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Abstract 
 

Parkinson's disease (PD) often shows disrupted brain connectivity and autonomic 

dysfunctions, progressing alongside with motor and cognitive decline. Recently, PD has been 

linked to a reduced sensitivity to cardiac inputs, i.e., cardiac interoception. Altogether, those 

signs suggest that PD causes an altered brain-heart connection whose mechanisms remain 

unclear. Our study aimed to explore the large-scale network disruptions and the 

neurophysiology of disrupted interoceptive mechanisms in PD. We focused on examining the 

alterations in brain-heart coupling in PD and their potential connection to motor symptoms. We 

developed a proof-of-concept method to quantify relationships between the co-fluctuations of 

brain connectivity and cardiac sympathetic and parasympathetic activities. We quantified the 

brain-heart couplings from EEG and ECG recordings from PD patients on and off dopaminergic 

medication, as well as in healthy individuals at rest. Our results show that the couplings of 

fluctuating alpha and gamma connectivity with cardiac sympathetic dynamics are reduced in 

PD patients, as compared to healthy individuals. Furthermore, we show that PD patients under 

dopamine medication recover part of the brain-heart coupling, in proportion with the reduced 

motor symptoms. Our proposal offers a promising approach to unveil the physiopathology of 

PD and promoting the development of new evaluation methods for the early stages of the 

disease. 
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Introduction 
The understanding about the physiopathology and clinical phenotype of Parkinson’s 

disease (PD) remains limited. PD is known to affect motor function, but non-motor symptoms 

such as autonomic dysfunction have a significant impact on patients' quality of life [Schapira 

et al., 2017]. Autonomic dysfunction can involve various bodily systems, including 

gastrointestinal, cardiovascular, urinary, erectile, thermoregulatory, and pupil contraction 

systems [Jain, 2011; Sharabi et al., 2021]. PD may also disrupt the awareness of one's own 

heartbeats, as measured from cardiac interoception tasks [Hazelton et al., 2023; Ricciardi et al., 

2016; Salamone et al., 2021; Santangelo et al., 2018], suggesting a disruption in the 

communication between the brain and the heart. Traditionally, cardiac interoception research 

relied on patients sensing their heartbeats through bodily sensations [Garfinkel et al., 2015]. 

However, recent advances have highlighted the value of objective markers of brain-heart 

interactions derived from physiological signals [Azzalini et al., 2019]. These markers represent 

the integrity and dynamics of the brain-heart communication, offering insights into the state of 

interoceptive pathways [Candia-Rivera, 2022]. This approach has proven valuable in 

diagnosing and predicting outcomes for brain-injured patients [Candia-Rivera and Machado, 

2023; Hermann et al., 2024], demonstrating the potential of measuring brain-heart interactions 

to assess physiological states. 

The study of PD physiopathology has tried to identify various patterns of brain activity 

to characterize the condition [Conti et al., 2022; Jackson et al., 2019; Leviashvili et al., 2022; 

Swann et al., 2015]. Because PD is a condition that can affect multiple parts of the nervous 

system, rather than being exclusively a focal brain region pathology [Gratton et al., 2019; Wang 

et al., 2021]. These physiological changes may not necessarily serve as definitive hallmarks for 

characterizing the disease, which is rooted in our limited understanding of their underlying 

mechanisms [Palma and Kaufmann, 2014]. Notably, research has shown that the damage 

occurring in multiple parts of the nervous system impacts global brain dynamics [Hammond et 

al., 2007]. However, understanding how this neural damage disrupts normal oscillatory 

functioning, leading to the disruption of motor functions, remains unclear [Candia-Rivera et al., 

2024; Silberstein et al., 2005; Weinberger et al., 2006]. Studies employing various approaches 

have revealed that PD causes abnormal connectivity throughout various levels of the basal 

ganglia–cortical loop [Rivlin-Etzion et al., 2006], which may better explain motor deficits. The 

inhibition of this abnormal connectivity has given insights into diverse therapeutic strategies in 
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mitigating motor impairment in Parkinson's disease patients [Kühn et al., 2008; Wingeier et al., 

2006].  

In this study, we propose examining PD through the investigation of large-scale network 

disruptions, including those affecting the brain-heart communication. Given existing evidence 

suggesting that PD induces alterations in global brain networks [Hammond et al., 2007] 

alongside autonomic dysfunctions [Candia-Rivera et al., 2024; Sharabi et al., 2021], our 

hypothesis posits that a more comprehensive characterization can be achieved by exploring how 

the disease alters the brain-heart connection and understanding its relationship with dopamine 

and disrupted motor function. In this line, existing evidence has revealed that brain-heart 

interplay has a close relationship with motor excitability and associated behavioral responses 

[Agrimi et al., 2023; Al et al., 2023; Chen et al., 2023; Larra et al., 2020; Palser et al., 2021; 

Rae et al., 2018; Ren et al., 2022]. However, in the PD realm, limited evidence exists on their 

brain-heart interplay, which uniquely refers to changes in the central control of cardiac 

dynamics are linked with the severity of autonomic dysfunctions [Iniguez et al., 2022].  

