 generations, compared with 13) (Extended Data
Fig. 1). Conversely, a reduction in SNPs correlates to diminished accuracy across all software, as seen
in Supplementary Fig. 1.

Sparsity in SparsePainter
To investigate SparsePainter’s tradeoff between sparsity and accuracy, we varied the reference size of
a 5-way admixture model (Simulation 2c). Fig. 3c-d shows that a larger reference size substantially
boosts accuracy, whilst increments in the number of matches only marginally elevate it, and larger
reference samples dilute the accuracy’s sensitivity to sparsity. Conversely, computational time and
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Fig. 4: Comparison between UK Biobank PCs and HCs and the decomposition of HCs. a,
the coefficient of determination for predicting the first 16 UKB PCs (y-axis) using the first 150 HCs
(x-axis) with linear regression models (n=406,733 individuals), which shows strong correlations. b,
the coefficient of determination for predicting the first 16 UKB HCs (y-axis) using the first 150 PCs
(x-axis) with linear regression models (n=406,733 individuals), which shows strong correlations on
only 12 of the first 16 HCs. c, Visualisation of the average of the 5th, 8th and 11th HC stratified by
birthplaces within the UK and Ireland (n=347,532 individuals), corresponding to the red, green, and
blue channels, respectively, in the composite plot (left), and the right plot shows the decomposition of
each HC. We have also shown the median prediction error range of the birthplace of HCs (white circle,
radius 39.7km) and PCs (yellow circle, radius 77.5km) of an east Wales location (red point).

memory demands surge considerably as match density escalates. This indicates that if large reference
datasets are available, opting for a constant number of matches (so diminished match proportion) yields
significant computational savings, at a negligible compromise in accuracy.

Haplotype Principal Components Analysis for the UK Biobank
The UK Biobank (UKB)’s principal components (PCs) are widely used for correctly inferring the pop-
ulation structure. We inferred the (sparse) genome-wide pairwise coancestry of N = 406, 733 UK
Biobank individuals via PBWTpaint from L = 569, 242 SNPs, taking 41 CPU hours (which is paral-
lizable and scales as O(NL)). We summarised these ancestries into the top 150 haplotype components
(HCs) (Methods), and compared their informativeness with PCs in several ways. First, we can accu-
rately predict the first 16 PCs with the first 150 HCs using linear regression models (Fig. 4a), especially
for the first 9 PCs which have a coefficient of determination (R2) exceeding 80%. Conversely, when
using the first 150 PCs to predict the first 16 HCs, some of the HCs are poorly explained (Fig. 4b).
This observation indicates that HCs might encapsulate additional ancestry information beyond that
conveyed by PCs.

To investigate consistency across chromosomes, we split the SNPs from the odd and even chromo-
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somes and then computed the top 150 PCs and HCs from the even chromosome set. Subsequently, we
used 150 HCs/PCs from one set to predict each of the top 50 HCs/PCs from the other set. HCs are well
explained with R2 > 90% for the majority of them (Extended Data Fig. 5), indicating HCs capture
ancestry information that is shared in all the chromosomes. By contrast, few PCs can be predicted
from different chromosome sets, which corresponds to the previous finding that all PCs except the top
few of them are related to specific genetic regions32.

HCs are associated with self-reported ethnicity (Extended Data Fig. 3): the 2nd and 3rd HCs ef-
fectively differentiate within white and black backgrounds, respectively, whereas the 4th and 6th HCs
reflect variations associated with South Asian ancestry. HCs are also associated with geography: fil-
tering to the 347,532 individuals with white, British or Irish ethnicity born in the UK or Ireland, we
plotted the average HC for 23 UK regions (Extended Data Fig. 4). The 5th HC represents the variation
between Scotland, Irish, and the rest of the UK, while the 11th HC differentiates Ireland and Wales
from the other regions. By mapping the 5th, 8th, and 11th HCs onto the geography of the UK and
Ireland, we created a colour-coded depiction (Fig. 4c) which uniquely identifies each county. Further,
predicting birth location using HCs has a median error of 39.7km, whilst PCs give a nearly double
error of 77.5km in out-of-sample individuals (see Methods). This is a surprisingly high accuracy as
these individuals were not filtered for having ancestry from a single location, so prediction accuracy is
bounded by migration since people need not be born where their ancestors came from.

Ethnicity-specific selection in the UK Biobank compared to the 1000 Genomes populations
To demonstrate the scientific value of SparsePainter, we inferred the local ancestry of 487,409 UK
Biobank33 individuals using the 2504 individuals spanning 26 populations from the 1000 Genomes
Project (1000GP)26 as reference. From this, we evaluated selection using LDA score, which quantifies
genomic regions with particularly short ancestry segments, compared to the base recombination rate,
as well as an Ancestry Anomaly Score (AAS), which quantifies regions of unusual ancestry, compared
to genome-wide (see Methods). We report results that replicate over 7 primary self-reported ethnic
backgrounds (hereafter ethnicities) within the UK Biobank: British, Irish, Indian, Caribbean, African,
Pakistani, and Chinese. The LDAS, AAS and average probabilities of 26 1000GP populations for each
SNP analysed within each ethnicity are available in Supplementary Tab. 2-8.

Naturally, admixture estimates vary between individuals from different ethnicities (Fig. 5a, Meth-
ods), but our goal is to demonstrate applications of local ancestry at scale outside of population history.
We look for signals of ‘putative selection’ in the form of low LDAS and unusual AAS that are shared,
i.e. identified in every UKB primary ethnicity (Methods). As a sensitivity analysis, we further painted
the UK Biobank with 1000GP data using 5 continental ancestries (EUR, AFR, SAS, EAS and AMR).
The LDAS and AAS results of different UKB ethnicities are illustrated in Fig. 5b-c. These are mapped
to genes, with shared significant low LDAS and AAS signals visualised in Fig. 6 and investigated in
detail in Supplementary Note 1. Genes with ethnicity-specific AAS signals are reported in Supplemen-
tary Tab. 1.
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Fig. 5: Modelling of 7 UK Biobank self-reported ethnicities using 26 1000GP populations. a,
Overall ancestry inference stratified by UKB ethnicities. For each ethnicity, the column shows an-
cestry decomposition for a single individual, with colours representing different 1000GP reference
populations, named as regions followed by local population in standard abbreviation26. b, Linkage-
Disequilibrium of Ancestry Score (LDAS), reporting -log10 of the p-value of low LDAS (normality
test). c, Ancestry Anomaly Score (AAS) as a function of genome position, reporting -log10 of the
p-value of AAS (chi-squared test). All plots describe the analysis of n=487,409 individuals on 569,242
SNPs. In b-c, the non-light-grey points (light grey points) represent the SNPs’ maximum and min-
imum values that exhibit significant (insignificant) scores in both (either) paintings with 1000GP 26
populations and 5 continents, respectively (Methods), and blue (orange) lines connect the maximum
and minimum values at each SNP that are shared (ethnicity-specific) across the 7 ethnicities in both
paintings. The thresholds used to determine significance are depicted as horizontal lines in dashed red,
blue and orange, respectively.

To aid in interpreting these signals, we extended simulations for low LDAS from Barrie et al.
(2024)12 (Methods, Extended Data Fig. 7-8). Two scenarios produce significantly low LDAS and
extreme AAS, and both imply a change in selection following admixture. One scenario is single-locus
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Fig. 6: Summary of previous findings for genes with low LDAS and AAS signals shared between
7 UK Biobank self-reported ethnic backgrounds. Genes with low LDAS and AAS signals in both
26-pop and 5-continent paintings include those with core immune gene or response regulation, while
those in 26-pop painting only include many broad-impact immune genes. Genes with LDAS-only sig-
nals in both 26-pop and 5-continent paintings more typically affect responses to specific infections, and
genes with AAS-only signals have varied functions and disease associations. Classification (colour)
and category summaries (bold quoted text) are based on heuristic features of previous work; see Sup-
plementary Note 1 for details.

negative selection in the admixed population, following non-negative selection in the pre-existing pop-
ulations. The second scenario is multi-locus positive selection in the admixed population, while those
loci are either absent or present at low frequency in some of the pre-existing populations. Selection
under these scenarios is not detected by iHS, iHH12 or nSL as calculated using selscan34, showing that
extreme LDAS SNPs are not expected to be previously reported as under selection.

