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Abstract 
Objectives: To explore the potential of Large Language Models (LLMs) to extract and structure 
information from free-text clinical reports, with a specific focus on identifying and classifying patient 
comorbidities in the electronic health records of oncology. We specifically evaluate the gpt-3.5-turbo-
1106 and gpt-4-1106-preview models in comparison with the capabilities of specialized human 
evaluators. 

Methods: We implemented a script using the OpenAI API to extract structured information in JSON 
format from comorbidities reported in 250 personal history reports. These reports were manually 
reviewed in batches of 50 by five specialists in radiation oncology. We compared the results using 
metrics such as Sensitivity, Specificity, Precision, Accuracy, F-value, Kappa index, and the McNemar 
test, in addition to examining the common causes of errors in both humans and GPT models. 

Results: The GPT-3.5 model exhibited slightly lower performance compared to physicians across all 
metrics, though the differences were not statistically significant. GPT-4 demonstrated clear superiority 
in several key metrics. Notably, it achieved a sensitivity of 96.8%, compared to 88.2% for GPT-3.5 and 
88.8% for physicians. However, physicians marginally outperformed GPT-4 in precision (97.7% vs. 
96.8%). GPT-4 showed greater consistency, replicating exact results in 76% of the reports after 10 
analyses, in contrast to 59% for GPT-3.5. Physicians were more likely to miss explicit comorbidities,  
while the GPT models more frequently inferred non-explicit comorbidities, sometimes correctly, though 
this also resulted in more false positives. 

Conclusion: The studied LLMs, with carefully designed prompts, demonstrate competence 
comparable to that of medical specialists in interpreting clinical reports, even in complex and confusingly 
written texts. Considering also their superior efficiency in terms of time and costs, these models 
represent a preferable option over human analysis for data mining and structuring information in large 
collections of clinical reports. 
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Introduction 
Clinical Natural Language Processing (cNLP), a subfield dedicated to the analysis of 
clinical texts within artificial intelligence, has experienced a significant development 
over the last decades. Recent advancements in computing power and algorithms have 
enabled its expanded application in oncological research. 

In the field of oncology, cNLP has been discussed as a valuable tool for improving 
cancer treatment outcomes. This includes its integration into electronic medical 
records, as highlighted in the studies by Yim W. et al [1] and Savova GK et al [2]. 
These studies emphasize the potential of cNLP to harness unstructured data from 
routine clinical practice and to catalyze evidence-based research. Commercial 
systems like Watson for Oncology® (WFO), introduced by IBM in 2015, have also 
emerged, employing cNLP techniques to provide oncological treatment 
recommendations. However, their reliability has been questioned due to insufficient 
agreement rates compared with specialist physicians observed in some scenarios [3]. 

Transformer models, a deep learning architecture introduced in the paper "Attention is 
All You Need" by Vaswani et al. in 2017 [4], have revolutionized the field of Natural 
Language Processing (NLP), establishing themselves as the foundation upon which 
modern Large Language Models (LLMs) have been developed. LLMs, such as 
OpenAI's Generative Pre-trained Transformers (GPT), are models trained on vast 
amounts of text to learn complex linguistic patterns. This enables them to generate 
text, understand context, perform translations, and carry out other tasks with 
unprecedented accuracy and fluency. Thanks to this capability, users can interact with 
these models, instructing them to tackle various problems without the need for 
additional training. 

The GPT-3 model, released in 2020, and its successor, GPT-4 [5], introduced in 2023, 
represent significant advancements in the ability to understand and generate coherent 
text. GPT-4, in particular, offers notable improvements in accuracy and in reducing the 
generation of false information. Additionally, it is capable of processing both images 
and text. 

Since the public release of GPT models, there has been a steady increase in studies 
examining their application in analyzing and interpreting clinical texts. In an editorial 
published in March 2023 in the International Journal of Radiation Oncology, Biology, 
Physics (IJRBP) [6], concerns about the reliability of GPT models in radiation oncology 
were raised. The authors discussed both the potential benefits and concerns regarding 
the reliability of this tool, including its ability to summarize lengthy texts, respond to 
clinical inquiries, and provide educational materials. Furthermore, the importance of 
carefully evaluating the credibility of references generated by ChatGPT was 
underscored, along with the suggestion of developing tool versions tailored to different 
medical specialties. 
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Within the field of radiodiagnostic imaging, Matthias A. Fink et al [7] conducted a study 
investigating the capacity of Large Language Models (LLMs) in extracting data from 
computed tomography (CT) reports concerning lung cancer. Employing two LLMs, 
namely ChatGPT and GPT-4, they analyzed CT reports and produced labels indicating 
disease progression. The findings showcased outstanding performance in disease 
progression classification, outperforming alternative natural language processing 
models. 

