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Optimal treatments depend on numerous factors such as drug chemical properties, disease

biology, and patient characteristics to which the treatment is applied. To realize the promise

of AI in healthcare, there is a need for designing systems that can capture patient heterogene-

ity and relevant biomedical knowledge. Here we present PlaNet, a geometric deep learning

framework that reasons over population variability, disease biology, and drug chemistry by

representing knowledge in the form of a massive clinical knowledge graph that can be en-

hanced by language models. Our framework is applicable to any sub-population, any drug

as well drug combinations, any disease, and to a wide range of pharmacological tasks. We

apply the PlaNet framework to reason about outcomes of clinical trials: PlaNet predicts drug

efficacy and adverse events, even for experimental drugs and their combinations that have

never been seen by the model. Furthermore, PlaNet can estimate the effect of changing pop-

ulation on the trial outcome with direct implications on patient stratification in clinical trials.

PlaNet takes fundamental steps towards AI-guided clinical trials design, offering valuable

guidance for realizing the vision of precision medicine using AI.
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Introduction
A variety of different factors –– environmental and biological at the molecular and cellular level

–– shape the treatment response. The same treatment may result in very different effectiveness and

the likelihood of causing side effects when applied to different populations [1–6]. For example,

the bias towards testing drugs on younger male Caucasian participants has led to missed patient-

safety markers, raising awareness about the importance of population properties in investigating

treatment efficacy and safety [7]. An overarching question is whether we can design more safe

and effective treatments by changing the population properties to which the intervention is applied

to [8].

Current approaches for predicting population response to treatment typically focus on a sin-

gle disease and are designed for a specific task of interest [9–11]. On the other hand, general

approaches for predicting outcome of a treatment that capture large space of underlying biolog-

ical interactions, typically as networks [12–15], do not account for variability between patients.

As such, these approaches fail to model population or individual response to a particular treat-

ment and are unable to discover interventions effective only in certain groups. Finally, existing

approaches are unable to reason about factors that cause certain side effects or effectiveness of

interventions [16]. These approaches are typically black-box models that do not provide insights

about causal relationships between interventions, population properties and the outcome.

Here, we present PlaNet, a geometric deep learning framework that predicts outcome of a

treatment by reasoning over population variability, disease chemistry and drug biology. PlaNet is

built over a massive clinical knowledge graph that captures treatment information in form of the

(drug, condition, population) triplets grounded in biomedical knowledge that captures underlying

chemical and biological interactions. PlaNet first learns general-purpose representations of all

treatment, biological and clinical entities in the knowledge graph in an unsupervised fashion. This

is achieved by pretraining the model to capture the structure of the network and semantics of the

terms. PlaNet can then be fine-tuned on many downstream pharmacological tasks.

We demonstrate the utility of the PlaNet framework on clinical trials data. We structure

the entire clinical trials database and incorporate it in PlaNet’s framework, resulting in a knowl-

edge graph of 330, 915 nodes and 13, 928, 443 heterogenous edges where population variability is

described by clinical trials’ eligibility criteria. We use PlaNet to predict outcome of clinical trials

including trial efficacy as survival endpoint, likelihood of causing side effects, and exact side effect

category. By representing knowledge as a graph, PlaNet is equally applicable to drug combinations
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as well as single treatments even for experimental drugs or their combinations that have never been

seen in any clinical trial in the labeled data. Moreover, PlaNet captures causal relationships be-

tween population variability and treatment outcome, suggesting populations at risk of developing

adverse events whose exclusion can impact the outcome of the trials and reduce the likelihood of

side effects.

Results
Overview of PlaNet knowledge graph. PlaNet integrates the treatment information with an un-

derlying biological and chemical knowledge. PlaNet consists of two knowledge graphs (KG): (i)

a foreground clinical KG, and (ii) a background biological KG that captures relevant biology and

chemistry. Clinical KG consists of a (drug, condition, population) triplets describing drug that is

applied, condition or disease that the given population or patient has, and population/patient prop-

erties such as gender, age and medical history. Thus, (drug, disease, population) triplet defines a

core triplet of the clinical KG that describes an application of a drug to a particular population or

an individual. We then connect the foreground clinical KG with the background KG that captures

underlying biology and chemistry. To create background biological KG, we integrate 9 biologi-

cal and chemical databases to capture knowledge of disease biology and drug chemistry such as

genomic variants associated with human diseases [17, 18], drug targets [19], physical interactions

between human proteins [12], protein functions [20], chemical similarities between drugs [21],

molecular, cellular and physiological phenotypes of chemicals [22] (Fig 1b; Supplementary Note

2). In total, PlaNet captures 5, 751 diseases, 14, 300 drugs augmented with 4, 825 drug structural

classes, and 17, 660 proteins with 28, 734 protein functions.

To demonstrate the usage of PlaNet, we instantiate clinical KG on the clinical trials database1

(Fig 1c). We structure the database and represent it in the form of treatment (drug, condition,

population) triplets by extracting drug-disease-population information from free-text trial protocol

description using various named entity recognition approaches (Supplementary Note 1). Drug

corresponds to intervention whose effectiveness or safety is investigated in the trial, disease is

a condition that is being studied in a trial, and population is defined by eligibility criteria. By

structuring the clinical trials database, we avoid natural language bias and allow grounding the

structured entities in a background biomedical KG of PlaNet (Fig 1d). Overall, the KG is built

1https://clinicaltrials.gov
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over 69, 595 interventional clinical trials and 205, 809 trial arms. It comprises 13, 928, 443 edges

between 330, 915 nodes (Supplementary Tables 1-2).