Extreme AAS signals in all 7 UKB ethnicities (Extended Fig. 9) include LINC01432 from chro-
mosome 20 (linked to retroperitoneum carcinoma and early-onset androgenetic alopecia) which has an
exceptionally high Japanese ancestry (EAS JPT) across all UKB ethnicities. Similarly, in the genes
PNRC2 and SRSF10 on chromosome 1, the Puerto Rican ancestry (AMR PUR) is over-represented,
particularly within European and Asian ethnicities. Notably, LINC03004 (highly expressed in testis
and the gall bladder) and its nearby gene PTPN11P3 on chromosome 6 are predominantly represented
by African ancestry across all ethnicities, a striking example of which is seen in Chinese ethnicity,
where LINC03004 is almost completely African.
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We observed that the different selection patterns of genes associated with the immune system were
related to distinct hierarchies of control of immune response, from control of gene expression to T cell
receptor recognition and inflammation. At the core were genes with low LDAS and AAS signals in
both the 26 population ancestries and the 5 continental ancestries. These genes affect RNS degradation
(PNRC2) and RNA splicing (SRSF10), and include a receptor that binds high-mannose structures on
the surface of potentially pathogenic viruses, bacteria, and fungi (MRC1). The product of these genes
affects immune responses (Supplementary Note 1.1), but their function is also central to non-immune
pathways, and mutations in these genes can give rise to, for example, various congenital disorders and
neurological and metabolic diseases.

The second level of control is broad-impact immune genes with low LDAS and AAS signals only
in the (more recently separated) 26 population ancestries. The product of these genes affects antigen
presentation and the strength of receptor signalling. One of the genes (HLA-DRB1) presents antigens
to T cells and helps regulate immune responses. Over 2000 variants of DRB1 have been identified35,
some of which are associated with certain diseases or conditions (autoimmune diseases and susceptibil-
ity or protection infection). Whilst HLA-DRB6 is a pseudogene with, as of now, no known function,
SIRPB1 encodes a signal-regulatory-protein that interacts with TYROBP/DAP12, a transmembrane
adaptor protein on natural killer (NK) cells, peripheral blood monocytes, macrophages, dendritic cells,
osteoclasts, and microglia. Through this interaction, SIRPB1 is involved in regulating both adaptive
and innate immune responses and other pathways.

The least-central control level primarily affects responses to specific infections (T cell recognition,
signalling) or localized responses that occur at the site of infection (inflammation), and have low LDAS
scores but no AAS signals. Among them are eight less-commonly expressed TRBV genes, which
are noteworthy for well-established associations with globally widespread and ancient herpesviruses,
bacteria, and old pathogens such as hepatitis virus B and C, and influenza36. The TRBV genes encode
part of the beta chain, which, together with the alpha chain (encoded by TRAV), form the T cell
receptor’s antigen binding site. Notably, 8 TRBV but no TRAV genes are identified. SIRPG is a
signal-regulatory protein (SIRP) member and is involved in the negative regulation of receptor tyrosine
kinase-coupled signalling processes. It affects the signal regulatory protein gamma (SIRPγ) expression
on T-cells and helps regulate immune responses, cell adhesion, and phagocytosis. IL20RA mediates the
pro-inflammatory effects of IL-20 cytokines, helps to regulate immune responses, tissue homeostasis,
and inflammation, and is a central player in the immune system. TMPRSS11E affects epithelial barrier
function, inflammation and wound healing. Conversely, only two genes out of the 16 with only an AAS
signal are associated with the immune system, as the CNR2 gene product has anti-inflammatory effects,
among other non-immune related functions, and PDK1 is a key regulator of immune cell development
and function.
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Discussion

Local ancestry inference is fundamental to understanding the genetic history of admixed populations,
and fundamentally all populations are admixed. Our study presents highly efficient tools for perform-
ing ancestry inference that, in comparison with contemporary tools, substantially enhance compu-
tational efficiency while retaining inference accuracy. Our results showed that while increasing the
reference panel size considerably improves the accuracy of local ancestry estimates, increasing the
match density has diminishing returns on accuracy. This observation enables efficient fine-scale haplo-
type analyses for large-scale projects that aim to paint thousands or even millions of individuals, such
as the UK Biobank and the larger biobanks of the future.

While our study has spotlighted the strengths of SparsePainter and PBWTpaint, it is also important
to consider the scenarios where they might not be the optimal tool. For local ancestry estimation with
few local ancestries, FLARE might offer a slight edge in terms of accuracy with comparable speed
and memory usage, and MOSAIC offers a two-stage HMM that allows reconstruction of ancestries
from imperfect reference panels. Conversely, while PBWTpaint shows remarkable efficiency in the
genome-wide ancestries’ estimation under reference-vs-reference painting, it is essential to note that it
is designed for the specific purpose of identifying genome-wide patterns of ancestry sharing, which are
of value for unsupervised clustering or making low dimensional summaries (HCs), but is not accurate
at the level of local ancestry.

This work’s broad implications extend beyond just technical improvement. The haplotype compo-
nents (HCs) computed using PBWTpaint allow robust prediction of principal components (PCs) and
may capture subtle genetic variations that PCs overlook - e.g. we found improved birthplace predic-
tion performance within the UK Biobank. Haplotype summaries have other desirable properties such
as not being associated with particular genomic regions, so replacing PCs with HCs is likely to result in
a similar improvement as with ancestry components (ACs)30, which require comparison to a reference
panel as SparsePainter is designed for. We therefore left a thorough examination of this task to future
work and focused on the visualisation of population genetic structure using HCs at scale.

We presented a more in-depth exploration of two measures of selection at the ancestry level - LDAS
which identifies ancestry segments that are too short (or too long), and AAS which identifies regions
with unusual ancestry patterns. We have been careful to treat these as ‘putative selection’ when inter-
preting them because there are other reasons for these anomalies to occur. LDAS and AAS would be
sensitive to SNP density, long repeats, regions with many low-quality reads, or other structural issues.
AAS is particularly sensitive to the makeup of the reference panel, which must be ‘less admixed’ than
the target individuals on average to obtain a signal. LDAS is also sensitive to recombination map de-
tails (though the recombination rate for each ethnicity is separately normalised). Although (as we have
attempted) such issues are typically removed in quality control or by post-hoc considerations (low data
volume regresses to the prior genome-wide ancestry), we know of no other methods that can confirm
these types of selection on this timescale.

AAS has previously linked infection in admixed Scottish wildcat Felis silvestris to selectively retain
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an immune response developed in domestic cats Felis catus37 over just 10 generations. Here, without
looking specifically for it, we found many strong signals for core immune genes for all ethnicities using
LDAS and AAS signals in the UK Biobank, which can be explained if there was a change in selection
when these modern populations were formed as a mixture from older populations. Dating each would
be very valuable - the admixture is only hundreds of years old for the African and European admixture
seen in Afro-Caribbeans, and the last few thousand years for established populations described by 26
inter-continental populations from the 1000 Genomes Project. This historical timescale is consistent
with the continued expansion of populations and their pathogens around the globe and implies a ‘melt-
ing pot’ of diverse diseases that evolved locally, likely related to environmental and cultural factors38

and spread into global impact. For example, two selected immune genes (MRC1 and STAM) which
have higher South Asian ancestries than expected facilitate the entry of the dengue virus, which is es-
timated to have evolved approximately 500-1000 years ago and first became endemic in parts of South
and South-East Asia39,40. Today, it is widespread globally, and its range continues to expand as global
warming increases the mosquito habitat that carries the dengue virus. It remains to be seen if the signal
we see is this or some older virus that affects a related immune response.

Our analysis suggested that varying genetic selective patterns prevailed at different levels of control
of a hierarchical complex biological system such as the immune system. Using these methods with
carefully constructed reference panels targeting particular admixture times, and the analysis of specific
contact events, could eventually build the pathogenic landscape around the world, and bring insights
into more diseases and traits selected in our recent ancestors.

