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Supplementary Methods 

Quality control of genetic data 

DDD 

The DDD cohort was genotyped on three genotyping arrays: the Illumina HumanCoreExome 

chip (CoreExome), the Illumina OmniChipExpress chip (OmniChip), and the Illumina Infinium 

Global Screening Array (GSA). Some probands were genotyped on more than one chip, as 

shown in Supplementary Figure 9.  

CoreExome and OmniChip 

Quality control (QC) of CoreExome (including DDD patients and 9,270 UKHLS controls 

genotyped on the same chip) and OmniChip data were performed by Niemi et al. in each dataset 

separately1. Briefly, samples with sex discrepancies, high missingness (≥3%) in variants with 
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MAF ≥10%, or high or low heterozygosity (+/- 3 SDs from the mean) were removed. Individuals 

who had genetically inferred white European ancestry, defined using reference samples from 

the 1,000 Genomes project, were kept. One individual from each pair of related individuals 

(identical by descent ≥12% using PLINK) were removed from amongst the CoreExome samples, 

and those who were related to trios genotyped on Omnichip were also removed. Trios with > 

2,000 Mendelian errors were removed. We removed variants with minor allele frequency (MAF) 

< 0.5%, missingness ≥3%, or a Hardy-Weinberg equilibrium (HWE) test p-value < 1x10-5. 

Variants with matched alleles between DDD CoreExome and UKHLS were kept so that 

imputation could be conducted from a common set of variants for both cohorts. 

Global Screening Array 

Global Screening Array (GSA) samples from DDD were genotyped in two batches. We removed 

samples that were discordant with exome sequencing data previously generated on all DDD 

individuals2. Sample swaps, duplicates, those with sex discrepancies, and missingness ≥ 5% 

were removed. We examined heterozygosity rate and removed outliers with a rate < 0.158 or > 

0.170. Palindromic, duplicated and multiallelic variants were removed, as well as indels. 

Variants with either a call rate < 95% or with significant deviation from HWE (p < 1×10−6) were 

also removed. The two batches were then merged to overlapping SNPs. Variants with a 

significantly different genotype rate (p < 1×10−50) and allele frequency between the two batches 

were removed. Trios with > 200 Mendelian errors were removed, as were SNPs with Mendelian 

errors in >1% of trios. Variants were again filtered to remove those with a significant deviation 

from HWE (p < 1×10−6) and subset to those with a MAF > 1%. The number of samples remaining 

before and after these QC steps are given in Supplementary Tables 10 and 11. 

 

To identify GSA individuals of genetically inferred European ancestry, we first projected the 

post-QC samples (N=9,572) onto 1,000 Genomes phase 3 individuals3 using the smartpca 

function from EIGENSOFT version 7.2.14. We used linkage disequilibrium (LD)-pruned SNPs 

(pairwise r2 <0.2 in batches of 50 SNPs with sliding windows of 5) with MAF > 5% and removed 

24 regions with high or long-range LD, including the HLA5, leaving 90,563 variants. We identified 

a subset of samples that projected onto European ancestry samples from 1,000 Genomes 

(PC2 > 0.0175), leaving 9,534 European ancestry DDD individuals (Supplementary Figure 

10). We then performed another principal component analysis (PCA) in the unrelated individuals 

within the loosely-defined European ancestry subset, projecting related individuals onto them 

using smartpca4. We applied Uniform Manifold Approximation and Projection (UMAP)6 using 

the first ten PCs and identified a homogeneous subgroup of 8,489 individuals (Supplementary 

Figure 11). Since we intended to merge trio data genotyped on GSA and Omnichip array chips 

in downstream analysis, we conducted a PCA to further confirm that the GSA individuals were 

well matched for ancestry with OmniChip individuals previously identified to have GBR ancestry1 

(Supplementary Figure 12).  