Focusing on the significance of appropriate instructions (prompts), researchers such 
as Hyeon Seok Choi et al [8] highlighted that the gpt-3.5-turbo model exhibited an 
accuracy rate of 87.7% in extracting information from pathology and ultrasound reports 
of breast cancer patients. This achievement represents a notable advancement over 
traditional natural language processing models. The authors emphasized the crucial 
role of well-designed prompts in maximizing the capabilities of LLMs, as these prompts 
significantly influence model output and performance. In an estimated comparison, the 
LLM methods demonstrated superior efficiency in terms of time and costs compared 
to the manual method. 

 

Constructing an Oncological Information System at HUVM 
In 2018, the Department of Radiation Oncology at HUVM initiated the implementation 
of the Mosaiq system, transitioning towards a paperless workflow and centralizing all 
radiation therapy treatment data within the application. As detailed by Bertolet et al [9], 
this data was automatically exported to JSON files via Word documents and VBA code. 
Subsequently, a MongoDB database was developed to efficiently store and access 
this data, integrating additional information from other systems such as DICOM 
treatment plans, administrative data sourced from the Andalusian Public Health 
Service (SSPA), and patient histories from its electronic health record (EHR) system, 
DIRAYA. As the culmination of this process, we developed SIOW (Web Oncological 
Information System), a web application for managing, consulting, and visualizing this 
integrated information. Figure 1 depicts a diagram illustrating the flow and organization 
of the described data. 
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Figure 1: Representative diagram of the Web Oncological Information System (SIOW). It illustrates the 
integration of data from MOSAIQ and TPS into the MongoDB database, and its subsequent 
management through SIOW, including the collection of administrative data from the Users Data Base 
(BDU) and clinical data from the EHR system DIRAYA. 

Motivated by the capabilities of LLMs, we aimed to investigate their potential 
application in extracting and structuring information from clinical reports. Our 
overarching objective is to integrate LLM-based tools into our information system, 
enhancing the richness of our real-world datasets. Specifically, in this study, we assess 
the capability of the GPT 3.5 and 4 models as tools for data mining applied to the 
identification and classification of comorbidities and relevant lifestyle risk factors in 
oncological texts. We compare their performance against that of specialized human 
evaluators to gauge their efficacy and suitability for clinical use. 

 

Methods 

OpenAI API 
The application programming interface (API) of OpenAI [10] allows interaction with 
their advanced LLMs, facilitating various language processing tasks such as 
generating automatic textual responses, conducting sentiment analysis, and 
summarizing texts. In our study, we leverage the chat.completions.create function of 
the API to extract structured information from unstructured clinical reports. 

OpenAI offers a comprehensive library of natural language processing models. Each 
model features unique characteristics in terms of size, language comprehension 
ability, speed, and cost. In our study, we have employed two models from the library: 
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- gpt-4-1106-preview: Positioned among the most sophisticated within the GPT-
4 series, this model is engineered to deliver highly accurate outcomes for 
complex natural language processing tasks. Its exceptional ability to 
comprehend text makes it well-suited for interpreting medical jargon and the 
linguistic variability present in clinical reports. 

- gpt-3.5-turbo-1106: Representing a more cost-effective and faster option from 
the previous generation (GPT-3.5), this model, while not as advanced as GPT-
4, remains effective for many NLP tasks. It is particularly valuable for 
applications that demand quicker responses and reduced token consumption. 

A noteworthy feature of these models is their capability to structure responses in JSON 
format. By setting the response_format to {"type": "json_object"} in the API requests, 
we engage JSON mode, which directs the model to organize its responses into a 
structured JSON object. JSON mode allows us to receive responses already formatted 
for direct integration into databases and applications, eliminating the need for 
additional processing steps to organize the model's output. This streamlines the 
integration process and enhances the efficiency of utilizing the model's outputs in 
downstream applications. 

For this study, we utilized clinical reports in Spanish, exclusively interacting with 
OpenAI's LLMs in this language. Although LLMs typically exhibit superior performance 
in English, owing to the predominance of this language in training data, recent 
comparisons indicate notable effectiveness in other languages, including Spanish. The 
GPT-4 technical report [5] highlights this multilingual capability, demonstrating that 
performance in Spanish closely approaches that of English, with a minimal difference 
of only 1.5 percentage points in the MMLU evaluation [11]. 

 

Prompt generation 
To interact with the LLM models, we first create a prompt that will guide the model 
through the specific task. The context provided to the model establishes a scenario in 
which it is asked to assume the role of a specialist in radiation oncology. This setting 
serves as a reference framework, enabling the model to adopt the appropriate 
perspective and apply its natural language understanding capabilities in a manner 
consistent with the medical domain.  

Our request is a direct instruction to the model, directing it to process the text of the 
provided clinical report and return the relevant information in a structured format. 
Specifically, the model is instructed to utilize the clinical report provided at the end of 
the prompt to complete a predefined dictionary in JSON format. This dictionary 
contains keys related to comorbidities and lifestyle risk factors. The model is tasked 
with updating the values of these keys with "YES" or "NO" as appropriate. For 
individuals who are ex-smokers, the model should use "EX" instead. Additionally, the 
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model must identify and add any other relevant comorbidities not classifiable under 
the provided categories, assigning them to the "Other" key. 