Methods

Modes of SparsePainter and PBWTpaint
There are three modes of SparsePainter and one mode of PBWTpaint as below. The painting with a
leave-one-out strategy (as required for GLOBETROTTER1 and related methods) is classified as panel
painting, which is only possible for SparsePainter.
(1) all-vs-all. Under this mode, we paint each individual against all the other individuals, i.e. only the
individual itself is left out. This is for clustering, computing HCs, or similar tasks. PBWTpaint has the
best performance of speed and can only operate in this mode.
(2) reference-vs-reference painting with npop populations. One individual is left out of each other
population and oneself is left out from the own population. Then we paint a reference panel against
itself. This ‘panel painting’ is for making a palette for each of the npop populations as required for
GLOBETROTTER1, NNLS, and related admixture estimation methods. SparsePainter is efficient for
this.
(3) target-vs-reference with npop populations. We paint target individuals using a reference panel. We
can either leave-one-out (one individual is left out of each population) or not. With leave-one-out, we
can do admixture inference as the target is exchangeable with the reference. Without leave-one-out,
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we can do local ancestry inference. SparsePainter is efficient for this.

Algorithm ‘ReportLongestMatches’
The code implementation of the PBWT structure in SparsePainter drew extensively form Sanaullah et
al. (2021)24. We extend the ‘long match query’ algorithm of PBWT in Algorithm ‘ReportLongest-
Matches’ which aims to find at least Q longest matches at each position for a target sample i, in a
two-stage process. In stage 1 we ensure a minimum number of matches, by storing only matches of
length Lmin or longer containing SNPs with fewer than Q matches in a set {s}. For efficiency, we
search the longest matches first, by iteratively halving the match length Lq, beginning from L0. For
every SNP that still has fewer than Q matches, all matches longer than Lq containing the SNP are
added to {s}, until all positions have at least Q matches or the halved length falls below Lmin.

Stage 2 reduces the number of matches. First, we calculate the genetic length for each match in
{s} and sort them in descending order of their genetic lengths. An empty set {e} = ∅ is then populated
with only the required matches. The algorithm traverses through the sorted {s}, adding a match to {e}
if any of its positions have fewer than Q matches in {e}. The final set {e}, containing elements that
each specify the start position, end position, and reference sample number, represents the selected long
matches to the reference haplotypes for the target sample i.

The efficiency of this algorithm is reflected by the majority of the genome being processed in Stage
1 with few long matches, even though there are huge numbers of matches throughout the genome.
Subsequently, we only need to proceed to search relatively short sections of genomes for few relatively
short matches.

Note that because of the limitation of Lmin, we may end up having fewer than Q matches or even
no matches at specific positions. The former doesn’t decrease the accuracy of local ancestry inference,
and we will address the latter in Methods – hidden Markov model.

Hidden Markov model in vector form
Let N be the number of haplotypes in the reference panel, and K be the number of SNPs. Also, we
assume µ is the mutation probability per Morgan, and λ is the recombination scaling constant. The
reference panel X is an N by K matrix, and a target haplotype y is an K-vector, all taking values
of either 0 or 1 corresponding to whether the reference allele is present or not. However, we can
simplify this into a match matrix M of dimension N × K which also takes values of either 0 or 1,
with Mij = 1 if Xij = yj and 0 otherwise. We will refer to the row vectors mj = M·j and use the
shorthand D(x) = Diag(x) as the matrix with the vector x on the diagonal. We will refer to DN(x) as
an N ×N matrix with the scalar x on the diagonal.

SparsePainter implements the Li and Stephen’s model17 in the form of ChromoPainter18 in a sparse
setting. We define V as the emission matrix, and the column vectors are vj = V·j

Vij =

1− µ if Mij = 1

µ if Mij = 0
(1)
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Algorithm 1 ReportLongestMatches—-find at least Q Longest matches at each position for target
sample i

Stage 1: Ensuring a minimum number of matches;

Run PBWT and record all matches longer than or equal to L0 SNPs in set {s}.
Let r be a list of SNP indices with fewer than Q matches;
Iteration q ← 1 and current minimum length Lq ← L0/2;
while |r| ≠ 0 ∧ Lq ≥ Lmin do

Run PBWT and with min length Lq ;
Add matches containing SNPs in r with length ∈ [Lq, Lq−1) to set {s};
Update r with the indices of SNPs with fewer than Q matches of length Lq or longer;
Half the minimum match length Lq subject to constraints, i.e. Lq+1 ← max(Lq/2, Lmin);
q ← q + 1;

end while

Stage 2: Reduce the number of matches;
▷ Retain only the longest, required matches.

Compute the genetic distance of each match in set {s} and store in {g}
Sort set {s} in descending order of {g};
Define {e} as an empty set to record final selected matches;
for b← 1 to |s| do

Add match s[b] to set {e} if it contains SNPs with fewer than Q matches;
If all SNPs have at least Q matches break;

end for
Report {e} as the selected long matches to reference haplotypes for target sample i.

The observation matrix is an N ×N matrix:

Oj = (1− µ)DN(mj) + µDN(1N −mj) = DN(vj) (2)

The transition matrix from position j to position j + 1 is an N ×N matrix:

Tj = ρjDN(1) +
1− ρj
N

1N×N (3)

where ρj = exp(−λgj) with gj being the genetic distance between position j and position j + 1 in
Morgans.

Let f0 = 1/N be the prior probabilities for the matches. We can write the forward probabilities for
j = 1, . . . , K as:

fj = fj−1Tj−1Oj, (4)
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where fj are row vectors (1 × N ). With bK = 1N where 1N is an 1 × N row vector, the backward
probabilities for j = 1, . . . , K − 1 are:

bT
j = TjOj+1b

T
j+1. (5)

However, Equation (4) and (5) can be significantly simplified due to the special form of the output
and transition matrices. We can arrive at a vector form for which computations are O(N) instead of
O(N2).

To simplify notation, will write the marginal (partial) probabilities
∑N

i=1 fij = f̃j and
∑N

i=1 bij =

b̃j , the total number of matches m̃j =
∑N

i=1 mij , as well as writing ρ̃j =
1−ρj
N

. These are all scalar
properties in what follows below. For the forward probabilities:

fj = fj−1 [ρj−1DN(1) + ρ̃j−11N×N ] [(1− µ)D (mj) + µD (1N −mj)]

= fj−1ρj−1 [(1− µ)DN (mj) + µD (1N −mj)] + f̃j−1ρ̃j−11N [(1− µ)D (mj) + µD (1N −mj)]

= (1− µ)mj ◦
[
ρj−1fj−1 + f̃j−1ρ̃j−11N

]
+ µ

[
ρj−1fj−1 + f̃j−1ρ̃j−11N

]
◦ (1N −mj)

= vj ◦
[
ρj−1fj−1 + f̃j−1ρ̃j−11N

]
(6)

where we use the notation x ◦ y for entry-wise vector multiplication (Hadamard product). Similarly
for the backward probabilities, using the shorthand cj = mj ◦ bj and

∑N
i=1 mijbij = c̃j:

bT
j = [ρjDN(1) + ρ̃j1N×N ] [(1− µ)DN (mj+1) + µDN (1N −mj+1)]b

T
j+1

=ρj [(1− µ)DN (mj+1) + µDN (1N −mj+1)]b
T
j+1+

ρ̃j1N×N

[
(1− µ) (mj+1 ◦ bj+1)

T + µbT
j+1 ◦ (1N −mj+1)

T
]

=ρj(1− µ)cTj+1 + ρjµ
(
bT
j+1 − cTj+1

)
+ ρ̃j(1− µ)c̃j+11

T
N + ρ̃jµ

(
b̃j+1 − c̃j+1

)
1T
N

=ρj
(
cTj+1 − 2µcTj+1 + µbT

j+1

)
+ ρ̃j

(
c̃j+1 − 2µc̃j+1 + µb̃j+1

)
1T
N

=ρjd
T
j+1 + ρ̃j d̃j+11

T
N

(7)

where dj = vj ◦ bj and such that
∑N

i=1 vijbij = d̃j. Finally, the posterior probabilities are written in
the following form:

P (mj|O) ∝ fj ◦ bT
j . (8)

If we assume the mutation rate µ → 0, the forward and backward probabilities (Equation (6) and
(7)) simplify to

fj = mj ◦
[
ρj−1fj−1 + f̃j−1ρ̃j−11N

]
(9)

and
bT
j = ρjδ

T
j+1 + ρ̃j δ̃j+11

T
N (10)
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respectively, where δj = mj ◦ bj and δ̃j =
∑N

i=1 mijbij . In this case, only the forward probabilities fj
for the matched samples at position j are non-zero and need to be calculated. For backward probabili-
ties, we compute different bT

j for matched samples at position j + 1, with unmatched samples sharing
the same default value ρ̃j δ̃j+1 in the jth hash vector. Finally, when computing the posterior proba-
bilities P (mj|O) (Equation (8)), only samples with matches in SNP j or j + 1 require computation,
whereas the others are exactly 0.