GEL 

Variant calling and initial QC were performed by Genomics England. We used 78,195 post-QC 

germline genomes from the Aggregated Variant Calls (aggV2) prepared by the GEL team. All 

samples were sequenced with 150bp paired-end reads using Illumina HiSeqX and processed 

on the Illumina North Star Version 4 Whole Genome Sequencing Workflow, comprising the 

iSAAC Aligner and Starling Small Variant Caller. Aggregation of single-sample gVCFs were 

performed using the Illumina software gVCF genotyper. We retained 78,195 samples that 
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passed various QC filters including sample contamination <3%, ratio of SNV heterozygous to 

homozygous calls <3, total number of SNVs between 3.2 to 4.7 million, array concordance > 

90%, and median fragment size >250bp, excess of chimeric reads <5%, percentage of mapped 

reads >90%, and percentage at dropout < 10%. We kept variants that passed the QC filters 

shown in Supplementary Table 12. 

 

For GWAS and PGS analyses, we applied additional QC following Kousathanas et al.7. Low-

quality genotypes were masked using the bcftools setGT module performed by the GEL team. 

Specifically, genotypes with depth < 10 or GQ < 20, as well as heterozygous genotypes failing 

an allele balance binomial test with P-value < 1x10-3 were set to missing. The masked VCF files 

were converted to PLINK pgen format using PLINK v2.08. We removed samples with mean 

autosomal coverage <25x. Within GEL samples who had genetically inferred European ancestry 

(inferred as described below), we further removed samples that had four median absolute 

deviations (MADs) above or below the median for the following metrics: ratio of insertions to 

deletions, ratio of transitions to transversions, total deletions, total insertions, total heterozygous 

SNPs, total homozygous SNPs, total transitions, and total transversions. For the number of total 

singletons (SNPs), samples were removed that were more than eight MADs above the median. 

For the ratio of heterozygous to homozygous SNPs, samples were only removed that were more 

than four MADs above the median, so as not to remove samples that simply had high 

autozygosity. 

 

We used GEL individuals with genetically inferred European ancestry, which were identified by 

the GEL bioinformatics team. A list of high quality LD-pruned autosomal biallelic SNPs were 

used in ancestry prediction: MAF >5% in both aggV2 and 1,000 Genomes project phase 3, 

missingness <1%, median GQ ≥30, median depth ≥30, non-palindromic, and HWE test p-

value >1x10-5. LD pruning with an r2 0.1 in 500kb windows was performed using PLINK 1.9 after 

removing SNPs located in long-LD regions. GCTA9 was used to calculate 20 PCs in 1,000 

Genome phase 3 samples, and GEL aggV2 samples were projected onto the PC loadings. A 

random forest model based on eight PCs was trained to assign an individual’s probability of 

being from 1,000 Genomes super-populations. A cut-off of 0.8 was used to identify individuals 

of European ancestry. PCA within the GEL individuals predicted to have European ancestry 

showed population structure within this group (Supplementary Figure 13). To obtain a 

homogeneous subset that represents white British individuals, we kept samples with a 

probability of being from the 1,000 Genomes GBR-ancestry sub-population >0.1. Prediction of 

1,000 Genomes sub-populations was performed using a random forest model trained based on 

PCs calculated within each predicted super-population using high quality SNPs with MAF >1%. 

We further removed samples with PC2 from the within-European PCA less than -0.015 to make 

sure the GEL samples were homogeneous (Supplementary Figure 13). This left 56,249 

individuals in GEL. 

ALSPAC 

Data we received from ALSPAC were processed in two batches10. We had post-QC array data 

for G0 mothers and G1 children (N=17,816) in the first batch. Mothers (N=8,884) were 

genotyped on the Illumina Human 660W chip and children (N=8,932) were genotyped on the 

HumanHap550 quad chip. QC was performed by ALSPAC in the two datasets separately, as 

follows. Sample QC included removing samples with missingness rate <3%, heterozygosity 

outliers, or sex mismatches. Variant QC filters included missingness rate <5%, MAF >1%, and 
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HWE test P-value >1x10-6. After merging the two datasets, SNPs with missingness rate >1% 

across all samples were removed.  