We hypothesized that PD alters the interplay between brain connectivity and cardiac 

dynamics, and that these alterations may be associated to PD symptoms beyond dysautonomia, 

such as motor outcomes, as a result of the disruption of the mechanisms in charge of shaping 

brain network dynamics [Shine, 2019]. This framework goes beyond state-of-the-art 

approaches for estimating brain-heart interplay [Candia-Rivera et al., 2021], which typically 

rely on gathering interactions between heartbeats and a single brain region. To do this, we 

propose a new framework for quantifying the relationship between brain connectivity and 

cardiac sympathetic and parasympathetic activities. Our study includes EEG and ECG from 16 

healthy participants and 15 patients with mild to moderate PD stage [George et al., 2013], that 

underwent motor evaluation. PD patients were measured on and off dopaminergic therapy to 

further assess the impact of medication on motor symptoms and brain-heart interactions. 
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Materials and methods 

Dataset description 
The dataset [George et al., 2013; Rockhill et al., 2021] includes 15 PD patients (7 males 

and 8 females, median age = 63± 8 years) and 16 healthy participants (HS, 7 males and 9 

females, median age = 60.5±8 years). The median disease duration is 3±2 years (range 1 to 12 

years). PD patients were diagnosed by a movement disorder specialist at Scripps clinic in La 

Jolla, California. The patients were assessed using the Unified Parkinson's Disease Rating Scale 

(UPDRS), section III, to evaluate the motor symptoms [Ramaker et al., 2002], whose scores are 

presented in Table I. 

Participants provided written consent in accordance with the Institutional Review Board 

of the University of California, San Diego, and the Declaration of Helsinki. Details on the 

demographic information of each participant are available in the original studies from this 

cohort [George et al., 2013; Rockhill et al., 2021]. 

PD patients’ data were collected under on- and off-medication. On- and off-medication 

conditions were collected on different days with a counterbalanced order. For the on-medication 

recordings, patients continued their typical medication regimen. For the off-medication state, 

patients discontinued medication use at least 12 h before the session.  

EEG data were acquired using a 32-channel BioSemi ActiveTwo system, together with 

a one-lead ECG, sampled at 512 Hz at rest for approximately 3 min.  

 

Table I. Dataset demographic information and clinical assessments. 

Participant id 

Age 
range 
(years) Sex 

Disease 
duration 
(years) 

UPDRS 
III (on) 

UPDRS 
III (off) 

HS 1 51-55 f n/a 
  

HS 2 51-55 f n/a 
  

HS 3 51-55 f n/a 
  

HS 4 51-55 f n/a 
  

HS 5 71-75 f n/a 
  

HS 6 56-60 f n/a 
  

HS 7 56-60 m n/a 
  

HS 8 66-70 m n/a 
  

HS 9 70-75 m n/a 
  

HS 10 61-65 f n/a 
  

HS 11 71-75 f n/a 
  

HS 12 56-60 f n/a 
  

HS 13 66-70 m n/a 
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HS 14 81-85 m n/a 
  

HS 15 56-60 m n/a 
  

HS 16 71-75 m n/a 
  

PD 1 51-55 f 9 
33 43 

PD 2 66-70 f 2 
22 28 

PD 3 61-65 f 8 
34  40 

PD 4 51-55 f 12 
16 32 

PD 5 71-75 f 1 
20 20 

PD 6 71-75 m 1 
44 47 

PD 7 61-65 m 2 
54 49 

PD 8 61-65 m 2 
31 38 

PD 9 71-75 m 2 
27 32 

PD 10 51-55 m 2 
30 30 

PD 11 66-70 f 6 
30 38 

PD 12 4§-50 m 6 
42 58 

PD 13 66-70 f 3 
36 44 

PD 14 71-75 f 3 
25 42 

PD 15 61-65 m 9 
46 48 

PD: Parkinson’s disease, HS: Healthy state, f: Female, m: Male, UPDRS: Unified Parkinson's Disease Rating Scale, n/a: It does not apply. 

 

EEG processing 
EEG data were pre-processed using MATLAB R2022b and Fieldtrip Toolbox 

[Oostenveld et al., 2011]. Data were bandpass filtered with a fourth-order Butterworth filter, 

between 0.5 and 45 Hz. To mitigate substantial movement artifacts, we employed a wavelet-

enhanced independent component analysis (ICA) for the efficient removal of these artifacts 

from individual components [Gabard-Durnam et al., 2018]. Subsequently, we reconstructed 

EEG signals for further analysis. A second round of ICA was conducted to specifically identify 

components associated with eye movements and cardiac-field artifacts, which were then 

systematically set to zero. To this end, one lead ECG was included as an additional input to the 

ICA to enhance the process of finding cardiac artifacts. Once the ICA components with eye 

movements and cardiac artifacts were visually identified, they were set to zero to reconstruct 

the EEG series. The results of this step were eye-movements and cardiac-artifact-free EEG data. 

Channels were re-referenced using a common average [Candia-Rivera et al., 2021].  