Note that this assigns non-zero probability to single mutation breaks in haplotypes, provided a
match is found both to the left and the right. In conclusion, the Hash-Map-based forward and backward
algorithm reduces computational cost from O(N) (e.g., ChromoPainter18) to approximately O(Q).

There are instances when few positions have no matches spanning at least Lmin SNPs, and are
therefore interpreted as no matches, which disrupts the forward and backward algorithm because a
0-vector of fj causes all ft to become 0-vectors for any t > j. To address this issue, for each position
without matches, we find the closest SNP (in genetic distance) that has matches. We then impute the
matches from this closest SNP to the position without matches.

The recombination scaling constant λ is usually estimated by the Expectation–Maximization (E-
M) algorithm (Supplementary Note 2.2). However, the Viterbi algorithm, a dynamic programming
technique to identify the most probable sequence of hidden states in a hidden Markov model, can be
advantageously employed to improve the efficiency of estimating λ, compared with the E-M algorithm.
In this context, let Nseg represent the minimum number of contiguous segments from different reference
samples required to construct the target haplotype, and therefore Nbreak = Nseg − 1 is essentially the
number of distinct recombination events that have been inferred. Then λ is estimated as

λ∗ =
Nbreak∑K
j=1 gj

. (11)

The normalised versions of the forward and backward equations
It is helpful to work in the normalised versions of the forward and backward equations f̌j = fj/f̃j and
b̌j = bj/b̃j . We define Fj and Bj as the normalising constant at state j.

fj

f̃j−1

= mj ◦
[
(1− µ)

(
ρj−1f̌j−1 + ρ̃j−11N

)
− µ

(
ρj−1f̌j−1 + ρ̃j−11N

)]
+ µ

[
ρj−1f̌j−1 + ρ̃j−11N

]
(12)

Setting µ→ 0, vj shrinks to mj:

fj = mj ◦ [ρj−1fj−1 + f̃j−1ρ̃j−11N ]

f̌j =
f̃j−1

f̃j

fj

f̃j−1

=
f̃j−1

f̃j
mj ◦ [ρj−1f̌j−1 + ρ̃j−11N ]

=
1

Fj

mj ◦ [ρj−1f̌j−1 + ρ̃j−11N ]

(13)

which has the following consequences:
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(a) Let sj be the set of matches at SNP j: i ∈ sj ⇐⇒ mij = 1.
(b) f̌ ∗

ij = ρj−1f̌i(j−1) + ρ̃j−1 if i ∈ sj and is zero otherwise.
(c) Fj =

∑
i∈sj f̌

∗
ij and f̌ij = f̌ ∗

ij/Fj .
(d) for a sparse algorithm, we only need to track matches and the relative sums of their probabilities.

For the backward algorithm with µ→ 0, dj shrinks to cj :

bT
j = ρjc

T
j+1 + ρ̃j c̃j+11

T
N

b̌T
j =

c̃j+1

b̃j

[
ρj č

T
j+1 + ρ̃j1

T
N

] (14)

which has the following consequences:
(a) b̌∗ij = ρj b̌i(j+1) + ρ̃j c̃j+1 if i ∈ sj+1 and b̌∗ij = ρ̃j c̃j+1 otherwise, where c̃j+1 =

∑
i∈sj+1

bi(j+1).
(b) Bj =

∑
i∈sj+1

b̌∗ij + (N − nj+1)ρ̃j c̃j+1 and b̌ij = b̌∗ij/Bj .
(c) Again this can be computed without explicit reference to non-matches and we need to sum over
only matches.

Estimation of the expected length of copied chunks
Let l̂i denote the posterior expected length (in Morgans) of the total genome for which the sample
haplotype copies from the ith reference haplotype.

l̂i =
1

2Pr(D)

K−1∑
j=1

gj
[
fijbij + fi(j+1)bi(j+1)

]
=

1

2
∏K

k=1 Fk

K−1∑
j=1

gj

[
f̌ij b̌ij(

j∏
k=1

Fk)(
K∏
k=j

Bk) + f̌i(j+1)b̌i(j+1)(

j+1∏
k=1

Fk)(
K∏

k=j+1

Bk)

]

=
1

2

K−1∑
j=1

gj
[
wl

j f̌ij b̌ij + wr
j f̌i(j+1)b̌i(j+1)

]
(15)

where

wl
j = exp

(
log(

j∏
k=1

Fk) + log(
K∏
k=j

Bk)− log(
K∏
k=1

Fk)

)
and

wr
j = exp

(
log(

j+1∏
k=1

Fk) + log(
K∏

k=j+1

Bk)− log(
K∏
k=1

Fk)

)
.

Non-negative Least Squares (NNLS) for admixture estimation
Admixture estimation can be performed on both the reference individuals and the target individuals via
NNLS, which requires the expected total genome shared between each reference ancestry, and each
reference (or target) individual with each reference ancestry. The former is derived by painting the
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reference samples against themselves with one sample left out of each other population (i.e. reference-
vs-reference painting). We then average each reference individual within each reference population to
provide a reference palette. When investigating admixture estimation for target individuals, we also
require painting each target sample (i.e. target-vs-reference painting) against a reference panel, with
one sample left out from every reference population. Reference (target) samples are then described as
a mixture of the reference populations using NNLS, calculated by the R package ‘nnls’1.

Simulation details for comparison between SparsePainter, PBWTpaint, ChromoPainter and FLARE
We simulated different simple models (Simulation 2a-c) for target-vs-reference painting, and a hierar-
chical model (Simulation 1) for reference-vs-reference painting. Each simulation is repeated 10 times,
and the average statistics, i.e. compute time, memory usage and accuracy, are reported.

The simple simulation model for target-vs-reference painting (Simulation 2a-c) begins with an an-
cestral population that evolves for 2500 generations prior to diverging into npop populations. Following
an evolutionary period of another 500 generations, these npop populations undergo admixture, culmi-
nating in a modern population, and the target individuals are sampled T generations after admixture.
The simulation spans 100 megabases (Mbs), characterized by a mutation rate of 6× 10−9 per base pair
per generation, and a recombination rate of 2× 10−8 Morgans per base pair per generation.

The true local ancestry is defined as 1 generation before admixture, which is derived from the re-
combination events recorded in the tree sequences (in SLiM) during the 500 generations. There are
some regions (around 10% to 20%) in target haplotypes that are inherited from the ancestral population
and haven’t experienced any recombination events during the 500 generations. For comparing the local
ancestry estimates, we excluded the SNPs within those regions, while for inferring the genome-wide
total ancestry for comparison of NNLS estimates, we assumed those regions without recent recombi-
nation events have the same proportion of total ancestries as the other regions.

We also constructed a hierarchical model (Simulation 1) that mirrors the evolutionary trajectory
of real-world populations, which is used for the comparison of reference-vs-reference panel painting.
In detail, we simulated 5 populations Pi(i = 1, 2, ..., 5) as below: After evolving for 2933 generations,
an ancestral population split into P1 and P4. After generation 2958, P2 emerged from migrations
originating from P1. Moving forward to the 2983th generation, some people from P2 migrated to
a new population P3. A final migration occurred at the 2993th generation when some individuals
from P4 settled to create P5. After 3000 generations, we sampled an equivalent number of individuals
(ranging from 10 to 500) from each population Pi(i = 1, 2, ..., 5). A similar model was constructed for
simulating 10 hierarchical populations. We used the same procedures to define the true genome-wide
total ancestry as above.

For all the simulations, we retained a fixed number of common SNPs with Minor Allele Frequency
(MAF) of at least 0.5% from the reference and target datasets, which are presented in the Variant Call
Format (VCF). There datasets were then merged. Subsequently, we phased the merged dataset with
Beagle 5.441 before splitting it into the reference and target datasets. FLARE requires input data in the
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VCF format, while SparsePainter and ChromoPainter require the phase format, which can be converted
from VCF efficiently using the PBWT software.