 

Another 2,198 parents (G0 mothers and G0 partners) were genotyped on the CoreExome array 

chip in the second batch. On top of this initial QC that ALSPAC has done, we further removed 

seven samples with high missingness (>3%). We kept autosomal SNPs with MAF >0.5%, 

missingness rate <3%, and that passed the HWE test (p-value > 1x10-5). Array data received 

from the ALSPAC all had genetically predicted European ancestry, so we did not perform any 

filtering based on genetic ancestry. 

 

We merged the two batches and estimated genetic kinship to check sample swaps. We used 

KING11 to estimate kinship using 113,090 overlapping SNPs. We removed 152 samples who 

had unexpected first-degree relationships but were from different families. In addition, we 

removed 16 samples who did not match available exome sequencing data supposedly for the 

same individuals; we did not remove array samples with mismatched exome data when they 

had a first-degree relative in the array dataset who could confirm their kinship. This left 17,656 

and 2,183 samples from the two batches respectively. Among them, 8,831 were children, 9,302 

were mothers, and 1,706 were fathers. 

MCS 

Genotype chip data 

We received data from MCS for 21,181 samples genotyped using the GSA array chip that 

passed initial sample QC12. Samples with missingness rate > 20%, high or low heterozygosity 

(+/- 5 SDs), and sex mismatches were removed. We kept autosomal SNPs with missing rate 

<5%, MAF >0.5%, and had HWE test p-value > 1x10-5 in a subset of unrelated individuals whose 

genetically inferred ancestry was similar to European samples from the 1,000 Genomes project. 

(See below for how ancestry was predicted). For duplicated variants, we kept the one with higher 

call rate. We further removed 283 samples with missingness rate >5%.  

 

To identify MCS individuals with genetically inferred European ancestry, we performed a PCA 

in 1,000 Genomes Project phase 3 samples and projected MCS samples onto the PC space. In 

the PCA, we used SNPs with MAF >5% and missingness rate <1% that passed a lenient HWE 

test (p-value > 1x10-20) in all MCS samples from diverse ancestries. We matched with SNPs 

that passed similar QC in the 1,000 Genomes. LD pruning was performed in MCS with r2 <0.2 

in windows of 50 SNPs. This left 87,738 SNPs in the PCA. We applied UMAP6 using the first 

four PCs which differentiated continental-level populations in the 1,000 Genomes project 

(Supplementary Figure 14). 17,599 samples clustered together with non-Finnish European 

samples from the 1,000 Genomes project. Among them, 17,288 individuals were reported to 

have White ethnicity, and we restricted to these. To get a homogeneous subset, we performed 

another PCA within these 17,288 samples by projecting the relatives onto the PC space 

calculated from the unrelated subset (Supplementary Figure 15A). We performed UMAP on 

four PCs, and kept 16,803 samples from the main cluster (Supplementary Figure 15B).  

 

We next checked sample swaps using genetically inferred kinship between family members 

estimated using KING11. We removed individuals whose family relationship data were missing 

and individuals who had unexpected first-degree relatives: parent-offspring pairs within a family 
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that were not confirmed by genetic data, individuals from different families had a parent-offspring 

relationship, singleton probands who had a full sibling assigned with a different family ID. This 

left 16,634 individuals; among them 6,153 were children, 6,646 were mothers and 3,835 were 

fathers.  

Exome sequence data 

14,791 individuals from MCS, including 7,807 children and 6,975 of their parents, were exome-

sequenced using TWIST capture baits (Twist Custom Panel: Core exome plus Broad panel; 

Twist Design ID: NGSTECustom_0001418) and Illumina NovaSeq S4 100PE, to an average 

depth of ~68X. We removed samples with VerifyBamID score > 0.05 due to having possible 

contamination. BWA-MEM was used to map the reads to GRCh38 with BWA-MEM, then SNV 

and indel calling was conducted with GATK HaplotypeCaller, GenomicsDBImport and 

GenotypeGVCFs (GATK version 4.2.4.0), following GATK best practices. Hail v0.2.105 was 

used to conduct sample, variant and genotype QC, as described below. 