Learning general-purpose embeddings using PlaNet. PlaNet learns general-purpose represen-

tations (embeddings) of all entities in the KG including clinical entities in the clinical foreground

KG, as well as biological and chemical entities defined in the biomedical background KG. The en-

coder takes a KG as input and for each entity in the graph generates low-dimensional embeddings

that preserve information about the graph topology, while capturing heterogeneity of the graph by

learning relation-specific transformations that depend on the type of an edge considered. To learn

general-purpose embeddings, we perform self-supervised learning by defining an auxiliary task

as predicting the existence of an edge between two entities in the KG (Methods). This auxiliary

task does not require any labels and enables PlaNet to learn meaningful embeddings from the prior

knowledge data.

Pretraining step generates embeddings of every entity in the KG, in total 330, 915 entities.

We visualize resulting trial arm entities in the two-dimensional UMAP space [23] (Fig. 2a). We

find that trial arm nodes cluster based on disease groups and trial arms that investigate more sim-

ilar diseases are embedded next to each other confirming that learnt embeddings are meaningful.

For example, mental and nervous system diseases, and cardiovacular and nutritional/metabolic

diseases are embedded close to each other. We demonstrate that these embeddings can be used

for knowledge graph query answering over the structured clinical trials and biomedical knowl-

edge databases (Supplementary Note 3). For example, one can ask PlaNet to generate all diseases

associated with a protein that a particular drug targets, suggesting potential candidates for drug

repurposing (Supplementary Fig. 1). By fine-tuning the PlaNet using task-specific annotations,

PlaNet is applicable to a variety of downstream tasks. In particular, we next demonstrate PlaNet’s

ability to reason about efficacy and safety of clinical trials.

Predicting efficacy of clinical trials using PlaNet. We applied PlaNet to predict efficacy of drugs

in the clinical trials database. We focused on predicting a survival endpoint as the most frequently

used primary and secondary outcome. We parsed the survival information from the results section

of the clinical trials and ensured that a higher value indicates more positive outcome, obtaining

1, 307 labeled trial arms across 625 trials. Given two arms of the same trial testing different drugs,

we aimed at predicting which drug will result in more favorable prognosis (Fig. 2b). We represent

trial arm as a set of study protocol embeddings including arm, drug, disease, primary outcome and
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eligibility criteria embeddings and fine-tune PlaNet using survival information.

We compared PlaNet to drug-disease-outcome (DDO) model and transformer–based lan-

guage model BERT pretrained on the PubMed abstracts and full PubMed Central articles [24, 25]

and fine-tuned on clinical trials protocol text information (Supplementary Note 4). PlaNet achieves

0.70 area under receiver operating characteristic curve (AUROC), outperforming the PuBMed-

BERT model by 15% (Fig. 2c). For instance, PlaNet is the only model that correctly predicted

higher overall survival of the atezolizumab group compared to docetaxel group in Phase II non-

small-cell lung cancer trial [26] (Supplementary Fig. 2a), as well as the outcome of the recently

initiated trial which showed that immunomodulatory agent lenalidomide can increase the activity

of rituximab and leads to significantly higher progression-free-survival [27] (Supplementary Fig.

2b). To further boost PlaNet with a textual knowledge, we developed a joint knowledge- language

model (PlaNetLM) that allows joint reasoning over text and KG, allowing the two modalities to

interact with each other [28, 29] (Methods). We observed an additional 5% improvement in the

performance in the fused language-KG PlaNetLM model (Fig. 2c). The substantial improvements

of PlaNet models are not dependent on the evaluation metric (Supplementary Fig. 3-4).

Given that the number of training examples is limited to clinical trials that reported results

[30, 31], we further tested whether a larger dataset could provide further boosts in the PlaNet’s

performance. We sampled without replacement our training set to artificially reduce its size and we

found that with larger training set size PlaNet substantially improved performance (Fig. 2d). This

shows that substantial performance improvements can be expected by increasing the training set

size even by only a few hundred examples. While PlaNet is able to reason about drug effectiveness,

we also investigated whether we can use PlaNet to search for candidate drugs that have a potential

to be more effective than an FDA approved drug for a particular disease by creating artifical AI-

generated clinical trials (Supplementary Note 6). We focused our question on capecitabine, an FDA

approved treatment for metastatic breast cancer [32]. Among 7 top ranked drugs, all drugs have

been investigated for breast cancers in isolation or combination with other drugs with a number of

ongoing clinical trials, supporting immediate practical applicability of PlaNet in providing insights

in potentially effective treatments.

PlaNet predicts outcome of novel drugs. We next questioned whether PlaNet can be applied to

new drugs. This ability is crucial to be able to make predictions for experimental drugs that have

never been investigated before. To test that, we train the model on 1040 drugs and then apply it to
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a new set of 224 drugs that have never been applied in any clinical trial seen in the labeled data.

Remarkably, we find that PlaNet achieves comparable performance on novel drugs compared to

drugs abundantly present in the training set (Fig. 2e), demonstrating that PlaNet effectively gener-

alizes to novel drugs, never-before-tested in the clinical trials. Such strong generalization ability is

achieved by exploiting similarities between novel drugs and well investigated drugs through their

connections in the KG.