For SparsePainter, unless otherwise stated, we ensured no more than 10 longest matches (longer
than 20 SNPs) at each locus are retained. All simulations are performed on an MSI laptop with an Intel
Core i7-10750H processor running at 2.60GHz on 10 CPU cores in parallel.

We explored a number of different parameters for Simulation 2a-c.

• Simulation 2a: we simulated 2-, 5-, 10-, 20-, 40-, 50-, 80- and 100-way admixture (npop = 2, 5,
10, 20, 40, 50, 80, 100) to compare the speed and memory between software, with varying numbers
of total reference sizes (2000, 4000 or 8000), and varying numbers of target individuals (100 or 500)
with 2100 SNPs.

• Simulation 2b: we simulated 2-, 3- and 5-way admixture (npop = 2, 3 or 5) to compare the accuracy
between software, with varying number of reference sizes for each reference ancestry (from 100 up
to 2000), number of SNPs (K = 1800 or 3600) and evolving time of 50 modern individuals (T = 3
or 13). The admixture proportion is (50%,50%) for 2-way, (20%,50%,30%) for 3-way, and
(20%,10%,10%,40%,20%) for 5-way models, respectively.

• Simulation 2c: we drew from reference pools of 5000, 10000, or 20000 individuals from npop = 5

local ancestries consisting of 5000 SNPs. We then evaluated SparsePainter’s efficiency in painting
1000 individuals who are sampled 13 generations after admixture under varying levels of sparsity,
i.e. only the longest 5, 10, 20, 40 and 80 matches which are longer than 20 SNPs are retained at each
SNP. This was manipulated via the ‘nmatch’ parameter in SparsePainter.

Methods to evaluate the accuracy of local ancestry and NNLS estimates
We used two different methods to assess the accuracy of local ancestry estimates. The first method is
the squared Pearson’s correlation coefficient (denoted as r2). At each SNP, we calculated the estimated
dosage of each individual by averaging the posterior probabilities of both haplotypes for each reference
ancestry, and the true dosage is the average true local ancestry which takes values of 0, 0.5, or 1.

We computed the r2 between the estimated and actual dosages for each reference ancestry across
all individuals and positions, and the unweighted mean r2 of these values is reported to measure the
overall accuracy. The second method evaluates the proportion of accurate local ancestry predictions
across all haplotypes and positions. For each haplotype at a given position, a correct local ancestry
inference is determined when the true local ancestry corresponds to the highest estimated posterior
probability.

To evaluate the accuracy of admixture estimation, we calculated the squared correlation between
the NNLS-estimated coefficient and the true proportion for all the individuals, and reported the un-
weighted mean r2 of NNLS from different local ancestries.

The accuracy of PBWTpaint for local ancestry estimation
We assessed the accuracy of PBWTpaint for local ancestry inference under reference-vs-reference
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panel painting by comparing its Pearson’s squared correlation with SparsePainter. On the simple sim-
ulation model (Simulation 2-4) in which the ancestries are distinct, the r2 between PBWTpaint and
SparsePainter is high at 0.79. However, for complex cases in which there is uncertainty, or the true
ancestry is an ancestor of extant populations (Simulation 1), the set maximal matches used by PB-
WTpaint lead to over-confident or inaccurate local ancestry assignment (r2 = 0.3) even though these
mistakes are self-averaging for the estimation of genome-wide ancestry. This illustrates that PBWT-
paint is not an appropriate method for performing local ancestry estimates.

Simulation for LDAS under genetic drift
We assessed the robustness of the LDAS and its sensitivity to demographic changes by examining it
under genetic drift across exponentially expanding population sizes over time. We simulated a genome
of a 500Mb region as follows: initially, an ancient population evolves for 1000 generations, subse-
quently diverging into five distinct subpopulations. Each of these subpopulations, growing at a rate of
2% per generation, evolves independently for 100 generations. This period of divergence is followed
by a phase of admixture, forming a modern, unified population, which then undergoes evolution for an
additional 30 generations at an increased growth rate of 5% per generation.

We computed the LDAS of 500 simulated modern individuals with 2000 simulated reference indi-
viduals from each of the 5 subpopulations. After normalisation, the z-scores of the LDAS (Extended
Data Fig. 6a) predominantly exhibit under-dispersion, despite some noticeable deviation on both tails.
This pattern suggests that the normal distribution is a reasonable approximation for the LDAS distribu-
tion. Subsequently, we calculated the p-values for low LDAS through a one-sided test for normality, as
depicted in Extended Data Fig. 6b. Notably, no low LDAS signals are detected under the genetic drift
model (excluding selection effects), as evidenced by the most significant SNP with p < 10−3. This
outcome solidifies our conclusion that low LDAS signals are not present under this model.

Simulation for comparing LDAS with statistics for positive selection
Here we simulated the similar two-loci and one-locus model as used in Barrie et al. (2024)12.

For the two-loci selection model (Extended Data Fig. 7), we simulated a genome of 150Mb. Ini-
tially, an ancient population evolved for 2200 generations before splitting into two sub-populations
P1 and P2. After evolving 400 generations, we added mutation m1 for P1 and m2 for P2 at locus
20Mb and 23Mb, respectively. These added mutations were then positively selected in the following
300 generations before admixing to P3 at generation 2900. m1 and m2 then experienced strong pos-
itive selection for another 50 generations, after which we sampled 500 individuals from P3 as target
individuals. 500 individuals are sampled for P1 and P2 at generation 2899 as the reference panel.

For the one-locus selection model (Extended Data Fig. 8), we simulated a genome of 50Mb. The
remaining difference from the above mode is that only one locus m0 at 20Mb was added at generation
2601 for both P1 and P2, and it was positively selected until generation 2900. In the admixture pop-
ulation P3, this SNP underwent negative selection until generation 2950 when the target individuals
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were sampled.

Paint all UK Biobank individuals against themselves and calculate haplotype principal compo-
nents
To infer the haplotype principal components, we painted UKB biobank individuals against themselves,
i.e. all-vs-all painting. We first excluded related individuals as described by Bycroft et al. (2018)33 and
excluded withdrawn individuals. We then performed PBWTpaint (with command pbwt -paintSparse)
on each chromosome of UK Biobank phased genotype data, which in total has 406,733 individu-
als with approximately 569,242 SNPs. The total chunk length of PBWTpaint for each individual on
chromosome i is 2Ki, where Ki is the number of SNPs. Assume gi is the total genetic distance for
chromosome i, we weighted the chunk length for chromosome i with weight gi/Ki. Then we summed
up the sparse chunk length matrix for all the chromosomes as matrix A, such that for each individual
(i.e. each row of A), the expected lengths of copied chunks from all other individuals reached the sum
of the total genetic distance G =

∑22
i=1 gi.

We performed singular value decomposition (SVD) on the log-transformed sparse chunk length
matrix log10(A + 1) with R package ‘sparsesvd’: log10(A + 1) = UDV T , where D is a diagonal
matrix of the singular values. Then we extracted the the first 150 columns of U

√
D as the top 150

haplotype principal components.

Prediction of birth locations with HCs and PCs
We conducted an analysis to evaluate the predictive accuracy of Haplotype Components (HCs) and
Principal Components (PCs) on the birth locations, i.e. the east and north coordinates, within the UK.
We selected a cohort of 347,532 individuals who were born in the UK or Ireland and identified as
white, British, or Irish ethnicity. This cohort was divided into two groups: a training set comprising
80% of the individuals, and a test set consisting of the remaining 20%. Subsequently, with either the
top 150 PCs or HCs as explanatory variables and either the east or north coordinate as the response
variable, we used a 5-fold CV to determine the optimal number of boosting iterations before fitting
the regression model on the training set with eXtreme Gradient Boosting (XGBoost42), and then we
predicted the birth coordinates of individuals in the test set. Finally, we computed the direct distance
between the predicted coordinates and the actual coordinates of each individual on the test set and
reported the median which reveals that using HCs as predictors (median error=39.7km) reduced 49%
error compared with using PCs as predictors (median error=77.4km). This indicates a notably higher
predictive accuracy of birthplaces when using HCs.