 

ECG processing 
ECG time series were bandpass filtered using a fourth-order Butterworth filter, between 

0.5 and 45 Hz. The R-peaks from the QRS waves were identified with an automatized process, 
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followed by a visual inspection of misdetections. The procedure was based on a template-based 

method for detecting R-peaks [Candia-Rivera et al., 2021]. All the detected peaks were visually 

inspected over the original ECG, along with the inter-beat intervals histogram. Manual 

corrections of misdetections were performed if needed. The mean RR intervals, together with 

cardiac sympathetic and parasympathetic activities were computed to compare HS vs PD, and 

on vs off dopamine medication conditions. 

 

Computation of cardiac sympathetic and parasympathetic indices 
The cardiac sympathetic and parasympathetic activities were estimated through a 

method based on the time-varying geometry of the interbeat interval (IBI) Poincaré plot 

[Candia-Rivera, 2023]. Poincaré plot is a non-linear method to study heart rate variability and 

depicts the fluctuations on the duration of consecutive IBIs [Brennan et al., 2001]. The features 

quantified from Poincaré plot are the SD1 and SD2, the ratios of the ellipse formed from 

consecutive changes in IBIs, representing the short- and long-term fluctuations of heart rate 

variability, respectively [Sassi et al., 2015]. 

The ellipse ratios for the whole experimental condition SD!" and SD!# are computed as 

follows: 

𝑆𝐷!" 	= 	'
1
2	𝑠𝑡𝑑(𝐼𝐵𝐼

$)# (1) 

𝑆𝐷!# 	= 	'2	𝑠𝑡𝑑(𝐼𝐵𝐼)# −
1
2	𝑠𝑡𝑑(𝐼𝐵𝐼

$)#	 
(2) 

 

where IBI$ is the derivative of IBI and std() refers to the standard deviation.  

The fluctuations of the ellipse ratios are computed with a sliding-time window, as shown 

in Eq. (3) and (4): 

 

𝑆𝐷"(𝑡) 	= 	'
1
2	𝑠𝑡𝑑(𝐼𝐵𝐼

$
%!)# 

(3) 

 

𝑆𝐷#(𝑡) 	= 	'2	𝑠𝑡𝑑(𝐼𝐵𝐼%!)# −
1
2	𝑠𝑡𝑑(𝐼𝐵𝐼

$
%!)#	 (4) 

 

where Ω&:	t	– 	T	 ≤ 	 t' 	≤ 	t, in this study T is fixed in 15 seconds. 
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The Cardiac Parasympathetic Index (CPI) and Cardiac Sympathetic Index (CSI) are 

computed as follows: 

𝐶𝑃𝐼(𝑡) = 𝑆𝐷!" + 𝑆𝐷"@@@@@(𝑡)	 
(5) 

 

𝐶𝑆𝐼(𝑡) = 𝑆𝐷!# + 𝑆𝐷#@@@@@(𝑡)	 (6) 

 

where SD(@@@@@ is the demeaned SD( 

For a comprehensive description of the method, see [Candia-Rivera, 2023].  

 

EEG connectivity fluctuations 
The EEG spectrogram was computed using the short-time Fourier transform with a 

Hanning taper. Calculations were performed through a sliding time window of 2 seconds with 

a 50% overlap, resulting in a spectrogram resolution of 1 second and 0.5 Hz. Time series were 

integrated within three frequency bands (alpha: 8-12 Hz, beta: 12-30 Hz, gamma: 30-45 Hz). 

Those definitions were based on previous EEG connectivity findings in PD, e.g., [Conti et al., 

2022]. It is important to note that the definition of frequency bands, as well as the overlap 

between them, exhibits some variability in the literature. Therefore, a careful consideration 

should be given to these definitions. 

Since connectivity measures were assessed at the scalp level, we performed symmetry 

tests to ensure that participant groups did not significantly differ in asymmetry-symmetry 

balance, which could arise due to volume conduction artifacts. To achieve this, we calculated 

the Asymmetry-Symmetry Ratio (ASR) developed by Haufe and colleagues [Haufe et al., 

2012]. This ratio offers an indication of asymmetry-symmetry balance based on covariance 

matrices across EEG channels. ASR computations were conducted for the alpha, beta, and 

gamma bands. We then utilized Wilcoxon-Mann-Whitney tests to assess whether ASR varied 

across the three conditions: healthy state, Parkinson's disease on dopamine medication, and off 

dopamine medication. 

The directed time-varying connectivity between power series of two EEG channels was 

quantified using an adaptative Markov process [Al-Nashash et al., 2004]. The algorithm 

consisted in a first-order autoregressive model, which was aimed for capturing the directed 

temporal dynamics of an EEG channel, by leveraging on the dependency of its past values and 

another EEG channel, represented as the external term in the model. The use of a first-order 

model provides a parsimonious description of the autocorrelation structure of the time series, 
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with a good compromise on accuracy [Al-Nashash et al., 2004; Bai et al., 2001]. Moreover, the 

estimation of directed connectivity using an autoregressive model enables the quantification of 

causal relationships, rather than synchronization [Chiarion et al., 2023]. This is crucial for 

understanding the flow of information within the brain and identifying directional influences 

between specific channels.  