This is the prompt generated for the task: 

• Context: "Act as a specialist in radiation oncology." 
• Request: "Use the clinical report provided at the end of this prompt to return in 

JSON format the dictionary [...] with the values 'YES' or 'NO'. For the 'Smoker' 
field: 'YES' if they smoke, 'NO' if they have never smoked, 'EX' if they are an 
ex-smoker. For the 'Other' field, return a list of comorbidities found that cannot 
be classified in any of the categories of the keys of the provided dictionary, or 
empty if there are no other comorbidities. Return only the dictionary with the 
updated values, DO NOT ADD OR MODIFY KEYS. Clinical report: [text of the 
clinical report]" 

The dictionary mentioned in the request is structured with keys labeling the specific 
comorbidities and lifestyle risk factors we seek to identify. These comorbidities, along 
with their potential values, are outlined in Table 1. 

Table 1: List of the labels, possible values, and description of the comorbidities and lifestyle risk factors 
considered in this study.  

Label Values Description 
Diabetes YES/NO Elevated blood glucose levels 

HBP YES/NO High Blood Pressure 
Smoker YES/NO/EX Smoking habit. 

Dyslipidemia  YES/NO Lipid metabolism disorder 
Liver Disease YES/NO Liver Disease 

COPD YES/NO Chronic Obstructive Pulmonary Disease 
Depression YES/NO Mood disorder 

Kidney Disease YES/NO Kidney Disease 
Fentanyl YES/NO Use of WHO step 3 analgesics. (Opioids) 

Heart Disease YES/NO Heart Disease 
Hyperthyroidism YES/NO Thyroid disease with increased thyroxine 
Hypothyroidism YES/NO Thyroid disease with decreased thyroxine 

Dependent YES/NO Patient in need of continuous care 
Other Text list Other past comorbidities detected not listed above. 

 
During a postprocessing phase, we divided the category labeled as "smoker" into two 
distinct categories: "smoker" (representing current smokers) and "ex-smoker". This 
division was implemented to ease the subsequent analysis of the results. 

It's important to highlight that the prompt does not provide context or additional 
instructions regarding how the specified comorbidities of interest should be 
interpreted. 
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The development of this prompt was achieved through an iterative process applied to 
a group of 50 reports that were specifically reserved for this purpose. The methodology 
included the following steps: 

1. Prompt Definition: Establishing the parameters and structure of the prompt to 
guide the model's responses. 

2. Information Extraction: The developed prompt was applied to 50 reports 
using the GPT-4-1106-preview model. 

3. Verification of Structure: It was ensured that the model's responses adhered 
to the requested structure, with previous steps being repeated in case of 
deviations. 

4. Accuracy Evaluation: A specialist physician (AW) verified the accuracy of the 
model's responses. This process was repeated until the accuracy met or 
exceeded that of a manual analysis performed by the same physician. 

 

Python Script 
The Python script developed utilizes the OpenAI API to automatically structure textual 
clinical information. The process begins with reading patient clinical reports stored in 
an Excel file, followed by generating individual prompts for each patient using the 
get_query_prompts function. These prompts are then passed to the extract_info_gpt 
function, which invokes the OpenAI API and receives the structured information 
directly in a JSON format. The script also calculates the estimated cost and execution 
time and saves the results and query details in an Excel file for further analysis. All the 
code developed for this work is openly available in a GitHub the repository [12]. 

 

Clinical Report Acquisition Procedure 
The clinical reports for our study were provided by the hospital's Innovation & Data 
Analysis department. These reports were delivered in an Excel spreadsheet format, 
organized into two essential columns: one containing the clinical history number of 
each patient and another with the text of the medical personal history report. The 
department responsible for data collection undertook a process of anonymization and 
randomization of the reports to ensure an unbiased selection. 

 

Sample Selection Criteria 
For estimating the sample size, we relied on the proportion of comorbidities (80%) 
obtained from a prior analysis of a dataset of 5257 personal history reports from 
patients treated in our service between May 2018 and October 2022. Detection was 
performed using keywords and their variants (diabetes, hypertension, dyslipidemia, 
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etc.) through Boolean operators and with search and reference functions in Microsoft® 
Excel® for Microsoft 365 MSO (version 2312). 

The comorbidities selected for the study were chosen based on prior knowledge of 
prevalences in the general population and those presented by our patients according 
to the aforementioned analysis. We also considered those that could most significantly 
impact the clinical outcome of oncological treatments. 