When analyzing individual examples, we find that PlaNet predicted with high confidence

lower survival of the novel investigational anticancer agent tasisulam-sodium compared to chemother-

apy drug paclitaxel even though the model has never seen any labeled example that investigated

tasisulam (Fig. 2f). In this phase III study conducted on metastatic melanoma patients, tasisulam

resulted in 2.6 months lower overall survival and the trial was early terminated due to the possi-

bly tasisulam-related deaths that were identified by the external data monitoring committee [33].

PlaNet is also applicable to drug combinations which is a highly non-trivial capability. For ex-

ample, PlaNet correctly predicted improved progression-free survival (PFS) of combination of

dabrafenib and trametinib compared to trametinib alone for melanoma patients without ever see-

ing any labeled example of trametinib or dabrafenib in the training set (Fig. 2g). Combination

of these drugs was shown to be superior compared to monotherapy with 3-year PFS 22% with

dabrafenib plus trametinib and 12% with trametinib alone [34] and it was later approved by FDA

for melanoma patients with BRAF V600E or V600K mutations.

Predicting safety of clinical trials using PlaNet. We next applied PlaNet to reason about safety of

clinical trials by extracting information about side effects of clinical trials from the results section.

While previous works used machine learning models to predict adverse events of a drugs and

drug combinations [35–38], these prior works neglect the effect of population to which the drug

is applied on the occurrence of adverse events. Same drug applied to different populations may

have caused different adverse events. To investigate dependence of adverse events on the change of

population, we compared the adverse events frequency distributions between trials that apply the

same drug to populations suffering from the same disease and trials in which disease is changed.

We find that a high percentage of drug-disease combinations have significantly different adverse

events frequency distributions when drug is applied to a different population (Supplementary Fig.

5).

We defined safety of a clinical trial with respect to a prior probability that a population suf-
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fering from a particular condition will experience an adverse event without any intervention. We

use placebo arm to estimate this prior probability and predict if the occurrence of a particular event

is enriched in the intervention arm compared to the placebo arm when no intervention is given to

the participants (Methods). We apply PlaNet to two safety prediction tasks: (i) predicting occur-

rence of a serious adverse event, and (ii) predicting exact adverse event category defined based on

the preferred term in MedDRA hierarchy [39] (Fig. 3a). On the serious adverse event prediction

task, PlaNet achieves a high AUROC score of 0.79 (Fig. 3b). Similar performance is observed

on non-cancer clinical trials, confirming that the model is not biased to cancer trials that have

higher probability of serious adverse events. We next evaluate whether PlaNet can predict the ex-

act adverse event category. PlaNet achieves average 0.85 AUROC score across 554 adverse event

categories, retaining high performance across different adverse event categories (Fig. 3c). Since

many adverse events have a small number of positives, we additionally measure performance us-

ing AUPRC score as a function of the number of positives in the training set. For all bins, PlaNet

consistently outperforms all baselines (Supplementary Fig. 6). We next assess the generalization

ability of the model to predict safety of drugs and diseases that have never been seen during train-

ing. Similar to efficacy results, we again find that PlaNet effectively generalizes to novel drugs and

diseases, achieving similar performance on novel drugs and diseases compared to drugs/diseases

previously seen (Supplementary Fig. 7).

In the real-world setting, one would like to apply PlaNet to predict outcomes of new clinical

trials by using historical data for training. To check how applicable is PlaNet in this setting, we use

clinical trials data up to June 2017 for training, and then apply PlaNet to predict safety of newer

trials that posted results after that date. We find that PlaNet achieves similar performance as when

splitting the data by ensuring unique drug-disease pairs (Fig. 3d), demonstrating its applicability

in the real-world setting in which the model needs to generalize to future trials. Interestingly, we

find that PlaNet assigned very high confidence to pneumonia as an adverse event of everolimus

given to patients with tuberous sclerosis complex with refractory partial-onset seizures in a phase

III trial which is a very rare adverse event of everolimus [40] (Fig. 3e). However, we find that in

this trial pneumonia was reported as a very common adverse event with one patient dying from

pneumonia, which was even suspected to be treatment-related [41]. In a phase II trial that investi-

gated lenvatinib safety for thyroid cancer patients, PlaNet correctly assigned highest confidence to

uncontrolled hypertension as an adverse event (Fig. 3f). Hypertension was indeed later reported

as the most frequent adverse event occurring in 80.5% patients [42]. PlaNet also correctly pre-
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dicted with high confidence two other adverse events with the highest frequencies: fatigue (58.3%)

and diarrhea (36.1%) (Supplementary Fig. 8a). Moreover, in three recent COVID-19 trials that

investigated efficacy of remdesivir, PlaNet increased the probability of hemorrhage and breathing

difficulty in all trials, which have been consistently reported in COVID-19 patients [43, 44] (Sup-

plementary Fig. 8b). The model has never seen examples with COVID-19 or remdesivir drug

during model training. In another COVID-19 trial completed in 2021 that investigated the protec-

tive role of proxalutamide in COVID-19 infection, PlaNet correctly increased the probability of

gastrointestinal spasm as a side effect (Supplementary Fig. 8c), which was reported as the most

common treatment emergent adverse event in this trial [45].