The EEG series of the channel ch1 is represented as the sum of power series, as shown 

in Equation (7), where 𝑓 is the frequency (f = 𝑓", …, 𝑓)), 𝜃* is the respective phase, and  𝑎* is 

the power series within the frequency 𝑓. In this study, the frequency range considered was 1-

45 Hz, with 0.5 Hz step. Then, the model estimates the directed connectivity at a specific 

frequency band (F = {alpha, beta, gamma}). Therefore, 𝑎+ represents the power series 

integrated within the band F, which is modeled in a first order auto-regressive process. In 

Equation (8), 𝑎+ is modeled by estimating AF as the contribution of its past values, and by 

estimating BF, the contribution of the external term. The model is set to minimize the adjusted 

error εF, using least squares. Then, the directed and time-varying connectivity is obtained from 

the adjusted coefficient from the external term BF, as shown in Equation (9). 
 

𝐸𝐸𝐺,-"(𝑡) 	= 	 F 𝑎*(𝑡)
*"

*	/	*#

∙ 𝑠𝑖𝑛(2𝜋	𝑓	𝑡 + q*) (7) 

 a+,,-"(t) = 𝐴+ · a+,,-"(t-1) +  𝐵+ · 𝑎+,,-#(t-1) + ε+, (8) 

𝐶+,,-#®,-"(t) =	𝐵+(𝑡)  (9) 

 

To validate the reliability of our connectivity modeling, we conducted control analyses 

to ensure it was well fitted. We employed the normalized Akaike Information Criterion (nAIC) 

[Akaike, 1974] within the healthy participant subset, focusing on the alpha band. Specifically, 

we compared the goodness of fit of order 1 models against order 2 and 3 models.  

For each sliding time window, EEG channel pair, and subject, we computed nAIC 

values for all models. These values were then grand-averaged across time and participants to 

ensure that the difference in nAIC between the order 1 model and the order 2 and 3 models did 

not exceed two [Burnham and Anderson, 2004].  

Finally, we used a Kolmogorov-Smirnov test to verify if nAIC values from order 1 

models across participants come from the same distribution as those from order 2 and 3 models. 
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Brain-heart coupling estimation 
As depicted in Figure 1, brain-heart coupling was quantified by considering the 

relationships between brain connectivity fluctuations and cardiac sympathetic-parasympathetic 

indices. The brain-heart coupling was assessed using Maximal Information Coefficient (MIC). 

MIC is a method that quantifies the coupling between two time series [Reshef et al., 2011].  

MIC evaluates similarities between different segments separately at an adapted time scale that 

maximizes the mutual information, with a final measure that wraps the similarities across the 

whole time-course. The Equations (10) and (11) show the MIC computation between two time 

series X and Y. The mutual information 𝐼1 is computed to different grid combinations 𝑔	 ∈

	𝐺23 . The mutual information values are normalized by the minimum joint entropy 

log#min{𝑛2 , 𝑛3}, resulting in an index in the range 0-1. Finally, the quantified coupling 

between X and Y corresponds to the normalized mutual information resulting from the grid that 

maximizes the MIC value. 
 

m(X	, Y) = 
max
1	∈	5$%

𝐼1

log#min{𝑛2 , 𝑛3}
 (10) 

MIC(X	, Y) = max
)$	×	)%	7	8

𝑚(𝑋, 𝑌) (11) 

 

where B = 𝑁!.:, and N is the dimension of the signals [Reshef et al., 2011]. The source 

code implementing MIC is available online at https://github.com/minepy. 
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Figure 1. Methodological pipeline. (A) Computation of time-varying EEG power at different 

frequency bands (a, b, g) and (B) the estimation of time-varying connectivity between two 
EEG channels. (C) Computation of the heart rate variability series from ECG and the 

estimation of cardiac sympathetic-parasympathetic activity. (D) Brain connectivity-cardiac 
coupling estimation by computing the Maximal Information Coefficient (MIC). The coupling 
quantification is achieved by assessing the similarities between two time series, regardless of 
the curvature of the signals. The MIC method evaluates similarities between distinct segments 
individually, using an adjusted grid as depicted in the figure. The overall measure combines 

the similarities observed throughout the entire time-course. 
 

Heartbeat-evoked responses analysis 
Heartbeat-evoked responses (HERs) were defined by averaging time-locked EEG 

epochs with respect to R-peaks, from 0 to 500 ms [Park and Blanke, 2019a]. For HERs 

computation, the EEG epochs selection followed two rules: (i) epochs maximum absolute 

amplitude < 300 μV on any EEG channel, and (ii) the next heartbeat occurred at a latency later 

than 500 ms.  

 

Statistical analysis 
MIC values were compared between groups: healthy state vs Parkinson’s disease on 

dopamine, healthy state vs Parkinson’s disease off dopamine, and Parkinson’s disease on vs off 

dopamine. Statistical comparisons were based on Wilcoxon-Mann Whitney signed rank and 
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rank sum tests, for paired and unpaired comparisons, respectively. P-values were corrected for 

multiple comparisons by using cluster-permutation analyses.  

Cluster permutation analysis was performed with the objective of identifying paired and 

unpaired differences in brain activity, applied in this study to different measures quantifying 

brain-heart coupling. This approach addresses the challenge of multiple comparisons by 

detecting clusters of adjacent data points where differences occur and using permutation testing 

to control for false positives [Maris and Oostenveld, 2007]. Clustered effects were revealed 

using a non-parametric version of cluster permutation analysis [Candia-Rivera and Valenza, 

2022]. Cluster permutation analysis was applied to HERs and the MIC values computed 

between the directed connectivity and cardiac sympathetic/parasympathetic activity.  