  
Sample QC 

For the purposes of sample QC, we first filtered the data to include only biallelic SNVs and to 

remove variants with an internal allele frequency of ≤ 0.001 and variants with a call rate of ≤ 

0.99, which reduced the number of variants from 4,920,291 to 386,148. We merged the MCS 

data with data from 1,000 Genomes phase 3, retaining variants present in both. We then 

removed variants that had low call rate (< 0.99), low allele frequency (< 0.05) or low Hardy-

Weinberg equilibrium p-value (< 1x10-5), variants in long range linkage disequilibrium regions 

and palindromic SNVs. We ran a PCA using Hail’s hwe_normalized_pca function, and then used 

gnomad’s assign_population_pcs function on first ten principal components to predict 

which superpopulation (European, South Asian, East Asian, African, American, or other) each 

MCS sample was most similar to. 12,851 MCS samples were assigned as being most similar to 

the European samples from 1,000 Genomes. 

 

Next we ran the sample_qc function in Hail and stratified the output by superpopulation. We 

first removed calls with DP (depth) < 20, GQ (genotype quality) < 20 or VAF (variant allele 

fraction) < 0.25, and then calculated the following metrics per sample: number of SNVs, 

Transition/Transversion ratio, het/hom ratio, heterozygosity rate, number of transitions, number 

of transversions, number of insertions, number of deletions, and insertion/deletion ratio. We 

filtered out 302 samples who fell outside of the median +/-4 median absolute deviations 

compared to samples from the same superpopulation for at least one metric. 

   
Variant and genotype QC 

For variant QC, we used a random forest model trained on various metrics to distinguish 

likely true positive from likely false positive variants. Variants in the following high-quality 

datasets were identified in our data and treated as true positive variants: 

●   High confidence sites discovered in 1,000 Genomes 

●   SNVs found in 1,000 Genomes that are present on the Omni 2.5 genotyping array  

●   Indels present in the Mills and Devine data 13 

●   SNVs and indels from HapMap3 
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As false positive variants, we took variants failing this set of hard filters: QD (quality by 

depth) < 2 or FS (FisherStrand i.e. Phred-scaled p-value of Fisher’s exact test to detect 

strand bias) > 60 or MQ (mapping quality) < 30. 

  

We trained a random forest model on chromosome 20 using the true positive and false positive 

annotations above, then applied it to the whole dataset. Most of the features used in the 

random forest were those used by gnomAD, and they are listed here: QD (quality by depth), 

meanHetAB (mean heterozygous allele balance), is_CA (is a C>A SNV), SOR (strand odds 

ratio), variant_type (SNV/indel/multiallelic SNV/multiallelic indel/multiallelic mixed), 

ReadPosRankSum (Rank sum test for relative positioning of REF versus ALT alleles within 

reads), was_split (is a multiallelic site), has_star (alleles at this side include a ‘*’ allele), 

n_alt_alleles (number of ALT alleles at a site), MQ (mapping quality), MQRankSum (Rank sum 

test for mapping qualities of REF versus ALT reads), allele type (SNV/insertion/deletion), and 

was_mixed (Multiallelic site containing SNV(s) and indel(s)) . 

 

We included the metrics is_CA and meanHetAB in order to remove a specific artefact in the 

dataset characterized by a preponderance of C>A errors, which arose through a step in library 

preparation.  

 

We ranked the variants by their random forest score and binned them. To decide on provisional 

random forest score thresholds for SNVs and indels, we manually evaluated plots of the 

cumulative number of true positive variants per bin and the cumulative number of false positive 

variants per bin (for both SNVs and indels), and of the transmitted/untransmitted ratio for 

synonymous singletons (SNVs only; i.e. those seen in only one parent in the sample, using 

3,132 trios). 