With these considerations, we conducted a preliminary calculation that established the 
need to include 250 clinical reports (see below in the statistical analysis section). 
Based on this calculation, we selected the first 250 patients from the provided list who 
had a non-empty personal history report. Before proceeding with the analysis, we 
validated that our script was capable of correctly interpreting an empty report as 
equivalent to the absence of comorbidities, thereby avoiding biases in the study 
results. 

 

Ethical Considerations and Data Protection 
The text processed by the selected LLMs is strictly confined to personal history 
reports. These reports were stripped of any information that could lead to patient 
identification, ensuring confidentiality and anonymity. The model’s interpretation of the 
texts focuses solely on identifying and structuring data relevant to the study, without 
compromising individual privacy. 

The study's design and methodology have been communicated to and reviewed by 
the hospital's ethics committee. The research received the necessary approval, 
confirming that it adheres to the ethical standards required for patient data research. 

This retrospective study adheres to the guidelines outlined in the seventeenth 
additional provision, specifically Health Data Processing, Section d) of the Organic 
Law 3/2018, dated December 5, on Personal Data Protection and Guarantee of Digital 
Rights. This law governs the use of pseudo-anonymized personal data for health 
research purposes. The study was granted an exemption from requiring informed 
consent due to its exclusive use of non-identifiable data.  

On January 18, 2024, the Ethics Committee of the University Hospitals Virgen 
Macarena and Virgen del Rocío issued a favorable opinion for our study, under the 
reference EC_IA_V1 (Version 1-Dec-2023). 

 

Manual Extraction 
The 250 patient clinical reports were divided into five groups, each consisting of 50 
reports. These groups were randomly assigned to five physicians, including three 
specialists in radiation oncology and two residents in the same field. 
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To ensure uniform and accurate data collection, the physicians were provided with a 
specially designed Excel template for this task. The template features a table where 
the first column contains the full texts of the clinical reports. The subsequent columns 
of the table are labeled with the comorbidities of interest. The cells corresponding to 
each comorbidity only allow the selection of predefined values, as stipulated in Table 
1. This restriction ensures consistent annotation and reduces the possibility of errors 
or variations in the entries. 

 

Automatic Extraction 
The 250 clinical reports in the sample were automatically analyzed using our script 
with the gpt-3.5-turbo-1106 and gpt-4-1106-preview models. To maintain a consistent 
structure in the study, these reports were organized into the same five groups of 50 
reports that were assigned to the physicians. The results were recorded in an Excel 
document, mirroring the structure of the template used in the manual extraction. This 
uniformity in documentation facilitates a direct comparison of results between manual 
and automatic extraction methods. 

 

Establishing the Ground Truth 
To assess the comparative accuracy and effectiveness of the LLMs used in this study 
against the evaluations performed by physicians, it is crucial to establish a reference 
dataset containing the ground truth. To construct this reference dataset, we first 
compared the results obtained from the physicians and the gpt-4-1106-preview model 
across all 250 reports, identifying and recording any discrepancies between the two 
sources. The detected differences were then subjected to further review by an expert 
physician (AW). For each report where discrepancies in the results were found, 
physician AW assessed both responses (from the physician and the AI) and 
determined which one was correct. 

 

Assessing Reproducibility in Results 
The non-deterministic nature of LLMs, such as GPT-3.5 and GPT-4, means they can 
generate different responses to identical requests [5]. This phenomenon, coupled with 
the potential for periodic retraining of the models, significantly impacts the 
reproducibility of results. Therefore, it is crucial to consider the need for rigorous quality 
control for algorithms that employ LLMs, especially to assess the impact of any 
changes in the models. 

A well-defined and explicit prompt can increase the reproducibility of responses. 
However, variability remains a possibility, particularly in situations where the 
information is ambiguous, or the prompt is not clear or specific enough. 
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To measure the consistency of our automatic extraction method, we repeated the 
analysis of the 250 clinical reports 10 times over 10 consecutive days. This approach 
allows us to observe the stability of the model responses to the same input. 

 
Statistical Analysis 
To ensure the statistical validity of the study, a significance level of 5% (alpha error) 
and a power of 80% (beta error of 20%) were established. Additionally, a 5% error 
margin was applied for 95% confidence intervals. With these considerations in mind, 
it was determined that the sample size (n) should include 245 patient records. To adjust 
the sample to a practical number, it was rounded up, resulting in a final sample size of 
250. 

Figure 2: Flowchart of the study design. 

For a comprehensive analysis, we consolidated the results from the 250 reports into 
a single category named “Physicians,” representing the aggregated findings of the five 
doctors involved in the study. Subsequently, we compared this category and the results 
from the GPT-3.5 and GPT-4 models with the reference dataset, considered as the 
ground truth. In this process, a confusion matrix was created for each report and 
comorbidity, from which several key statistical estimators were derived. 

To assess the agreement, we employed the Kappa index. The McNemar's test was 
used to determine if there were significant differences in the proportions of 
discordance between the classifications. We chose the F-score as a measure of 
balance between precision and sensitivity, which is crucial in a classification model. 
The calculated metrics are presented in the Table 2. 
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Table 2: Metrics used in the study with their descriptions. 