The algorithm to identify and test the significance of cluster in the data included a 

preliminary mask definition, identification of candidate clusters and the computation of cluster 

statistics with Monte Carlo’s p-value correction: 

1. The preliminary mask was defined from squared matrices containing the MIC 

values, indicative of brain-heart coupling for each pair of channels. The 

matrices were composed by 992 values (32 x 32 channels, minus the diagonal). 

Wilcoxon-Mann Whitney tests were applied 992 times, as depicted in Figure 

2A. The preliminary mask was then defined by the threshold on the p-value 

from the Wilcoxon-Mann Whitney tests, defined at a=0.05. Note that in this 

study, matrices are not symmetrical because directed connectivity measures 

between every pair of channels were computed. 

2. Candidate clusters were identified based on neighboring points within the 

preliminary mask. As shown in Figure 2B, for a given channel pair 

channel1®channel2, the neighboring connections include both the connections 

from channel1 to the neighbors of channel2 and the connections from the 

neighbors channel1 to the neighbors of channel2. The default Biosemi 

neighborhood definition for 32 channels was used, and a minimum cluster size 

of 5 neighbors was imposed to proceed. 

3. Cluster statistics were computed in each preliminary cluster identified from the 

previous step. The MIC values from all the points pertaining to one candidate 

cluster were averaged and tested against 10,000 random partitions. The 

proportion of random partitions that resulted in a lower p-value than the 

observed one was considered as the Monte Carlo p-value. The significance of 
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the Monte Carlo p-values was set at a=0.05. The cluster statistic considered is 

the Wilcoxon-Mann Whitney’s absolute maximum Z-value obtained from all 

the points pertaining to the cluster. As depicted in Figure 2C, the process 

begins by identifying from all possible channel pairs those with a priori 

significance in the preliminary mask. Subsequently, through cluster 

identification, individual networks are discerned from the initial set of channel 

pairs. The visualization of the brain networks was performed using Vizaj 

[Rolland and Fallani, 2023].  

 

We further analyzed the identified networks showing differences on the brain-heart 

coupling by quantifying the relationship of the mean brain-heart coupling values with UPDRS-

III scores using Spearman Correlation.  Significance of the correlation analysis was defined by 

the Bonferroni rule a = 0.05/N, with N equal to the number of networks identified. 
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Figure 2. Network cluster permutation pipeline. (A) The connections that resulted in a p-value 

lower than the defined critical alpha are retained for constructing a preliminary mask for 

further analysis. (B) Neighboring connections are grouped by following the neighboring rule 

displayed. (C) Cluster statistics are computed for all the averaged connections that belong to 

the cluster and corrected for 10,000 permutations. 
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Resource availability 
The data is part of a publicly available dataset “UC San Diego Resting State EEG Data 

from Patients with Parkinson's Disease”, gathered from OpenNeuro.org the 21st of November 

of 2022 [Appelhoff et al., 2019; Pernet et al., 2019; Rockhill et al., 2021]. 

The utilized code come from different toolboxes for MATLAB. The functions for the 

computation of cardiac sympathetic and parasympathetic indices [Candia-Rivera, 2023] are 

available at https://github.com/diegocandiar/robust_hrv. The functions for the computation of 

time-varying connectivity and brain-heart coupling are available at 

https://github.com/diegocandiar/heart_brain_conn. The functions for the computation of MIC 

values [Reshef et al., 2011] are available at https://github.com/minepy. The functions to perform 

cluster permutation analyses [Candia-Rivera and Valenza, 2022] are available at 

https://github.com/diegocandiar/eeg_cluster_wilcoxon. The data analysis was performed using 

Fieldtrip toolbox [Oostenveld et al., 2011], available at https://github.com/fieldtrip/fieldtrip 
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Results 
We computed the coupling between brain connectivity and cardiac sympathetic and 

parasympathetic activities by considering linear and nonlinear associations between the brain 

and the heartbeat-derived time series. Initially, we computed EEG power series within the 

alpha, beta, and gamma bands. Given that our pipeline includes scalp-level connectivity 

analysis, we ensured that the conditions being compared did not significantly vary in their 

asymmetry-symmetry balance, which could stem from volume conduction artifacts. We 

observed only a slight difference in the gamma band (refer to Supplementary Material, Table 

S1). Subsequently, we calculated directed and time-resolved connectivity measures using a 

Markovian process, validating their goodness of fit through nAIC analyses (refer to 

Supplementary Material, Figures S1 and S2). 

We compared the brain-heart couplings between healthy individuals and patients with 

PD, on and off dopaminergic therapy. We observed significant variations in the relationship 

between the brain connectivity and heartbeat dynamics among PD patients and healthy 

individuals. In healthy individuals, we observed a coupling between fluctuations in EEG 

connectivity and variations in cardiac dynamics. However, this coupling was weaker in PD 

patients, particularly in the relationship between slow fluctuations of heart rate variability 

(which are typically associated with sympathetic activity) and alpha and gamma connectivity.  