Causal reasoning with PlaNet. The fundamental question of trial design and precision medicine

is whether we can change population or patient properties to lead to more favorable outcomes

of treatments. To analyze the sensitivity of PlaNet to subtle changes of population terms, we

identified all clinical trials that investigate the same drug, study the same disease and have the

same primary outcome, but define different inclusion/exclusion criteria and result in a different

adverse event (Fig. 4a). Given these matched trials, we aim at analyzing whether PlaNet correctly

adjusts probability of an adverse event when the population is changed. We count pairs of matched

trials as correct or wrong only if the difference between probability of adverse event occurrence

is larger than the predefined threshold that we initially set to 0.2. We find that PlaNet correctly

adjusted probability in 91% of matched pairs (6575 out of 7261), while wrong adjustments were

observed in only 9% of pairs (Fig. 4b). With higher probability thresholds PlaNet achieves even

higher differences between the correct and wrong predictions: with probability threshold of 0.3

PlaNet has 22 times more correct than wrong probability adjustments, while with 0.4 threshold

PlaNet has 90 times more correct adjustments (Fig. 4c).

We next develop a methodology for assigning node importance scores to each term in the

eligibility criteria (Methods). Given a population term, i.e., inclusion/exclusion term in case of

clinical trials, PlaNet computes the change in adverse event probability when the term is removed

from the inclusion or exclusion criteria. High score indicates that removing a term from the crite-

ria has a high influence on the occurrence of an adverse event. We then rank terms based on their

influence on adverse event probability change (Fig. 4d). Using this methodology, we find that in

a trial that investigated efficacy and safety of exemestane for breast neoplasms, PlaNet indicates

that excluding terms ‘metastasis’, ‘exemestane’, ‘tamoxifen’ and ‘aromatase inhibitors’ leads to
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the lower probability of breathing difficulty (Fig. 4e). We validate this finding by identifying

another related trial that also studied exemestane for breast neoplasms but it does not have these

terms in the exclusion criteria, being focused on metastatic breast neoplasms. Indeed, breathing

difficulty is significantly enriched in a metastatic breast cancer trial compared to placebo and com-

paring PlaNet’s predictions between these two trials PlaNet correctly adjusted probabilities and

assigned 21.8% higher probability of breathing difficulty for the metastatic breast neoplasm trial.

Additionally, external validation in literature and drug reports confirms that breathing difficulty is

a known symptom of metastatic breast cancer [46] and a potential adverse event of tamoxifen and

aromatase inhibitors including exemestane [47].
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Discussion
PlaNet is a geometric deep learning framework for predicting treatment response of a population

by reasoning over a massive clinical knowledge graph. The clinical knowledge graph in PlaNet

captures population heterogeneity and prior knowledge of biological and chemical interactions.

PlaNet learns low-dimensional embeddings of heterogeneous node types in an unsupervised man-

ner and can use them on downstream pharmacological tasks of interest, such as predicting drug

efficacy and likelihood of serious adverse events. If text data is additionally available, PlaNet

can be further complemented with the language models [24, 48] and trained as a joint knowledge-

language foundation model [29].

The unique ability of PlaNet is its ability to generalize to drugs, diseases and population

terms that have never been part of the annotated datasets. By modelling clinical terms as nodes in

the massive knowledge graph, PlaNet finds similarity of the novel terms to existing terms. This

enables PlaNet to make predictions for experimental drugs, new emerging disease states, or popula-

tion properties that have not been tested before. In three COVID-19 trials that investigated efficacy

of remdesivir – disease and drug for which PlaNet has never seen any annotated example – PlaNet

increased the probability of hemorrhage and breathing difficulty, side effects that have been consis-

tently reported in COVID-19 patients [43, 44]. While previous works showed advantage in using

network-based methods to identify clinically efficacious drug combinations [15], PlaNet extends

this capability not only by considering population heterogeneity, but also by making predictions

for combinations that include novel, experimental drugs.

PlaNet is scalable, flexible and easily extendable. Without retraining the model, PlaNet can

be applied to new entities in the treatment knowledge graph such as new drugs, new diseases

and new population terms. This important feature allows obtaining predictions for new drugs and

population properties without retraining the model on these new terms.

PlaNet is uniquely able to reason about treatment effects over a complex population space

and suggest how to change population to reduce the negative effects of the treatment. This opens

opportunities to design more safe and effective treatments by intervening in the population design,

but also to discover interventions effective only in certain groups. So far, such discovery has been

happening rarely and often by chance [2].

Finally, PlaNet is a general framework: although we demonstrate its usage on clinical tri-

als data, it could also be used to represent individual patients and integrated with existing clini-

cal knowledge graphs [16]. In that case, the population properties would correspond to individ-
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ual patient characteristics such as personal omics assays [49] paving the way towards precision

medicine [50].
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Methods
Knowledge graph construction. We develop a computational framework for systematically ex-

tracting structured information from the clinical trials database.2. We focus on interventional clin-

ical trials that study at least one drug, resulting in 69, 595 trials. Given free-form text description

of a clinical trial, our framework automatically extracts and structures clinical trials protocol in-

formation, including disease, drug/intervention, primary outcome and eligibility criteria. After

extracting key terms, we standardize them by mapping the extracted terms to external databases.