Metric Description 
TP True Positives 
TN True Negatives 
FP False Positives 
FN False Negatives 

Sensitivity TP/(TP+FN) 
Specificity TN/(FP+TN) 
Precision TP/(TP+FP) 

Prevalence (TP+FN)/(TP+TN+FP+FN) 
Accuracy (TP+TN)/(TP+TN+FP+FN) 

Kappa (Pobs-Pesp)/(1-Pesp) 
F-score (2*Precision*Sensibility)/(Precision+Sensibility) 

McNemar Exact-P-value from McNemar test (binomial distribution) 

 

For some of these metrics, we calculated their confidence interval using the 
bootstrapping method. This approach starts from the frequencies of True Positives 
(TP), True Negatives (TN), False Positives (FP), and False Negatives (FN) to generate 
1,000 resamples. With these resamples, we recalculated the metrics to obtain a 
distribution that allows us to calculate the 95% confidence interval. 

Additionally, a detailed analysis was conducted on the groups of 50 reports assigned 
to each physician. This analysis focused on measuring the variability in evaluations 
among different physicians. For each patient and comorbidity, Cohen's kappa index 
was calculated in comparison with the ground truth for the results of each physician. 

The reproducibility of the GPT-3.5 and GPT-4 models was assessed by quantifying 
the number of different responses for each patient and comorbidity across the 10 
repeated analyses conducted on successive days. 

 

Analysis of Discrepant Results 
A detailed analysis of discrepancies between the evaluators' results and the 
established Ground Truth was conducted by the same physician who defined the 
reference dataset. This analysis covered each report with discrepancies in the 
identification of comorbidities, identifying the probable causes of each deviation. 

Discrepancies were classified according to the nature of the detected errors: 

• Differences in criteria: Variations in the interpretation of the relevance of 
reported pathologies. 

• Incorrect interpretation: Misunderstandings caused by confusing wording. 
• Incorrect inference: Erroneous deductions when the comorbidity is not 

explicitly mentioned. 
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• Ambiguous text: Textual ambiguity that allows for multiple interpretations. 
• Error/Hallucination: Unjustified errors, attributed to human distractions or AI 

hallucinations. 
• Error in Ground Truth: Corrections made upon review that validate the 

evaluator's interpretation. 
• Explicit omission: Overlooking direct mentions of comorbidities. 
• Omission by context: Failure to notice comorbidities deducible from the 

context or medication. 
• Unrecognized acronyms: Inability to interpret specific medical acronyms. 

 

Results 

Cost and time analysis by model 
Table 3 details the cost and total time invested in analyzing the 250 reports using the 
GPT-3.5 and GPT-4 models. It is noted that GPT-4, being a larger and more complex 
LLM compared to GPT-3.5, incurs longer processing times and a cost approximately 
10 times higher. Extrapolating these data to the entire set of 7,500 patients currently 
registered in our database, processing with GPT-4 would require about 24 hours and 
would cost approximately 76 dollars. On the other hand, using GPT-3.5 would reduce 
the processing time to about 9 hours, with a significantly lower cost of around 7 dollars. 

Table 3: Execution times and costs in dollars for the analysis of the 250 reports with each of the 
models used. 

Model Time (min) Cost ($) 
gpt-3.5-turbo-1106 18.63 0.23 
gpt-4-1106-preview 47.65 2.53 

 

Prevalences 
The analysis of our Ground Truth sample reveals a wide range of prevalences in 
comorbidities and lifestyle risk factors among oncological patients. These are detailed 
in Table 4, where both the number of cases and the prevalence for each comorbidity 
are reported. The most common conditions include high blood pressure and 
dyslipidemia, present in almost half and a third of the cases, respectively. On the other 
hand, conditions like hyperthyroidism and liver disease show relatively low prevalence. 
Categories related to smoking are also highly frequent, accounting for almost 50% of 
the cases. Interestingly, the proportion of ex-smokers significantly exceeds that of 
current smokers. 
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Table 4: Number of reports, out of the total 250 in the sample, that indicate each comorbidity and the 
corresponding prevalence. 

Condition #Cases Prevalence 
Diabetes 64 25.6% 

HBP 116 46.4% 
Smoker 37 14.8% 

Dyslipidemia 77 30.8% 
Hypothyroidism 21 8.4% 

COPD 17 6.8% 
Depression 25 10.0% 

Kidney disease 39 15.6% 
Fentanyl 19 7.6% 

Heart disease 43 17.2% 
Hyperthyroidism 1 0.4% 

Liver disease 13 5.2% 
Dependent 12 4.8% 
Ex-smoker 85 34.0% 

Evaluation metrics 
Table 5 display the values of true positives, false positives, true negatives, and false 
negatives, detailed by comorbidity, derived from the comparison with the Ground Truth 
dataset. 