  

To decide on suitable hard filters for variants and genotypes, we tested different combinations 

of random forest bin (i.e. a variant-level metric) with various genotype quality metrics: DP 

(depth), GQ (genotype quality) and HetAB (heterozygous allele balance i.e. the fraction of reads 

carrying the ALT allele at a heterozygous genotype). For variants passing a given random forest 

bin filter, we set genotypes to missing if they had GQ, DP or HetAB less than the specified 

threshold. For each combination of filters, we calculated various metrics: 

● precision and recall of variants found in the Genome in a 

Bottle sample NA12878 

● the proportion of true positive and false positive variants 

from the random forest annotation remaining 

● the ratio of transmitted to untransmitted variants for synonymous singletons 

  
For SNVs, the final filters chosen were: random forest bin < 82, DP < 5, GQ < 15, and HetAB < 

0.2. This gave a precision and recall of 0.931 and 0.953 respectively, captured 97.87% of true 

positives and 0.27% of false positives, and gave a transmitted:untransmitted ratio of 0.998 for 

synonymous singletons. For indels, the final filters were: random forest bin < 58, DP < 10, GQ 

< 20, and HetAB < 0.3. This gave a precision and recall of 0.774 and 0.691 respectively, and 

retained 91.185% of true positives and 0.274% of false positives.  
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Identifying relatives across cohorts 

Identifying DDD-GEL duplicates and relatives 

We suspected that there would be overlapping patients and relatives between DDD and GEL, 

and wanted to remove these to ensure that the samples analysed from the two cohorts were 

independent. Since the GEL data cannot be removed from the GEL Research Environment, we 

moved DDD genetic data from English and Welsh samples into it after obtaining ethical 

permission. We did not have consent to move DDD Scottish samples to the GEL Research 

Environment, so we could not remove GEL samples who were related to them. Thus, we 

removed Scottish individuals from the DDD cohort in GWAS and PGS analyses, and focused 

on identifying and removing GEL participants who were duplicates of or related to the remaining 

individuals from DDD. We used two approaches to identify DDD duplicates, siblings and more 

distant relatives in GEL (described below), and removed GEL individuals who were identified as 

related to DDD individuals by either approach.  

 

We first used the DDD exome-sequence data to identify overlapping samples between DDD 

and GEL, and pairs of individuals from the two cohorts who were siblings. DDD exome-

sequenced samples (N=32,369) were used to create informative genotype barcodes (2,466 

SNPs). After excluding probands from Scotland, Northern Ireland and Dublin (whom we 

assumed would have not have been cross-recruited to GEL), 11,941 DDD probands were 

transferred to the GEL Research Environment and matched using bcftools gtcheck -e 0 --

genotypes DDD.bcf GEL-sample.vcf.gz. To account for missing data, the average number of 

mismatching genotypes was then used to determine identical samples and siblings. We 

removed 1,752 GEL patients who were identified as duplicates of DDD probands and ten GEL 

participants who were identified as siblings of DDD patients. (Using the array data which had 

higher resolution (see below), two of the putative duplicates and one of the putative siblings 

were subsequently determined to actually be siblings and second-degree relatives of the DDD 

patients, respectively.)   

 

We moved array data for 18,569 participants from DDD excluding those recruited from Scottish 

centres and 9,270 UKHLS controls into the GEL Research Environment. We matched SNPs 

from the three array chips with GEL, which left 85,092 SNPs. Up to third-degree relatives 

(kinship coefficient > 0.0442) were identified using KING v2.2.411. Among the GEL participants 

with genetically-predicted European ancestry, we further removed 2,525 individuals who were 

related to DDD participants as well as 235 individuals who were related to UKHLS controls.   