We provide details of the knowledge graph construction pipeline in Supplementary Note 1.

Model Overview. PlaNet knowledge graph is represented as a directed and labeled multi-graph

G = (V , E ,R, T ) where vi ∈ V are nodes/entities, (vi, r, vj) ∈ E are relations/labeled edges,

ti ∈ T are node types and r ∈ R denote relation types. Additionally, entities have associated entity

attributes depending on the entity type (Supplementary Note 1). PlaNet learns a low-dimensional

representation zi for all the entities in the graph G. The low-dimensional entity representations are

learnt to capture both structural properties of an entity’s neighborhood as well as entity’s attribute

representations.

Encoder. The encoder model takes node/entity in the PlaNet and maps it to a low-dimensional

embedding vector that captures entity attributes and its local neighborhood. Formally, the encoder

is a function ENC : V → Rd that takes entity vi ∈ V and generates its low-dimensional em-

bedding zi ∈ Rd that captures entity structural properties as well as entity attributes. We build

our encoder model as the relational graph neural networks (R-GCN) [51] encoder. Given a latent

low-dimensional representation h
(l)
i of entity vi in the l-th layer of the neural network, single layer

of the encoder has the following form:

h
(l+1)
i = σ

∑
r∈R

∑
j∈N r

i

1

ci,r
W (l)

r h
(l)
j +W

(l)
0 h

(l)
i

 , (1)

where W (l)
r is the transformation matrix for relation r ∈ R, N r

i denotes the set of neighbor indices

of node i under relation r ∈ R, ci,r denotes normalization constant defined as ci,r = |N r
i | and

the operator σ defines the non-linear function in the neural network model. We use PReLU as an

activation function. The key idea of the relational encoder is to learn propagation and transforma-

tion operators across different parts of the graph defined by the entity and relation types. Since

2https://clinicaltrials.gov
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the transformation matrix depends on the relation type, the encoder propagates latent node feature

information across edges of the graph while taking into account the type of an edge. In this way

local neighborhoods are accumulated differently depending on the entity type. Thus, for each en-

tity in the graph the encoder has a different neural network architecture defined by the network

neighborhood of the given entity.

In the first layer, h(0)
i is initialized with entity attributes. The entity feature vectors are as-

sociated with different entity types, so we first learn a linear projection Wti for each entity type

ti ∈ T and use the projected attributes as the input to the first layer of the network:

h
(0)
i = Wtixi (2)

where xi is an entity of type ti. In other layers, the output of the previous layer becomes the input to

the next layer representing latent low-dimensional entity representations that capture neighborhood

structure. Stacking multiple layers allows successive application of propagation/transformation

operators, giving the ability to the model to capture higher-order network neighborhoods. Final

representation of entity vi in the last (L-th) layer of the encoder gives us entity embeddings zi ∈ Rd,

that is ENC(vi) = zi = h
(L)
i .

To efficiently handle rapid growth in the number of parameters with the number of relations

in the graph, we use the basis decomposition regularization technique [51] and represent transfor-

mation matrix as a linear combination of basis transformations:

W (l)
r =

B∑
b=1

a
(l)
rbV

(l)
b , (3)

where V
(l)
b ∈ Rd(l+1)×d(l) define basis and a

(l)
rb are coefficients that depend on relation r.

Self-supervised learning. To leverage a large amount of unlabeled data, we first perform self-

supervised learning by defining an auxiliary task. We define the auxiliary task as the edge mask/link

prediction task. In particular, for each triplet (h, r, t) consisting of head, relation and tail entities,

we first construct a k-hop subgraph of the head and tail entities. Then, we randomly drop α edges in

the subgraph and the model is asked to reconstruct the dropped edges by assigning scores f(h, r, t)

to possible edges (h, r, t) in order to determine how likely those edges belong to E . Our model

for the task is a graph auto-encoder model, consisting of an entity encoder and an edge scoring

function as the decoder. The encoder maps each entity vi ∈ V to a real-valued vector zi ∈ Rd.

The decoder assigns scores to (h, r, t)-triplets through a scoring function f : Rd × R × Rd → R
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denoting the probability of the triplet belonging to the graph. To define the scoring function for the

triplets, we use DistMult factorization decoder [52]:

f(h, r, t) = zThRrzt . (4)

where every relation r is associated with a diagonal matrix Rr ∈ Rd×d, while zh and zt denote head

and tail embeddings, respectively. We train the model with negative sampling [51, 52] meaning

that for each observed example we sample n negative edges by randomly corrupting either the head

or the tail of each positive triplet but not both. We use negative sampling loss with self-adversarial

negative sampling [53] as defined below:

L = − log σ(f(h, r, t))−
n∑

i=1

p(h′
i, r, t

′
i) log σ(−f(h′

i, r, t
′
i))) , (5)

with

p(h′
j, r, t

′
j|{(hi, r, ti)}) =

eαf(h
′
j ,r,t

′
j)∑

i e
αf(h′

i,r,t
′
i)
, (6)

where α is the sampling temperature, σ is the sigmoid function, and (h′
i, r, t

′
i) is the i-th corrupted

triplet for the positive triplet (hi, r, ti).