Table 5: Tables displaying the results for true positives (TP), true negatives (TN), false positives (FP), 
and false negatives (FN) for each comorbidity, obtained by each of the evaluators (Physicians, GPT-
3.5, and GPT-4). 

 Physicians GPT-3.5 GPT-4 

 TP TN FP FN TP TN FP FN TP TN FP FN 
Diabetes 63 185 1 1 54 186 0 10 63 186 0 1 

HBP 110 133 1 6 113 132 2 3 114 133 1 2 

Smoker 37 209 4 0 36 212 1 1 36 213 0 1 

Dyslipidemia 67 173 0 10 67 172 1 10 74 173 0 3 

Hypothyroidism 19 229 0 2 19 229 0 2 20 227 2 1 

COPD 16 233 0 1 15 233 0 2 16 231 2 1 

Depression 25 224 1 0 21 220 5 4 22 223 2 3 

Kidney disease 15 211 0 24 21 211 0 18 38 208 3 1 

Fentanyl 18 231 0 1 18 230 1 1 19 230 1 0 

Heart disease 38 207 0 5 30 205 2 13 40 205 2 3 

Hyperthyroidism 0 249 0 1 0 249 0 1 1 249 0 0 

Liver disease 9 236 1 4 12 234 3 1 13 234 3 0 

Dependent 12 234 4 0 11 238 0 1 10 238 0 2 

Ex-smoker 76 165 0 9 85 161 4 0 85 163 2 0 
Total 505 2919 12 64 502 2912 19 67 551 2913 18 18 
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Figure 3 illustrates the performance of the physicians, GPT-3.5, and GPT-4 classifiers, 
broken down by comorbidity, across various metrics. The “Total” category, which 
consolidates the results for all studied comorbidities, enables direct comparison 
between the three evaluators on each assessed metric: 

• Sensitivity: The GPT-4 model (96.8%) demonstrates superiority over GPT-
3.5 (88.2%) and the physicians (88.8%) in most categories, showing notable 
effectiveness in detecting comorbidities. Although GPT-3.5 presents slightly 
lower results than the physicians, the difference is not statistically 
significant. 

• Specificity: All evaluators achieve high specificity values, which is expected 
given the low prevalences of the studied comorbidities and the relative ease 
of identifying the absence of a comorbidity in texts. The physicians (99.6%) 
excel in this metric, often achieving perfection, while both models (99.4%) 
score slightly lower due to a higher rate of false positives. 

• Precision: The physicians get the highest score (97.7% vs 96.4% and 
96.8%) assessing the proportion of correct positive identifications, possibly 
also influenced due to the models generating a higher number of false 
positives. 

• F-Score: Representing the harmonic mean between precision and 
sensitivity, the F-Score is particularly relevant in asymmetric samples like in 
our study. The GPT-4 model achieves the highest score (96.8%) on this 
indicator, surpassing both GPT-3.5 (92.1%) and the physicians (93.0%). 

• Accuracy (Agreement): In the proportion of correct identifications, GPT-4 
shows superior performance (99.0%), while GPT-3.5 (97.5%) and the 
physicians (97.8%) achieve similar results. 

• Cohen's Kappa Index: This index, measuring agreement adjusted for 
chance, reveals that GPT-4 reaches the highest scores (0.962), 
demonstrating greater consistency compared to the ground truth. The GPT-
3.5 score of 0.907, while marginally lower, does not significantly differ from 
the physicians' score of 0.917. 
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Figure 3: Statistical metrics comparison between three evaluators (Physicians, GPT-3.5, and GPT-4) 
for individual comorbidities and overall totals. Asymmetric error bars indicate the 95% confidence 
interval. 

Based on the results obtained, we can conclude that the GPT-4 model is notably better 
at identifying present comorbidities (fewer false negatives), while physicians are 
slightly more accurate in their diagnoses (fewer false positives). The GPT-3.5 model 
generally performs slightly below the physicians, though the differences found are not 
statistically significant. 

The application of McNemar's test to the “Total” category, comparing Physicians with 
GPT-3.5 and Physicians with GPT-4, yielded p-values of 0.79 and 10-6, respectively. 
This confirms that the performance differences between the physicians and the GPT-
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3.5 model are not statistically significant, while the differences between the physicians 
and GPT-4 are significant. 

 

Variability among physicians’ performance 
Table 6 displays the Cohen’s Kappa index values obtained in the detection of various 
comorbidities for each of the five physician evaluators. It is important to note that each 
physician analyzed a different group of 50 reports. 

Table 6: Concordance values for each comorbidity, calculated using Cohen's Kappa index for each 
medical evaluator. The “Total” categories summarize the aggregated concordance across all 
comorbidities and medical evaluators. 