Integration of birth cohorts and DDD 

We removed individuals from ALSPAC and MCS who were related to each other (across 

cohorts) or to DDD individuals. To do that, we first merged array data across DDD (CoreExome, 

GSA, and Omnichip), ALSPAC (both batches), and MCS (GSA). There were 45,295 SNPs that 

passed QC in all datasets. We compared the kinship estimated using this list of overlapping 

SNPs with that estimated from all available SNPs within MCS, and found that we could infer 

kinship relationships up to second-degree relatives accurately using the small number of 

overlapping SNPs. We then removed 33 samples from ALSPAC and 46 samples from MCS that 

had a second-degree relative or closer in DDD. We had 1,459 and 2,523 parent-offspring trios 

in ALSPAC and MCS, respectively. We finally removed samples from MCS or ALSPAC to make 

sure that children in those trios from both cohorts were unrelated, and that parents in the trios 
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were also unrelated with other parents, resulting in 1,434 and 2,498 trios from ALSPAC and 

MCS, respectively. 

Defining trio sample sets for analysis in DDD and GEL 

The procedure used for filtering trios used in DDD and GEL is shown in Supplementary 

Figure 16 and described below. 

DDD 

We combined trios with GBR ancestry across GSA and OmniChip arrays, then kept unrelated 

trios (up to three degrees of relatedness, as determined using KING11). We removed trios 

recruited from Scottish centres for the reason described above in the section on “Identifying 

relatives”. We then subset to trios where the proband had a neurodevelopmental condition. We 

then split trios into those with both parents unaffected and those with one or both parents 

affected. These were then categorised as genetically diagnosed or undiagnosed. Among the 

undiagnosed trios, we looked at trios in which the proband had a rare inherited damaging variant 

in either a constrained gene or a dominant DD-associated gene with a loss of function 

mechanism. We also looked at trios with a de novo diagnosis. 

GEL 

We used participant data and aggregate gVCF sample statistics from the GEL main programme 

version 13. We identified trios, and subset to those in which each member was whole genome 

sequenced and the genetically-inferred sex was consistent with the phenotypic sex. We then 

removed trios in which any member was already in DDD or related to DDD participants up to 

three degrees of relatedness. These were further subset to trios in which all individuals had 

GBR ancestry and probands had a neurodevelopmental condition. We then kept the maximal 

number of trios for which the probands were not related with each other (up to third degree) and 

none of the parents were related to another parent. We then identified trios with unaffected 

parents and trios with one or both parents affected. These were then categorised into genetically 

undiagnosed and diagnosed. Similar to DDD, we looked at undiagnosed trios in which the 

proband had a rare damaging variant, as well as trios with a de novo diagnosis. 

Calculating polygenic scores 

Weights for polygenic scores were estimated using LDPred14. We used an LD reference panel 

for 1,054,330 HapMap315 variants based on 5,000 unrelated individuals of white British 

genetically-inferred ancestry from the UK Biobank16. 

 

For all scores except that for schizophrenia, we used an LD radius (--ldr) of M/3000, where M is 

the number of matched SNPs. In the case of schizophrenia, the singular value decomposition 

(SVD) did not converge, so we used an LD radius of 300. For all scores, as the traits are highly 

polygenic, we assumed a prior fraction of causal variants to be 1. Once the weights were 

generated, we calculated polygenic scores for individuals in DDD, GEL, and control cohorts, 

using the --score function in PLINK v1.9, which calculates the weighted sum of genotypes 

across a set of SNPs for each individual.  

 

To make PGS comparable across different cohorts, we started from the same 4,570,898 SNPs 

that were well-imputed in all array cohorts (Minimac4 R2 > 0.8), passed QC in GEL aggV2 
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samples, and had MAF >1% in all cohorts. Among these, 831,226 SNPs were in the 

aforementioned LD reference panel. GWAS summary statistics for years of schooling17, non-

cognitive performance of educational attainment18, cognitive performance17, schizophrenia19, 

and neurodevelopmental conditions1 were matched with the list of overlapping SNPs 

(Supplementary Table 14). The PGS for neurodevelopmental conditions (PGSNDC,DDD) was 

evaluated in the DDD Omnichip samples and the GEL samples which were not in the GWAS. 