Outcome prediction. To fine-tune PlaNet on downstream prediction tasks, we represent a trial

arm as the set of entities defining the trial protocol information including trial arm, diseases, drugs,

primary outcomes, included and excluded population. To obtain trial arm embedding, we first

obtain a representation vector for each entity type of trial protocol entity by computing the average

embedding of all entities of a given type. Resulting embeddings represent protocol embeddings,

i.e., drug embedding, disease embedding, included/excluded population embeddings and primary

outcome embedding. Finally, we concatenate all entity embeddings including arm embedding to

obtain final trial representation hT . Formally, the final trial arm embedding hT is computed by

aggregating information from all protocol entities using a parameter free convolution layer:

hT =

∥r∈RT

1

|N r
i |

∑
j∈N r

i

h
(L)
j

 ∥ h(L)
T (7)

where RT denotes relations of a trial arm and h
(L)
T is trial arm representation in the last layer L.

Trial outcome classifier takes as input final trial arm embedding and predicts the outcomes

of the clinical trials, namely efficacy, safety and exact adverse events category. For efficacy predic-

tion, outcome classifier takes as input pair of trial arm embeddings, while for safety and efficacy
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tasks classifier takes as input single trial arm embedding. Task-specific classifier consists of two

fully connected layers and outputs the probability that a particular event occurs. Specifically, the

trial encoder is followed by a fully connected layer with non-linear ReLU activation function.

Given trial arm embedding hT , the forward-pass update of the first fully connected classifier layer

is the following:

h′
T = ReLU(WT ′hT + bT ′) , (8)

where WT ′ is a parameter matrix and bT ′ is a bias vector. Finally, the model outputs probabilities

in the second layer:

p = σ(Wth
′
T + bt), (9)

where Wt is the task specific weight matrix, bt is the task specific scalar bias, and σ is the logistic

sigmoid function.

Efficacy prediction. In the efficacy task, we predict which arm will have more favorable outcomes.

We consider only survival-related primary and secondary outcomes including overall survival,

progression-free survival, recurrence-free survival and disease-free survival. Depending on the

unit, higher value may indicate better or worse outcome and we correct all examples with the

opposite direction. The output of the model represents the probability that the first arm will have

higher survival than the second arm. Specifically, given a pair of arms, we concatenate their trial

arm embeddings computed from Equation (7), and then apply Equations (8) and (9) for prediction.

We use the binary cross-entropy loss for training.

Safety and adverse event prediction. In the safety prediction task, the output corresponds to the

probability of occurrence of serious adverse events, while in the adverse event prediction task the

output corresponds to the probability of the occurrence of a particular adverse event category. We

define both tasks with respect to the placebo arm. The placebo arm represents the prior probability

that the adverse event will occur given the disease and population that the clinical trial is investi-

gating. For each disease, we aggregate information from all tested placebo arms and use it as the

estimation of the expected safety issues/adverse events. Given an intervention, we then construct

a contingency table of frequency distributions between treatment and the estimated placebo arm

and check whether the enrichment of adverse events is higher in the treatment arm than in the

placebo arm at the particular odds ratio threshold. We use the odds ratio 2 as the default threshold.

Importantly, the frequency between true placebo arms and estimated placebo arms is not signifi-

cantly different between true and estimated placebo arms in 99.4% trials (t-test, , FDR < 10%),
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confirming that our estimates are trustworthy.

For predicting adverse events we consider MedDRA Primary Term (PT) level terms with

at least 50 positive examples and at least 15 positive examples in the test set. In the adverse

events prediction task, many categories are scarcely labeled. To transfer useful information from

abundantly labeled categories to scarcely labeled categories, we train our model in the multi-task

setting, In particular, our loss function is a multi-task binary cross entropy loss:

LAE = −
∑
c∈C

1

Nc

Nc∑
j=1

yjc log pjc + (1− yjc) log(1− pjc) , (10)

where C is the set of adverse event categories, Nc is the number of learning examples for cate-

gory task c, y denotes outcome binary labels and p denotes probability at the output of the model

defined in Equation (9). Encoder is shared across all tasks, while each task has its own task-

specific classifier. In particular, classifier parameters in Equation (8) are shared across all tasks,

while parameters in Equation (9) are task-specific. For the safety prediction task, we use binary

cross-entropy loss. We split the data into train, validation and test sets by ensuring that same trial

and same drug-disease pairs can not appear in different splits, meaning that the model needs to

generalize to unseen drug-disease combinations.

Knowledge graph-language model framework (PlaNetLM). The PlaNet model discussed above

uses our constructed PlaNet knowledge graph as the primary information for efficacy/safety pre-

diction. In addition, the raw text of clinical trial protocols could provide additional context (e.g.,

description of the exact way dosage is given to participants), and improve robustness and safety

of the model. With this motivation, we introduce a version of PlaNet model that incorporates the

textual information (PlaNetLM), where we augment the R-GCN encoder with a text encoder, in-

spired by the DRAGON method [29, 54]. Specifically, letting textT denote the protocol text of

the input trial arm T , we use a Transformer encoder [55] to obtain a text embedding of the arm,

gT = Transformer(textT ). We then fuse the R-GCN embedding of the arm hT and the text em-

bedding of the arm gT by concatenating them and passing them to an MLP. We use this architecture

for both the pre-training and fine-tuning phases.