 #M1 
senior 

#M2 
resident 

#M3 
senior 

#M4 
senior 

#M5 
resident 

TOTAL 
#HUM 

Diabetes 1.00 0.95 1.00 1.00 0.95 0.98 
HBP 1.00 0.96 0.83 0.96 0.96 0.94 

Smoker 1.00 1.00 0.88 0.86 0.93 0.94 
Dyslipidema 0.91 1.00 0.75 0.77 1.00 0.90 

Hypothyrodism 0.66 1.00 0.90 1.00 1.00 0.95 
COPD 1.00 1.00 1.00 0.66 1.00 0.97 

Depression 0.93 1.00 1.00 1.00 1.00 0.98 
Kidney disease 0.52 0.70 0.45 0.56 0.26 0.51 

Fentanyl 1.00 1.00 0.85 1.00 1.00 0.97 
Heart disease 0.95 1.00 0.91 0.79 1.00 0.93 

Hyperthyroidism - - - - 0.00 0.00 
Liver disease - 1.00 0.63 0.65 1.00 0.77 

Dependent 0.66 0.66 0.91 0.88 - 0.85 
Ex-smoker 0.95 1.00 0.87 0.76 1.00 0.92 

Total 0.95 1.00 0.87 0.76 1.00 0.92 
 

Overall, there was considerable similarity in the physicians' responses, except when 
the comorbidity to be detected was a broader concept, as in the case of “kidney 
disease” (kappa 0.51) or “liver disease” (kappa 0.77). It's important to note that no 
further instructions or explanations were provided beyond finding the comorbidity in 
the presented text. Therefore, some physicians considered that renal lithiasis was not 
a relevant "kidney disease” and reserved this category for conditions describing an 
alteration in renal function (such as chronic renal failure, for example). 

Interestingly, the senior physicians scored lower than the medical residents in the 
overall calculation for the Kappa index. 
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Reproducibility of models’ responses 
In our reproducibility study, each report was analyzed 10 times by the GPT-3.5 and 
GPT-4 models. For each comorbidity, we counted the number of different responses 
generated in these repeated analyses, as well as the total number of variations for 
each report. 

Figure 4 presents a histogram illustrating the number of reports that generated at least 
the specified number of different responses. This histogram reveals that, in all 
instances, the GPT-4 model exhibited fewer differences in responses compared to 
GPT-3.5, suggesting greater consistency and reliability in its results. 

Furthermore, it was found that 73.6% of the reports analyzed with GPT-4 reproduced 
the same result across all comorbidities during the 10 analyses, compared to 59.2% 
for GPT-3.5. This notable difference in reproducibility underscores the superiority of 
GPT-4 in maintaining consistency in its responses across multiple executions. 

 
Figure 4: For each model, the number of reports is shown in which at least the number of differences 

indicated on the x-axis were obtained in the 10 analyses. 

Variability in responses often stems from ambiguous text, where LLMs may assign 
values inconsistently. For example, a report describing a patient as an "active smoker 
(1 month since quitting, 1 pack/day since age 14-16)" resulted in GPT-3.5 identifying 
the patient as a smoker in six out of ten analyses, while GPT-4 made only one error 
across ten analyses. However, in the same report, regarding the comorbidity of COPD, 
GPT-4 shows a split: in five instances it identifies it as present and in five as absent. 
The physician reviewing the results and establishing the ground truth determined the 
absence of COPD, as it is not explicitly mentioned in the report. Nonetheless, the 
mention of “mild pulmonary emphysema areas” and the patient's prolonged smoking 
history could lead GPT-4 to infer the presence of COPD. 
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Discrepancy Analysis 
Figures 5 and 6 display the distribution of discrepant results categorized by the causes 
determined through a detailed manual analysis of the reports. 

 
Figure 5: Number of false positive results attributed to each of the considered causes. 

 
Figure 6: Number of false negative results attributed to each of the considered causes. 

A notable discrepancy arose in the "kidney disease" category due to differences in 
criteria. Some physicians and GPT-3.5 did not deemed certain renal pathologies, such 
as renal lithiasis, as relevant comorbidities in the context of oncology treatment, unlike 
GPT-4, which aligned its results more closely with the ground truth. 

In analyzing cases interpreted as hallucinations, it was found that this phenomenon 
occurred exclusively in 1 response from GPT-4 and in 6 from GPT-3.5, particularly in 
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the smoker and ex-smoker categories, possibly due to the use of the label “toxic 
habits,” even when referring to other habits like alcoholism. 

The models, especially GPT-4, tend to infer comorbidities from the context or reported 
medication more frequently than physicians, who exhibit a more conservative 
approach. This tendency leads to more false positives by the models, particularly when 
the medication does not imply the presence of comorbidity. 

GPT-3.5 exhibited difficulties in interpreting common medical acronyms such as “DM” 
for diabetes or “AF” for atrial fibrillation, whereas GPT-4 demonstrated a superior 
ability to recognize and correctly interpret most of these acronyms. 