We found differences when comparing the brain-heart coupling of healthy participants 

with that of PD patients who were not receiving dopaminergic therapy (PD off). Through 

cluster-based permutation tests, applied to the ensemble of EEG connectivity values coupled 

with heartbeat dynamics, we discovered that one network in the alpha band was significantly 

linked to cardiac sympathetic indices, whose coupling was reduced in PD (Figure 3A and B, 

cluster statistics HS vs PD off, p = 0.0002, Z = 2.9844, cluster size = 13). These findings indicate 

that the resting state neural dynamics in PD are disturbed, affecting the interactions between 

brain connectivity and heartbeat dynamics. Importantly, these differences can be identified 

using non-invasive methods, without requiring any form of stimulation. 

Dopaminergic medication significantly improved motor symptoms, as measured by the 

motor section of the Unified Parkinson's Disease Rating Scale–UPDRS III, as performed in a 

paired Wilcoxon test (Z = 2.9388, p = 0.0033). Furthermore, our results suggest that 

dopaminergic therapy is associated with the increased brain-heart coupling in patients with PD. 

We found a correlation between those changes in brain-heart coupling and the changes in the 

motor evaluation in PD patients (as evaluated in the motor section of the Unified Parkinson's 
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Disease Rating Scale–UPDRS III [Ramaker et al., 2002]). Specifically, the significant 

correlation between the improvement in motor symptoms and brain-heart coupling was found 

in the alpha band (Figure 3C, Spearman correlation, R = 0.6470, p = 0.0091). This suggests that 

measures of brain-heart coupling are sensitive to the physiological changes induced by 

dopaminergic therapy in PD patients. 

 

 
Figure 3. Significant alpha network that correlated with cardiac sympathetic indices. (A) The 
network distinguishing healthy participants from PD patients off dopaminergic therapy. (B) 
Distribution of the mean brain-heart coupling. The dashed lines indicate the group medians. 

(C) Correlation between the changes in the brain-heart coupling (D brain-heart coupling, i.e., 
on minus off) and the changes in motor symptoms (motor section of the United Parkinson's 
Disease Rating Scale—where a lower score means better motor outcome). All values are in 

arbitrary units. 
 

Additionally, we found two networks in the gamma band that were also linked to the 

estimation of cardiac sympathetic indices as well. These two networks were located in the 

parieto-frontal (Cluster statistics HS vs PD off, p < 0.0001, Z = 2.9844, cluster size = 21) and 
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parieto-temporal regions (Cluster statistics HS vs PD off, p < 0.0001, Z = 2.7472, cluster size 

= 11), as shown in Figure 4 (please note that by reducing the gamma band leads to the merging 

of these two networks, see Supplementary Material Figure S3). These couplings showed no 

correlation with changes in motor symptoms in either gamma network 1 (Spearman correlation, 

R = 0.4050, p = 0.1342), or in gamma network 2 (Spearman correlation, R = 0.4444, p = 

0.0969).  

As shown in Table II, we found non-significant differences when comparing the mean 

connectivity values in the identified alpha network, gamma network 1 and gamma network 2, 

and cardiac sympathetic and parasympathetic indices separately. A moderate difference 

emerged only when comparing the RR interval in HS vs PD on dopamine medication. However, 

this appears not to be influencing the findings in brain-heart coupling measures, which mainly 

distinguished between HS and PD off dopamine medication. 

 

Table II. Wilcoxon-Mann Whitney tests on the comparisons of the mean connectivity values in 

the identified alpha and gamma networks, and in the RR interval, cardiac sympathetic and 

parasympathetic indices. Comparisons were performed between healthy state (HS) and 

Parkinson’s disease (PD) patients, on and off dopamine. 
 Alpha 

network 
Gamma 
network 1 

Gamma 
network 2 

RR 
interval 

Cardiac 
Sympathetic 
index 

Cardiac 
Parasympathetic 
index 

HS vs PD 
on 

Z=0.8103, 
p=0.4177 

Z=0, p=1 Z=1.6800, 
p=0.0930 

Z=2.3915, 
p=0.0168 

Z=-1.0870, 
p=0.2770 

Z=-0.2174, 
p=0.8279 

HS vs PD 
off 

Z=-0.5336, 
p=0.5936 

Z=-0.9684, 
p=0.3328 

Z=1.5614, 
p=0.1184 

Z=1.9567, 
p=0.0504 

Z=0.6522, 
p=0.5143 

Z=0.8499, 
p=0.3954 

PD on vs 
PD off 

Z=-1.3063, 
p=0.1914 

Z=-1.0223, 
p=0.3066 

Z=0.1704, 
p=0.8647 

Z=-
0.1244, 
p=0.9010 

Z=0.3976, 
p=0.6909 

Z=-0.5680, 
p=0.5701 
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Figure 4. Significant gamma networks that correlated with cardiac sympathetic indices, 

distinguishing healthy participants from PD patients off dopaminergic therapy. The 
distributions of the mean brain-heart coupling values are displayed for each network. The 

dashed lines indicate the group medians. All values are in arbitrary units. 
 