Neural network architecture. Our encoder consists of 2 message passing layers with 512 embed-

ding size in each layer and basis decomposition with 15 bases. We use layer normalization, and

PReLU [56] activation after the first layer of message passing. Additionally we use a Dropout [57]

of 0.2 for the encoder after each layer. Other parameters are reported in Supplementary Note 5.

16

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2024. ; https://doi.org/10.1101/2024.03.06.24303800doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.06.24303800
http://creativecommons.org/licenses/by-nc-nd/4.0/


Causal reasoning. To provide explanations behind the predictions for the input trial arm, we

develop a methodology for assigning node influence scores to each term in the eligibility criteria,

inspired by [58]. Given a term, we compute the change in adverse event probability when the term

is removed from the inclusion or exclusion criteria. Concretely, denoting the input trial arm node

as T , the eligibility criterion term node as e, and the TrialNet KG as G, we prepare a KG without

the edges between T and e: G′ = G\{(e, T )}. Then the influence score of the eligibility criterion

e for the trial arm T in the adverse event category c is computed as:

Se→T
c := ∆pc = p(yc;G

′)− p(yc;G) (11)

If the score is positive, it indicates that removing this eligibility criterion makes the adverse event

probability higher, meaning that having this eligibility criterion reduces the adverse event proba-

bility.
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Figure 1: Overview of the PlaNet framework. PlaNet is built as a massive clinical knowledge graph (KG) that captures
treatment information as well as underlying biology and chemistry. (a) The core of the PlaNet framework is a clinical
KG that represents knowledge in the form of (drug, disease, population) triplets. These entities are then linked to external
knowledge bases: diseases to Medical Subject Headings (MeSH) vocabulary [59], treatments to DrugBank database [19],
and population properties to Unified Medical Language System (UMLS) terms [60]. (b) We integrate 11 biological and
chemical databases to capture knowledge of disease biology and drug chemistry, such as databases of drug structural sim-
ilarities, drug targets, disease-perturbed proteins, protein interactions and protein functional relations (Methods). These
databases are integrated with the UMLS graph that captures population relations. (c) Instantiation of the PlaNet frame-
work on the clinical trials data. We parse and standardize clinical trials database and extract information about diseases,
drug treatments, eligibility criteria terms and primary outcomes. (d) Final KG is obtained by integrating the clinical KG
(c) with biological and chemical networks (b).
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Figure 2: PlaNet reasons about efficacy of drugs in clinical trials even for experimental drugs that have never
been tested before. (a) UMAP space of all trial arm embeddings in the clinical trials database obtained by pretraining
PlaNet on the self-supervised task (Methods). Arms are colored according to disease information. Only major disease
groups according to MeSH hierarchy [59] are shown. Grey color denotes minor disease groups. The arm embeddings
learned by PlaNet exhibit clustering according to disease groups. (b) Given embeddings of two trial arms to which
different drug treatments were applied, PlaNet predicts which of the treatments is more effective. Methodologically,
the method geometric deep learning model is fine-tuned on the efficacy prediction task by using information about drug
efficacy from the completed clinical trials. (c) Performance comparison of PlaNet with disease-drug-outcome (DDO)
classifier and transformer-based language model BERT [24, 25]. PlaNetLM is obtained by augmenting PlaNet with the
text embedding of the trial arm protocol [29] (Methods). Performance is measured as the mean area under receiver
operating characteristic curve (AUROC) score across 10 runs of each model on different test data samples. Error bars
are 95% bootstrap confidence intervals. (d) Effect of the training set size on the performance. With more training data,
PlaNet substantially improves performance strongly indicating that further improvements can be expected by increasing
the size of the training set. Performance is measured as the mean AUROC score across 10 runs on different test data
samples. Error bars are 95% bootstrap confidence intervals. (e) PlaNet predicts efficacy of novel, experimental drugs that
have never been seen in a clinical trial before. Bars represent the mean AUROC score for drugs that have been seen in the
labeled training data (left; blue color), and never-before-seen drugs (right; grey color). Mean performance is computed
across 10 runs of different test data samples and error bars are 95% bootstrap confidence intervals. (f, g) Examples of
correct predictions. PlaNet outputs probabilities that a particular treatment will lead to higher overall survival of the
population. (f) PlaNet correctly predicted higher overall survival of melanoma patients in paclitaxel arm compared to
tasisulam-sodium arm. The model has never before seen any effect (labeled example) of the tasisulam-sodium drug. (g)
PlaNet correctly predicted higher progression free survival of melanoma patients when given combination of dabrafenib
and trametinib drugs compared to trametinib drug alone. The model has never before seen any effect of dabrafenib or
trametinib drugs.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 8, 2024. ; https://doi.org/10.1101/2024.03.06.24303800doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.06.24303800
http://creativecommons.org/licenses/by-nc-nd/4.0/


d

0.5

0.6

0.8

1.0

Randomly assign 
trials to train

 and test

Train on trials 
before June 2017, 
test on trials after 

e f

Ad
ve

rs
e 

ev
en

t p
re

di
ct

io
n 

pe
rfo

rm
an

ce
 [A

UR
O

C]

c

0.5 0.6 0.7 0.8 0.9 1.0

Gastrointestinal

Nervous system

Metabolism, nutrition

Eye
Cardiac

General

Musculoskeletal

Respiratory, thoracic

Psychiatric

Vascular

Neoplasms

Blood, lymphatic syst.