 

To make PGS comparable across cohorts (DDD, GEL, UKHLS, MCS and ALSPAC), we 

performed a joint PCA across all included samples with genetically-inferred European 

ancestries and adjusted the raw scores for 20 PCs. We firstly performed a PCA in array samples 

(i.e. all cohorts except GEL). We focused on the 45,295 SNPs that passed QC in all datasets 

and applied LD pruning (pairwise r2 <0.5 in batches of 50 SNPs with sliding windows of 5) after 

removing SNPs in long LD regions, which left 39,784 SNPs in PCA. We calculated PCs in a 

subset of unrelated individuals (removed up to second-degree relatives) and projected the 

remaining array samples to the PC space. We then moved the PC loadings to the GEL Research 

Environment and projected GEL samples with GBR ancestry onto the same PC space. (The 

rationale for this was that data governance constraints prevented us from moving individual-

level ALSPAC and MCS data to the GEL Research Environment.) We regressed out 20 PCs 

from the raw PGS in array samples and used the same linear regression coefficients to adjust 

the raw PGS in GEL samples. For all analyses, residuals were scaled so that the combined set 

of unrelated control samples from GEL and UKHLS (or GEL only for PGSNDC,DDD) had mean = 

0 and standard deviation = 1.  

Analyses of polygenic scores 

PGS in DDD patients with different configurations of affected relatives  

Wright et al. showed that being the only affected individual in one’s family was associated with 

a higher chance of getting a genetic diagnosis20. Moreover, the more affected relatives the 

patient had, the lower the chance of receiving a diagnosis. We repeated this analysis in DDD 

patients affected by neurodevelopmental conditions with PGS available and compared the 

mean PGS of educational attainment (PGSEA) in subgroups of patients with different 

configurations of affected relatives based on the number of affected parents, siblings, and more 

distant relatives, as shown in Extended Data Figure 6. We estimated the odds ratio of getting 

a diagnosis in these subgroups using a multiple logistic regression model following Wright et 

al.: 

𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐 𝑠𝑡𝑎𝑡𝑢𝑠 ~ 𝑐𝑜𝑛𝑓𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒𝑠 +  𝑎𝑔𝑒 +  𝑠𝑒𝑥 

+𝑡𝑖𝑚𝑒 𝑠𝑖𝑛𝑐𝑒 𝑐𝑜𝑛𝑠𝑒𝑛𝑡 + 𝑡𝑟𝑖𝑜 𝑠𝑡𝑎𝑡𝑢𝑠 + 𝐹𝑅𝑂𝐻 + 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝐸𝐶𝐼𝑃𝐻𝐸𝑅 𝑣𝑎𝑟𝑖𝑎𝑛𝑡𝑠 

+𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑟𝑔𝑎𝑛 𝑠𝑦𝑠𝑡𝑒𝑚𝑠 𝑎𝑓𝑓𝑒𝑐𝑡𝑒𝑑 + 𝑑𝑒𝑎𝑡ℎ + 𝑛𝑒𝑜𝑛𝑎𝑡𝑎𝑙 𝐼𝐶𝑈 𝑠𝑡𝑎𝑦 

+𝑔𝑒𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑤𝑒𝑒𝑘𝑠 + 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 𝑜𝑓 𝑖𝑛𝑡𝑒𝑙𝑙𝑒𝑐𝑡𝑢𝑎𝑙 𝑑𝑖𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑟 𝑑𝑒𝑣𝑒𝑙𝑜𝑝𝑚𝑒𝑛𝑡𝑎𝑙 𝑑𝑒𝑙𝑎𝑦 (𝐼𝐷/𝐷𝐷) 