Furthermore, we examined the relationship between the brain and heartbeats by 

analyzing heartbeat-evoked responses (HERs), acknowledged markers of the central processing 

of cardiac inputs [Park and Blanke, 2019b]. HERs were gathered from the average of EEG 

epochs synchronized with the cardiac cycle. We compared HERs in healthy individuals to those 

with PD, both on and off dopaminergic therapy, and compared HERs in PD patients on and off 

dopamine therapy. Our findings revealed distinct HER patterns when comparing PD patients 

on and off dopaminergic therapy (Cluster statistics PD on vs PD off. Positive clusters: p1 = 

0.0008, Z1 = 3.2942; p2 = 0.0068, Z2 = 3.0102. Negative cluster: p = 0.0037, Z = 2.8966), as 

shown in Figure 5. However, there was only a slight difference between the two conditions, 

suggesting that higher-order brain-heart interaction analysis, such as the coupling between 

cardiac and brain networks may be a more suitable approach for characterizing PD. 
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Figure 5. Heartbeat-evoked responses (HERs). (A) Pipeline to compute HERs. (B) Clustered 
effects found when comparing PD on vs PD off. Thick channels show clustered effects, and 

the color bar indicates the Z-value obtained from the paired Wilcoxon test. (C) Group median 
time course of the thick electrodes shown in (A). (D) Combined clustered effects. 

PD on: Parkinson’s disease on dopamine, PD off: Parkinson’s disease off dopamine. 
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Discussion 
The physiological basis of disrupted cardiac interoceptive pathways in PD, as assessed 

by brain-heart interactions, has not been significantly explored to date. We found that the 

couplings of fluctuating alpha and gamma connectivity with cardiac sympathetic dynamics are 

reduced in PD patients off dopamine, as compared to healthy individuals. Furthermore, we 

show that PD patients on dopamine medication recover part of the brain-heart coupling, in 

proportion with the reduced motor symptoms. 

Peripheral autonomic neurons can be affected in PD [Wakabayashi and Takahashi, 

1997], leading to symptoms of dysautonomia ranging among cardiovascular, respiratory, 

gastrointestinal, urinary, erectile, thermoregulatory, and pupil contraction disorders [Jain, 2011; 

Sharabi et al., 2021]. The appearance of autonomic damage in PD has led to a search for specific 

abnormalities in autonomic function, e.g., heart rate variability [Devos et al., 2003; Haensch et 

al., 2009] and its synchronization with specific brain regions [Iniguez et al., 2022], that could 

predict the disease and their symptoms. The reliability of these biomarkers remains uncertain 

due to the lack of understanding regarding their underlying mechanisms [Palma and Kaufmann, 

2014]. Furthermore, the strongest evidence indicates that autonomic markers may rather 

provide insights into the severity and prognosis of PD [Brisinda et al., 2021; De Pablo-

Fernandez et al., 2017; Iniguez et al., 2022]. 

The exploration of the relationship between brain connectivity and cardiac dynamics in 

PD is motivated by the substantial evidence of abnormal brain connectivity and autonomic 

abnormalities found in PD patients. These findings may provide a link to the observed 

disruptions in interoception in these individuals [Hazelton et al., 2023; Ricciardi et al., 2016; 

Salamone et al., 2021; Santangelo et al., 2018]. Nigrostriatal fiber degeneration in PD disrupts 

the striato-cortical functional connectivity networks, leading to the known impairments in 

motor control [Ruppert et al., 2020]. However, in the early stages of PD, changes in brain 

metabolism occur in key nodes of motor and cognitive networks, which can lead to disruptions 

in the connectivity of several regions [Huang et al., 2007; Nigro et al., 2016]. This has motivated 

the study of PD in terms of network-level phenomena rather than focal pathology [Gratton et 

al., 2019; Wang et al., 2021]. We investigated how cortical connectivity and heart rate 

variability covary at resting state. Our study found notable differences between the coupling 

between cardiac dynamics and brain connectivity in patients with PD and healthy individuals. 

In healthy participants, we noticed that changes in time-varying EEG connectivity are linked to 

changes in cardiac dynamics. However, this coupling is reduced in PD patients, especially in 
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the connection between slow fluctuations of heart rate variability (considered predominantly 

sympathetic) and alpha and gamma connectivity. When PD patients are under dopaminergic 

therapy, the brain-heart coupling changes, suggesting a close link between the changes triggered 

by dopamine replacement and brain-heart coupling measures. This may indicate that markers 

of brain-heart interactions can capture dopaminergic-dependent mechanisms that are disrupted 

in PD. Indeed, one of the pathways affected by PD is the locus coeruleus-noradrenaline pathway 

[Benarroch, 2009]. The disruptions in the locus coeruleus-noradrenaline pathway lead to 

changes in the slow fluctuations of heart rate variability, which are caused by changes in 

sympathetic activity resulting from variations in the noradrenaline release rate [Barcroft and 

Konzett, 1949]. 