Paint UK Biobank with 1000 Genomes Project
We inferred the local ancestry of UK Biobank individuals using the 1000 Genomes Project (1000GP) as
the reference data, which includes 2504 individuals from 26 populations. We retained the common bi-
allelic SNPs with MAF ≥ 5% before merging these two datasets. Then we used Beagle 5.441 to phase
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the merged dataset, after which it was split into the reference and target datasets. For a comparative
analysis of the genetic painting and population structure within the UK Biobank, we randomly selected
10,000 individuals with self-reported British backgrounds, and incorporated all individuals from spe-
cific self-reported ethnic backgrounds: Irish (12713), Indian (5660), Caribbean (4297), African (3203),
Pakistani (1747), and Chinese (1503).

We estimated the average recombination scaling constant λ = 164.2 of all these individuals on
chromosome 19. This fixed parameter was subsequently used for painting across chromosomes 1-22.
Besides, to achieve higher accuracy, we configured the parameters of SparsePainter to aim for finding
the 50 longest matches (longer than 20 SNPs) at each position.

Shared and ethnicity-specific LDAS and AAS
Here we explain the methods for finding shared and ethnicity-specific LDAS and AAS. As introduced
by Barrie et al. (2024)12, we computed the LDAS of SNP j in a X = 4cM window LDAS(j;X) by:

LDAS(j;X) =


∫ g(j)+X

g(j)−X
LDA(j, l) dg if X ≤ g(j) ≤ tg −X,∫ g(j)+X

0
LDA(j, l) dg +

∫ g(j)+X

2g(j)
LDA(j, l) dg if g(j) < X,∫ tg

g(j)−X
LDA(j, l) dg +

∫ 2g(j)−tg

g(j)−X
LDA(j, l) dg if g(j) > tg −X.

(16)

where tg is the total genetic distance in centiMorgan, and LDA(j, l) is the LDA between SNP j and l.
One major source of bias in the estimate of LDAS is due to sparse SNP sampling, as the LDA score

is calculated by summing the space under piecewise linear functions. To handle this without making
further distributional assumptions, we propose a quality control method.

An upper bound and lower bound of the estimates of LDAS can be obtained by replacing the linear
interpolation in Equation 16 with a step function. In detail, we take the larger and smaller LDA values
of two neighbouring SNPs, respectively, as the fixed LDA in the genetic distance between the two
SNPs in the integral over the XcM-window on both sides of the SNP. Specifically:

LDAupper(j, l) = max {LDA(j, l),LDA(j, l + 1)}

and
LDAlower(j, l) = min {LDA(j, l),LDA(j, l + 1)} ,

which can be substituted into Equation 16 to obtain an upper and lower-bound respectively of the
LDAS of SNP j: LDASupper(j;X) and LDASlower(j;X). When computing LDASlower(j;X), we
assume LDA(j, g = 0) = LDA(j, g = td) = 0 for conservative estimation.

Intuitively, the maximum possible error of LDAS of SNP j is

LDASerror(j;X) = LDASupper(j;X)− LDASlower(j;X). (17)

However, the LDAS are in different scales across different ethnic backgrounds, because of different
admixture times. Therefore, for each ethnic background, we normalise the LDASerror with the average
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LDAS across the genome, i.e. LDAS∗
error = LDASerror/E(LDAS), and then we remove SNPs with

LDAS∗
error ≥ δ where δ is a specified threshold (we used δ = 0.3).

However, the above method cannot entirely alleviate the impact of regions in sparse. In practice,
the pairwise LDA shrinks to almost 0 when the closest SNPs are more than 3 centiMorgan (cM) away.
We therefore removed SNPs in very sparse regions based on their 3cM windows: SNP j is removed
if at least one of nm(j) < θ for m = 0.5, 1, 1.5, 2, 2.5, 3, where nm(j) is the number of SNPs that is
(m− 0.5,m]cM away from SNP j and θ is a specified threshold (we used θ = 10).

In conclusion, we used the hybrid of LDASerror < δ and nm ≥ θ(m=0, 0.5, 1.0, 1.5, 2, 2.5) as
the quality control of SNPs, which alleviates the bias estimates due to sparsity of the painting data and
therefore avoids extreme LDA scores.

The computation of AAS is not affected by the discrepancy of recombination events across chro-
mosomes and ethnicities, and we implemented the procedures as described in Barrie et al. (2024)12

with SparsePainter.
We assumed the normality of LDAS for all ethnicities across the genome. We converted the LDAS

into p-values through the normality test which aims to detect low LDAS, and we only focused on SNPs
with p(LDAS) from at least one ethnic background that is significant at p = 10−6. Those SNPs are
classified as shared or ethnicity-specific low LDAS if p(LDAS) from all the other ethnic backgrounds
are significant at p = 0.05, or insignificant at p = 0.1, respectively.

As AAS follows Gamma distribution and produces more extreme p-values, we employed a stricter
significance level, p = 10−50, for filtering SNPs with significant AAS. Similarly, those SNPs are
categorized as having shared or ethnicity-specific significant AAS if p(AAS) from all the other ethnic
backgrounds are significant at p = 10−10, or insignificant at p = 10−5, respectively.

Furthermore, to ensure robust results, we repainted UKB using 5 continental populations as de-
lineated by the 1000GP continents (Europe, Africa, America, South Asia and East Asia) to obtain an
alternate set of LDAS and AAS results. We then mapped each SNP with low LDAS and AAS signals
to its gene (if the SNP overlaps with a gene) via R package ‘gprofiler2’, and visualised the results in
Fig. 5 and Fig. 6.

Comparison of LDAS and AAS signals with natural selection in Bronze Age Britain and archaic
adaptive introgression in 1000GP populations
Our LDAS and AAS analyses from painting 7 UK Biobank ethnic backgrounds with 1000GP popu-
lations have detected various signals of selection (Fig. 6 and Supplementary Tab. 1), and we investi-
gated the overlaps with the other selection signals. By comparison with the genome-wide significant
(P < 10−7) selection signals in the ancient British data43, we found the only overlap genes are HLA-
DRB6 and HLA-DRB1 on chromosome 6. We compared loci that have been identified as exhibiting
adaptive introgression from Neanderthal or Denisovan ancestries in the 1000GP populations44. Al-
though none of them overlaps the genes with LDAS signals, we discovered that the ADARB2 gene,
located on chromosome 10 overlaps with AAS signals. This gene experiences introgression from
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Denisovan ancestry within the 1000GP PEL population, and coincides with the AAS signals in British,
Irish, Indian, Caribbean and Chinese ethnicities. Notably, the utilization of different reference panels
can probably lead to the identification of distinct genes exhibiting selection signals of LDAS and AAS.

Data availability

The phased 1000 Genomes Project data build GRCh37/hg19 are available at https://bochet.gcc.biostat.
washington.edu/beagle/1000 Genomes phase3 v5a/b37.vcf/. The UK Biobank data can be accessed
by approved researchers through https://www.ukbiobank.ac.uk. We used the UK Biobank data under
project 81499. The UK map data are available at https://gadm.org.

Code availability
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GitHub at https://github.com/richarddurbin/pbwt.
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Extended Data
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Extended Data Fig. 1: Local ancestry estimation accuracy between software with different num-
bers of populations, reference sizes and earlier sampled target individuals. This simulation has
3600 SNPs and 50 target individuals sampled 3 generations after admixture (Simulation 2b). The y-
axis for the left and right plots are the squared Pearson’s correlation coefficient and the proportion to
correct ancestry inference, respectively, and the x-axis is the reference size of each reference ancestry.
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Extended Data Fig. 2: Compute time and memory usage of painting 500 individuals between
software with different numbers of local ancestries and reference sizes. This simulation (Simula-
tion 2a) has 2100 SNPs. The y-axis for the left and right plots are the compute time in minutes and the
memory usage in GB, respectively, and the x-axis is the number of local ancestries.
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Extended Data Fig. 3: Two-dimensional plots for the first 18 HCs stratified by UKB self-reported
ethnic backgrounds (n=406,773 individuals).
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Extended Data Fig. 4: Visualisation of the average of the first 49 HCs stratified by birthplaces
within the UK and Ireland. This analysis includes n=347,532 individuals. The average HC of each
region bigger than, smaller than and equal to the worldwide average is coloured in red, blue and white,
respectively.
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Extended Data Fig. 5: Average Coefficient of determination for predicting top 50 HCs/PCs com-
puted from odd (even) chromosomes using the first 150 HCs/PCs from even (odd) chromosomes
of 406,773 individuals. The top 50 HCs are well predicted from both plots, while only few top PCs
can be predicted with high accuracy.
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Extended Data Fig. 6: Distribution of LDAS under the simulation of a 500Mb genome. a, The
quantile-quantile plot of the z-scores of LDAS. b, The P-values (represented in -log10 scale) under the
normality test for detecting low LDAS across the simulated genome.
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Extended Data Fig. 7: iHS, iHH12, nSL, LDAS and AAS under two-loci positive position selec-
tion in both ancient and modern populations (reporting the -log10 of P-values). The red and blue
vertical lines indicate the loci under selection in population p1 and p2, respectively.
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Extended Data Fig. 8: iHS, iHH12, nSL, LDAS and AAS under one-locus positive selection
in ancient populations and negative selection in modern population (reporting the -log10 of P-
values). The red vertical line indicates the loci under selection.