Skin

Infections, infestations
Injury, poisoning

Hepatobiliary

Investigations

Renal
Reproductive

Adverse event prediction 
performance [AUROC]

0.0 0.2 0.4 0.80.6 1.0
0.0
0.2
0.4
0.6
0.8
1.0

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

AUROC=0.74

all tria
ls

non-cancer tria
ls

AUROC=0.79
Ad

ve
rs

e 
ev

en
t c

at
eg

or
y

Population subgraph Arm 
embedding

Will a serious 
adverse event occurr?

What adverse 

events will happen?

b

a

No treatment 
prob = 0.11

Adverse event: 
pneumonia

Sclerose

Sclerosis, 
Tuberous

Seizure 
generalized

Inclusion 
criteria

Exclusion criteria

Everolimus

NCT01713946 

Everolimus treatment 
prob = 0.81

No treatment 
prob = 0.10

Adverse event: 
hypertension

Disease
Trial arm

Drug

NCT02702388 

Lenvatinib treatment 
prob = 0.85Sclerosis, 

Tuberous Lenvatinib

Inclusion 
criteria

Exclusion 
criteria

Disease

Drug

Population 

Trial arm

Population 

Figure 3: PlaNet reasons about safety of clinical trials. (a) Given a trial arm embedding, PlaNet predicts (b) whether
a serious adverse event will occur and (c) what adverse event will happen. Methodologically, the methodolog geometric
deep learning model is fine-tuned on the safety task by using information about drug safety from the completed clinical
trials. (b) Performance of PlaNet on predicting occurrence of serious adverse events. PlaNet achieves AUROC score
of 0.79 on predicting whether serious adverse event will occur. Green curve shows performance on all trials, while
orange curve shows performance on on trials that do not investigate cancer diseases. (c) Performance of PlaNet on
predicting exact category of adverse events measured as AUROC score. We consider 554 adverse events defined as
preferred terms (PT) in MedDRA hierarchy [39] and group them according to the organ level categories. We consider
organ level categories with at least 20 PT terms. The boxes show the quartiles of the performance distribution across
different adverse events. Whiskers show the rest of the distribution. (d) Performance of PlaNet on predicting adverse
events of future clinical trials. PlaNet achieves similar performance on predicting outcome of future clinical trials when
compared to trials that are randomly split into train and test dataset independent of the year in which they were conducted.
The performance is measured using AUROC and boxes show quartiles of the AUROC distribution across different adverse
events. Whiskers show the rest of the distribution. (e, f) Examples of individual predictions of adverse events. Model
assigns probability that an adverse event will be enriched in a given arm compared to no-treatment arm (Methods).
(e) In an everolimus safety trial for tuberous sclerosis complex with refractory partial-onset seizures, PlaNet correctly
predicted pneumonia as an adverse event with a high confidence. Although pneumonia is a very rare adverse event
of everolimus [40], in this trial pneumonia was reported as a very common adverse event with one patient dying from
pneumonia, which was suspected to be treatment-related [41]. (f) In a lenvatinib safety trial for thyroid cancer patients,
PlaNet correctly predicted uncontrolled hypertension as an adverse event. Uncontrolled hypertension was reported as the
most frequent adverse event in that trial [42].
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Figure 4: PlaNet identifies characteristics of populations that are at risk of developing adverse events. (a) We match
clinical trials that study same drug, same disease and have same primary outcome (PO), but differ in the characteristics
of the eligible population and result in different adverse events, i.e., adverse event was observed in one trial, but not in
the other. For pairs of such clinical trials, we assess whether model correctly adjusted prediction of an adverse event
and predicted higher probability of an adverse event in one trial compared to the other. (b) Percentage of matched trials
on which PlaNet correctly adjusted the probability of an adverse event (orange color; left) and percentage on which the
adjustment was wrong (green color; right). PlaNet makes 10 times more correct adjustments than wrong. We count
pairs only if the difference between probability of adverse event occurrence of two matched trials is at least 0.2. (c)
The effect of the probability difference threshold on the ratio of correct and wrong probability adjustments. Even with
smaller difference in probabilities (at least 0.05), the number of correct adjustments is more than 4 times higher than the
number of wrong adjustments. With the difference of at least 0.4 the number of correct adjustments is 90 times higher
than the number of wrong adjustments. For each probability threshold p, we count matched trials as correct or wrong
only if the difference between probabilities is at least p. (d) PlaNet identifies population characteristics whose exclusion
can reduce probability of adverse events. Given a population property, we estimate prior probability of an adverse event
when population with a given property is included in the trial. We then change the trial by excluding population with that
property, and observe the change in adverse event probability ∆. By ranking terms according to probability score, we can
identify population properties whose exclusion can increase safety of clinical trials. (e) Use case of (d) for a trial that tests
exemestane drug for breast neoplasms and in which breathing difficulty was observed as an adverse event. PlaNet finds
population properties that have the highest effect on causing breathing difficulty. By excluding that population from the
trial, PlaNet suggests that the probability of breathing difficulty can be significantly reduced. We rank terms that belong
to drug, disease and procedure categories.
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Data availability

We made all data including the clinical knowledge graph available at https://snap.stanford.

edu/planet/data.zip.

Code availability

PlaNet was written in Python using the PyTorch library. The source code is available on Github at

https://github.com/snap-stanford/planet.
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