The acknowledged multi-organ dysfunction found in PD indicate that the 

physiopathology involves the disruption of several interoceptive pathways [Jain, 2011; Sharabi 

et al., 2021], including cardiac sympathetic denervation caused by the loss of catecholamine 

innervation in the nigrostriatal system and in the sympathetic nervous system [Goldstein et al., 

2000]. Indeed, catecholamines (noradrenaline and dopamine) and sympathetic pathways play a 

relevant role in the brain-heart communication mechanisms in healthy individuals [Lueckel et 

al., 2018]. Previous behavioral studies have found that some patients with PD have difficulty 

sensing their own heartbeats, as quantified from cardiac interoception tasks [Ricciardi et al., 

2016; Santangelo et al., 2018]. This suggests that their brain-heart communication may be 

disrupted. In another study [Salamone et al., 2021] the authors found an improved emotion 

recognition when  healthy individuals performed an emotion recognition task after completing 

a cardiac interoception task. However, this effect was not observed in patients with PD 

[Salamone et al., 2021]. Furthermore, early PD has reported atrophy of the insula, key structure 

in interoceptive processing [Claassen et al., 2016]. Interoceptive inputs have been recognized 

as playing an important role in perception within computational frameworks of predictive 

coding [Petzschner et al., 2021] and consciousness [Candia-Rivera, 2022], where dopamine is 

thought to be critical for processing interoceptive prediction errors [Seth et al., 2011; Spindler 

et al., 2021]. Numerous studies have shown that dopamine encodes learning and reward 

prediction [Fiorillo et al., 2003; Hollerman and Schultz, 1998; Mirenowicz and Schultz, 1994; 

Pessiglione et al., 2006], further supporting this idea. On account of the key role of dopamine-

modulated mechanisms, it has been hypothesized that dopamine participates in adaptation 

processes in predictive coding [Corlett et al., 2010], which may extend to the role of dopamine 

in the regulation of the subjective experience of perception [Lou et al., 2011]. 
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Our results may provide new insights for the understanding of the well-known 

abnormalities in brain connectivity of PD. For instance, PD patients show decreased 

connectivity in the supplementary motor area, dorsal lateral prefrontal cortex, and putamen, but 

increased connectivity in the cerebellum, primary motor cortex, and parietal cortex [Wu et al., 

2009]. PD patients may have higher connectedness within the sensorimotor and visual networks 

[Göttlich et al., 2013], due to compensation or loss of mutual inhibition between brain networks. 

Dopamine medication can normalize some patterns of functional connectivity, but the recovery 

level may depend on disease severity [van Eimeren et al., 2009; Wu et al., 2009]. In our results 

we observed a decrease in the coupling of cardiac sympathetic activity with brain connectivity 

measured in the alpha and gamma bands. EEG studies have revealed significant changes in the 

alpha-gamma range in PD, with reduced connectivity in alpha-beta bands and increased 

connectivity in the gamma band [Conti et al., 2022], but also aberrant cortical synchronization 

in the beta band [Jackson et al., 2019; Swann et al., 2015]. It remains to be confirmed whether 

our results relate to the repeatedly reported changes in brain connectivity in PD, including 

subcortical structures.  

Our study has limitations, such as a small sample size, the use of low-density EEG, short 

recordings, and only assessing patients at rest. Specifically, we refrained from conducting 

connectivity analysis on source-reconstructed data due to the limited density of available scalp 

recordings, a factor known to introduce biased estimations [Song et al., 2015]. Instead, our 

chosen sensor-level approach offers practical advantages, including computational efficiency 

and decreased susceptibility to inaccuracies associated with volume conduction and brain 

region specificity [Van de Steen et al., 2019]. While our method provides valuable insights into 

connectivity dynamics, caution should be considered when interpreting brain spatial details. 

Given the marginal differences observed in the symmetry of EEG data in the gamma band 

between healthy participants and those with Parkinson’s disease off dopamine, it should not be 

rejected the possibility that some of the links identified in the gamma networks could be 

attributed to volume conduction issues. Future studies, with a targeted focus on specific brain 

regions, may consider our framework by incorporating methods to mitigate volume conduction 

effects [Talebi et al., 2019] and exploring alternative connectivity measures that could prove 

more robust than autoregressive amplitude-based approaches [Ruiz-Gómez et al., 2019]. 

Our proof-of-concept method is one of the first attempts to quantify connections 

between higher-order brain dynamics and cardiac outputs. This approach holds significant 

potential for comprehending large-scale neural functions and, in the context of PD, may serve 

as a tool for evaluating the effectiveness of dopamine treatments. The interactions between 
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brain connectivity and cardiac dynamics can help us to better understand the complex 

physiopathology of PD, even in the early stages of the disease.  

In conclusion, the investigation of large-scale neural dynamics within frameworks that 

integrate the interplay between higher-order brain dynamics and those occurring in peripheral 

organs presents a promising avenue for characterizing various diseases, extending beyond PD 

to encompass a range of neurodegenerative and neural damage conditions. This approach could 

not only broaden our understanding of the pathophysiology of such diseases but also paves the 

way for exploring cognitive states believed to involve higher-order dynamics. By conceiving 

brain functioning within an environment where internal organs play a significant role, this 

framework contributes to a paradigm shift that underscores the interconnected nature of brain 

function and peripheral physiology. Our framework opens new possibilities for comprehensive 

insights into the intricate relationships underpinning health and disease at both neural and 

systemic levels. 
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