39

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 15, 2024. ; https://doi.org/10.1101/2024.03.13.24304206doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.13.24304206
http://creativecommons.org/licenses/by-nc/4.0/


0.0

0.2

0.4

0.6

0.8

1.0

G
en

om
e−

w
id

e 
av

er
ag

e
1:

C
N

R
2

1:
B

T
B

D
6P

1
1:

P
N

R
C

2
1:

S
R

S
F

10
2:

A
S

A
P

2
4:

Y
T

H
D

C
1

4:
T

M
P

R
S

S
11

E
4:

U
G

T
2B

15
6:

H
LA

−
D

R
B

6
6:

H
LA

−
D

R
B

1
6:

N
H

E
G

1
6:

IL
20

R
A

6:
LI

N
C

03
00

4
6:

P
T

P
N

11
P

3
7:

A
S

N
S

7:
T

R
B

V
4−

1
7:

T
R

B
V

6−
8

7:
T

R
B

V
6−

6
7:

T
R

B
V

12
−

2
7:

T
R

B
V

11
−

1
7:

T
R

B
V

10
−

1
7:

T
R

B
V

23
−

1
7:

T
R

B
V

24
−

1
10

:S
TA

M
10

:T
M

E
M

23
6

10
:M

R
C

1
10

:S
LC

39
A

12
10

:S
LC

39
A

12
−

A
S

1
10

:S
LC

29
A

3
10

:C
D

H
23

13
:T

P
T

E
2P

2
13

:T
H

S
D

1
15

:F
A

M
30

B
16

:P
D

P
K

1
16

:N
O

M
O

2
16

:A
B

C
C

6P
1

16
:R

P
L3

4P
29

16
:N

C
O

A
5L

P
18

:D
LG

A
P

1
18

:C
A

B
LE

S
1

18
:T

M
E

M
24

1
19

:C
Y

P
2F

1
19

:C
Y

P
2T

3P
20

:S
IR

P
D

20
:S

IR
P

B
1

20
:S

IR
P

G
20

:S
IR

P
G

−
A

S
1

20
:M

K
K

S
20

:S
LX

4I
P

20
:L

IN
C

01
43

2
21

:L
IN

C
01

67
4

21
:C

N
N

2P
7

Genes

P
ro

ba
bi

lit
y

(a) British ethnicity

0.0

0.2

0.4

0.6

0.8

1.0

G
en

om
e−

w
id

e 
av

er
ag

e
1:

C
N

R
2

1:
B

T
B

D
6P

1
1:

P
N

R
C

2
1:

S
R

S
F

10
2:

A
S

A
P

2
4:

Y
T

H
D

C
1

4:
T

M
P

R
S

S
11

E
4:

U
G

T
2B

15
6:

H
LA

−
D

R
B

6
6:

H
LA

−
D

R
B

1
6:

N
H

E
G

1
6:

IL
20

R
A

6:
LI

N
C

03
00

4
6:

P
T

P
N

11
P

3
7:

A
S

N
S

7:
T

R
B

V
4−

1
7:

T
R

B
V

6−
8

7:
T

R
B

V
6−

6
7:

T
R

B
V

12
−

2
7:

T
R

B
V

11
−

1
7:

T
R

B
V

10
−

1
7:

T
R

B
V

23
−

1
7:

T
R

B
V

24
−

1
10

:S
TA

M
10

:T
M

E
M

23
6

10
:M

R
C

1
10

:S
LC

39
A

12
10

:S
LC

39
A

12
−

A
S

1
10

:S
LC

29
A

3
10

:C
D

H
23

13
:T

P
T

E
2P

2
13

:T
H

S
D

1
15

:F
A

M
30

B
16

:P
D

P
K

1
16

:N
O

M
O

2
16

:A
B

C
C

6P
1

16
:R

P
L3

4P
29

16
:N

C
O

A
5L

P
18

:D
LG

A
P

1
18

:C
A

B
LE

S
1

18
:T

M
E

M
24

1
19

:C
Y

P
2F

1
19

:C
Y

P
2T

3P
20

:S
IR

P
D

20
:S

IR
P

B
1

20
:S

IR
P

G
20

:S
IR

P
G

−
A

S
1

20
:M

K
K

S
20

:S
LX

4I
P

20
:L

IN
C

01
43

2
21

:L
IN

C
01

67
4

21
:C

N
N

2P
7

Genes

P
ro

ba
bi

lit
y

(b) Irish ethnicity

0.0

0.2

0.4

0.6

0.8

1.0

G
en

om
e−

w
id

e 
av

er
ag

e
1:

C
N

R
2

1:
B

T
B

D
6P

1
1:

P
N

R
C

2
1:

S
R

S
F

10
2:

A
S

A
P

2
4:

Y
T

H
D

C
1

4:
T

M
P

R
S

S
11

E
4:

U
G

T
2B

15
6:

H
LA

−
D

R
B

6
6:

H
LA

−
D

R
B

1
6:

N
H

E
G

1
6:

IL
20

R
A

6:
LI

N
C

03
00

4
6:

P
T

P
N

11
P

3
7:

A
S

N
S

7:
T

R
B

V
4−

1
7:

T
R

B
V

6−
8

7:
T

R
B

V
6−

6
7:

T
R

B
V

12
−

2
7:

T
R

B
V

11
−

1
7:

T
R

B
V

10
−

1
7:

T
R

B
V

23
−

1
7:

T
R

B
V

24
−

1
10

:S
TA

M
10

:T
M

E
M

23
6

10
:M

R
C

1
10

:S
LC

39
A

12
10

:S
LC

39
A

12
−

A
S

1
10

:S
LC

29
A

3
10

:C
D

H
23

13
:T

P
T

E
2P

2
13

:T
H

S
D

1
15

:F
A

M
30

B
16

:P
D

P
K

1
16

:N
O

M
O

2
16

:A
B

C
C

6P
1

16
:R

P
L3

4P
29

16
:N

C
O

A
5L

P
18

:D
LG

A
P

1
18

:C
A

B
LE

S
1

18
:T

M
E

M
24

1
19

:C
Y

P
2F

1
19

:C
Y

P
2T

3P
20

:S
IR

P
D

20
:S

IR
P

B
1

20
:S

IR
P

G
20

:S
IR

P
G

−
A

S
1

20
:M

K
K

S
20

:S
LX

4I
P

20
:L

IN
C

01
43

2
21

:L
IN

C
01

67
4

21
:C

N
N

2P
7

Genes

P
ro

ba
bi

lit
y

(c) African ethnicity

0.0

0.2

0.4

0.6

0.8

1.0

G
en

om
e−

w
id

e 
av

er
ag

e
1:

C
N

R
2

1:
B

T
B

D
6P

1
1:

P
N

R
C

2
1:

S
R

S
F

10
2:

A
S

A
P

2
4:

Y
T

H
D

C
1

4:
T

M
P

R
S

S
11

E
4:

U
G

T
2B

15
6:

H
LA

−
D

R
B

6
6:

H
LA

−
D

R
B

1
6:

N
H

E
G

1
6:

IL
20

R
A

6:
LI

N
C

03
00

4
6:

P
T

P
N

11
P

3
7:

A
S

N
S

7:
T

R
B

V
4−

1
7:

T
R

B
V

6−
8

7:
T

R
B

V
6−

6
7:

T
R

B
V

12
−

2
7:

T
R

B
V

11
−

1
7:

T
R

B
V

10
−

1
7:

T
R

B
V

23
−

1
7:

T
R

B
V

24
−

1
10

:S
TA

M
10

:T
M

E
M

23
6

10
:M

R
C

1
10

:S
LC

39
A

12
10

:S
LC

39
A

12
−

A
S

1
10

:S
LC

29
A

3
10

:C
D

H
23

13
:T

P
T

E
2P

2
13

:T
H

S
D

1
15

:F
A

M
30

B
16

:P
D

P
K

1
16

:N
O

M
O

2
16

:A
B

C
C

6P
1

16
:R

P
L3

4P
29

16
:N

C
O

A
5L

P
18

:D
LG

A
P

1
18

:C
A

B
LE

S
1

18
:T

M
E

M
24

1
19

:C
Y

P
2F

1
19

:C
Y

P
2T

3P
20

:S
IR

P
D

20
:S

IR
P

B
1

20
:S

IR
P

G
20

:S
IR

P
G

−
A

S
1

20
:M

K
K

S
20

:S
LX

4I
P

20
:L

IN
C

01
43

2
21

:L
IN

C
01

67
4

21
:C

N
N

2P
7

Genes

P
ro

ba
bi

lit
y

(d) Caribbean ethnicity

0.0

0.2

0.4

0.6

0.8

1.0

G
en

om
e−

w
id

e 
av

er
ag

e
1:

C
N

R
2

1:
B

T
B

D
6P

1
1:

P
N

R
C

2
1:

S
R

S
F

10
2:

A
S

A
P

2
4:

Y
T

H
D

C
1

4:
T

M
P

R
S

S
11

E
4:

U
G

T
2B

15
6:

H
LA

−
D

R
B

6
6:

H
LA

−
D

R
B

1
6:

N
H

E
G

1
6:

IL
20

R
A

6:
LI

N
C

03
00

4
6:

P
T

P
N

11
P

3
7:

A
S

N
S

7:
T

R
B

V
4−

1
7:

T
R

B
V

6−
8

7:
T

R
B

V
6−

6
7:

T
R

B
V

12
−

2
7:

T
R

B
V

11
−

1
7:

T
R

B
V

10
−

1
7:

T
R

B
V

23
−

1
7:

T
R

B
V

24
−

1
10

:S
TA

M
10

:T
M

E
M

23
6

10
:M

R
C

1
10

:S
LC

39
A

12
10

:S
LC

39
A

12
−

A
S

1
10

:S
LC

29
A

3
10

:C
D

H
23

13
:T

P
T

E
2P

2
13

:T
H

S
D

1
15

:F
A

M
30

B
16

:P
D

P
K

1
16

:N
O

M
O

2
16

:A
B

C
C

6P
1

16
:R

P
L3

4P
29

16
:N

C
O

A
5L

P
18

:D
LG

A
P

1
18

:C
A

B
LE

S
1

18
:T

M
E

M
24

1
19

:C
Y

P
2F

1
19

:C
Y

P
2T

3P
20

:S
IR

P
D

20
:S

IR
P

B
1

20
:S

IR
P

G
20

:S
IR

P
G

−
A

S
1

20
:M

K
K

S
20

:S
LX

4I
P

20
:L

IN
C

01
43

2
21

:L
IN

C
01

67
4

21
:C

N
N

2P
7

Genes

P
ro

ba
bi

lit
y

(e) Indian ethnicity

0.0

0.2

0.4

0.6

0.8

1.0

G
en

om
e−

w
id

e 
av

er
ag

e
1:

C
N

R
2

1:
B

T
B

D
6P

1
1:

P
N

R
C

2
1:

S
R

S
F

10
2:

A
S

A
P

2
4:

Y
T

H
D

C
1

4:
T

M
P

R
S

S
11

E
4:

U
G

T
2B

15
6:

H
LA

−
D

R
B

6
6:

H
LA

−
D

R
B

1
6:

N
H

E
G

1
6:

IL
20

R
A

6:
LI

N
C

03
00

4
6:

P
T

P
N

11
P

3
7:

A
S

N
S

7:
T

R
B

V
4−

1
7:

T
R

B
V

6−
8

7:
T

R
B

V
6−

6
7:

T
R

B
V

12
−

2
7:

T
R

B
V

11
−

1
7:

T
R

B
V

10
−

1
7:

T
R

B
V

23
−

1
7:

T
R

B
V

24
−

1
10

:S
TA

M
10

:T
M

E
M

23
6

10
:M

R
C

1
10

:S
LC

39
A

12
10

:S
LC

39
A

12
−

A
S

1
10

:S
LC

29
A

3
10

:C
D

H
23

13
:T

P
T

E
2P

2
13

:T
H

S
D

1
15

:F
A

M
30

B
16

:P
D

P
K

1
16

:N
O

M
O

2
16

:A
B

C
C

6P
1

16
:R

P
L3

4P
29

16
:N

C
O

A
5L

P
18

:D
LG

A
P

1
18

:C
A

B
LE

S
1

18
:T

M
E

M
24

1
19

:C
Y

P
2F

1
19

:C
Y

P
2T

3P
20

:S
IR

P
D

20
:S

IR
P

B
1

20
:S

IR
P

G
20

:S
IR

P
G

−
A

S
1

20
:M

K
K

S
20

:S
LX

4I
P

20
:L

IN
C

01
43

2
21

:L
IN

C
01

67
4

21
:C

N
N

2P
7

Genes

P
ro

ba
bi

lit
y

(f) Pakistani ethnicity

0.0

0.2

0.4

0.6

0.8

1.0

G
en

om
e−

w
id

e 
av

er
ag

e
1:

C
N

R
2

1:
B

T
B

D
6P

1
1:

P
N

R
C

2
1:

S
R

S
F

10
2:

A
S

A
P

2
4:

Y
T

H
D

C
1

4:
T

M
P

R
S

S
11

E
4:

U
G

T
2B

15
6:

H
LA

−
D

R
B

6
6:

H
LA

−
D

R
B

1
6:

N
H

E
G

1
6:

IL
20

R
A

6:
LI

N
C

03
00

4
6:

P
T

P
N

11
P

3
7:

A
S

N
S

7:
T

R
B

V
4−

1
7:

T
R

B
V

6−
8

7:
T

R
B

V
6−

6
7:

T
R

B
V

12
−

2
7:

T
R

B
V

11
−

1
7:

T
R

B
V

10
−

1
7:

T
R

B
V

23
−

1
7:

T
R

B
V

24
−

1
10

:S
TA

M
10

:T
M

E
M

23
6

10
:M

R
C

1
10

:S
LC

39
A

12
10

:S
LC

39
A

12
−

A
S

1
10

:S
LC

29
A

3
10

:C
D

H
23

13
:T

P
T

E
2P

2
13

:T
H

S
D

1
15

:F
A

M
30

B
16

:P
D

P
K

1
16

:N
O

M
O

2
16

:A
B

C
C

6P
1

16
:R

P
L3

4P
29

16
:N

C
O

A
5L

P
18

:D
LG

A
P

1
18

:C
A

B
LE

S
1

18
:T

M
E

M
24

1
19

:C
Y

P
2F

1
19

:C
Y

P
2T

3P
20

:S
IR

P
D

20
:S

IR
P

B
1

20
:S

IR
P

G
20

:S
IR

P
G

−
A

S
1

20
:M

K
K

S
20

:S
LX

4I
P

20
:L

IN
C

01
43

2
21

:L
IN

C
01

67
4

21
:C

N
N

2P
7

Genes

P
ro

ba
bi

lit
y

(g) Chinese ethnicity
1000GP Populations

EUR_CEU EUR_FIN EUR_GBR EUR_IBS EUR_TSI

AFR_ACB AFR_ASW AFR_ESN AFR_GWD AFR_LWK

AFR_MSL AFR_YRI SAS_BEB SAS_GIH SAS_ITU

SAS_PJL SAS_STU EAS_CDX EAS_CHB EAS_CHS

EAS_JPT EAS_KHV AMR_CLM AMR_MXL AMR_PEL

AMR_PUR

Gene Names
AAS−only
LDAS−only
LDAS+AAS

Extended Data Fig. 9: Average probabilities of 26 1000GP populations at genes with shared
LDAS and AAS signals across 7 UK Biobank self-reported ethnicities. We sampled a representative
SNP from each gene with low LDAS or AAS signals (in 26-pop painting) shared between all 7 UKB
ethnicities, as visualised in Fig. 6. The genome-wide average probabilities are shown on the left of
each plot for comparison.
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