Interestingly, GPT-4 displayed some false positives when encountering comorbidity 
labels followed by “:” without additional information, a misinterpretation not common in 
humans but observed in AI, particularly in GPT-4 more than in GPT-3.5. 

Human evaluators showed a greater tendency to overlook comorbidities explicitly 
reported, likely due to distraction or fatigue. 

Only three errors were identified in the determination of the ground truth, underscoring 
the reliability of the review process. 

Finally, we identified a category of discrepancies exclusive to the models, related to 
structural or formatting errors. This includes situations where the models' responses 
do not follow the guidelines specified in the prompt, resulting in outputs that do not 
meet the expected JSON format or that incorrectly alter and/or introduce comorbidity 
labels. Given that these incidents were limited, affecting less than 10 cases, it was 
decided to manually correct these formatting errors for inclusion in the subsequent 
analysis. 

 

Discussion 
It is important to highlight that	the categorization of observers as "Physicians," "GPT-
3.5," and "GPT-4" in our results presentation actually reflects the synergy between the 
specific models (gpt-3.5-turbo-1106 and gpt-4-1106-preview) and the prompt designed 
for our study. The efficacy of the GPT models in generating responses is inherently 
tied to the quality and structure of the prompts provided, suggesting that results could 
vary significantly with a redefinition of the prompt. Similarly, the performance of 
physicians in this study reflects not only their clinical competence but also the influence 
of the instructions they receive. Providing them with more detailed and specific 
guidelines might improve their responses. Thus, while our results offer valuable 
insights into the ability of GPT models within our study context, they also indicate the 
potential for optimization through prompt refinement. 

The superior sensitivity of GPT-4 is particularly noteworthy, indicating its advanced 
capability to accurately identify reported comorbidities, even when the information is 
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not directly evident in the text. However, both GPT-3.5 and GPT-4 models generate a 
comparable number of false positives, significantly higher than those recorded by 
physicians. Physicians' false positives typically stem from specific circumstances, 
such as ambiguity in clinical reports, variations in interpretation among professionals 
and, occasionally, inadvertent errors in the template filling process.  

In contrast, false positives from the GPT models seem to arise from a less 
conservative approach in determining comorbidity presence based on inferred 
context. These cases are also more likely to generate less reproducible responses 
due to the nondeterministic nature of LLMs. 

It's worth noting that in these cases, the criterion adopted by physicians to establish 
the Ground Truth favored the more conservative approach, considering only an 
unreported comorbidity when the medication or context necessarily implied such a 
comorbidity. Whether this criterion is preferable to that shown by the GPT models can 
only be determined through an analysis of the complete medical history confirming or 
refuting the presence of the comorbidity. 

Such discrepancies, stemming from variations in criteria interpretation, can be 
mitigated by employing prompts with clearer instructions on the interpretation of 
different comorbidities. This emphasizes the importance of refining prompts to 
enhance the consistency and accuracy of LLM-generated responses in clinical 
contexts. 

Despite the remarkable capacity of current LLMs as potential tools for data mining in 
clinical reports, questions arise regarding the practical utility of this real-world data for 
use in research and the generation of real-world evidence [13]. This is primarily due 
to the variability, subjectivity, and lack of structure in these reports, which can 
compromise the quality and reliability of the extracted data, thereby affecting their 
applicability in clinical research contexts. 

Therefore, while LLMs represent a promising innovation to overcome the limitations of 
unstructured data, implementing more structured clinical recording practices could 
provide a more sustainable and reliable solution for generating real-world clinical 
evidence. This duality underscores the need for a balanced approach that integrates 
the advantages of advanced AI technology with good clinical data management 
practices. 

Conclusions 
This study has established that the OpenAI LLMs examined exhibit comparable, if not 
superior, competence to medical specialists in interpreting and extracting relevant 
information from clinical reports. Remarkably, the gpt-4-1106-preview model has 
shown significant superiority compared to both gpt-3.5-turbo-1106 and medical 
evaluators across the metrics analyzed. 
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When considering cost and processing time benefits in comparison to human 
intervention, the examined models present a notable advantage in both cost and time 
efficiency. This efficiency is evidenced not only by faster data processing but also by 
reduced associated operational expenses, providing an economically feasible solution 
for large-scale clinical data analysis. 

Additionally, the accessibility of these models via an API and their capability to deliver 
results in a structured format (JSON) broaden their applicability in data mining. This 
facilitates the processing of voluminous collections of clinical reports and enables their 
direct integration with databases and other applications, thereby empowering research 
and healthcare management. 

In conclusion, this study highlights the transformative potential of LLMs in the 
healthcare sector, redefining methodologies for the extraction and analysis of clinical 
data. Nonetheless, continuous evaluation of these models is essential to enhance their 
accuracy and applicability, while also emphasizing the importance of advancing 
towards more structured clinical records. 
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