+𝑝𝑟𝑒𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑠𝑒𝑖𝑧𝑢𝑟𝑒𝑠 + 𝑟𝑒𝑚𝑖𝑛𝑖𝑠𝑐𝑒𝑛𝑡 𝑠𝑦𝑛𝑑𝑟𝑜𝑚𝑒 + 𝑟𝑒𝑐𝑟𝑢𝑖𝑡𝑖𝑛𝑔 𝑐𝑒𝑛𝑡𝑟𝑒 + 𝑚𝑎𝑡𝑒𝑟𝑛𝑎𝑙 𝑑𝑖𝑎𝑏𝑒𝑡𝑒𝑠 

+𝑚𝑎𝑡𝑒𝑟𝑛𝑎𝑙 𝑢𝑠𝑒 𝑜𝑓 𝑎𝑛𝑡𝑖𝑒𝑝𝑖𝑙𝑒𝑝𝑡𝑖𝑐 𝑑𝑟𝑢𝑔𝑠 + 𝑚𝑎𝑡𝑒𝑟𝑛𝑎𝑙 ℎ𝑖𝑠𝑡𝑜𝑟𝑦 𝑜𝑓 𝑝𝑟𝑒𝑔𝑛𝑎𝑛𝑐𝑦 𝑙𝑜𝑠𝑠 

We no longer controlled for ancestry because we calculated PGS in only patients with 

genetically-inferred GBR ancestry. The reference group for the odds ratios in Extended Data 

Figure 6 is the subset of patients without any affected relatives.  
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Mediation analysis to explore factors mediating the association between PGSEA and 

diagnostic status 

We hypothesised that the effect of the PGSEA on getting a diagnosis is mediated by factors such 

as being in a parent-offspring trio (which likely affects diagnostic status for technical reasons) 

and being born prematurely (which likely has a biological effect, in that prematurity itself may be 

the cause of the neurodevelopmental condition rather than a monogenic cause). To assess this, 

we first fitted the following logistic regressions: 

 𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐 𝑠𝑡𝑎𝑡𝑢𝑠 ~ 𝑃𝐺𝑆 +  𝑡𝑟𝑖𝑜 𝑠𝑡𝑎𝑡𝑢𝑠 

 𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐 𝑠𝑡𝑎𝑡𝑢𝑠 ~ 𝑃𝐺𝑆 +  𝑝𝑟𝑒𝑚𝑎𝑡𝑢𝑟𝑖𝑡𝑦 

Based on the Bayesian Information Criterion, we found that both of these models were a better 

fit than the baseline model 𝐷𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐 𝑠𝑡𝑎𝑡𝑢𝑠 ~ 𝑃𝐺𝑆. We then performed mediation analyses 

using the mediation R package (v 4.5.0)21 to explore whether the association between PGSEA 

and diagnostic status was medicated by trio status or prematurity. The effect (a) of the exposure 

(proband’s PGSEA) on the mediator (trio status or prematurity) was estimated in a logistic 

regression. The effect (b) of the mediator on the outcome (diagnostic status) accounting for the 

exposure was estimated in a logistic regression model where the outcome was regressed on 

both the exposure and the mediator. From the same model, we estimated the direct effect (c) 

of the exposure on the outcome. The indirect effect of the exposure on the outcome through the 

mediator was quantified as axb, which is 0 under the null hypothesis. The proportion of total 

effect that was mediated by a mediator was estimated axb/(axb+c). We used a bootstrap 

resampling method (n=1,000) in the mediation package to estimate the 95% confidence 

interval and p-value for the mediation effect.  

Assessing collinearity in the trio model 

We were concerned about the possibility of collinearity between the PGSs in the trio model (a 

logistic regression; results in Figure 4): 

1𝑁𝐷𝐶  𝑠𝑡𝑎𝑡𝑢𝑠  ~ 𝑐ℎ𝑖𝑙𝑑 𝑃𝐺𝑆 +  𝑚𝑜𝑡ℎ𝑒𝑟 𝑃𝐺𝑆 +  𝑓𝑎𝑡ℎ𝑒𝑟 𝑃𝐺𝑆 

where 1𝑁𝐷𝐶  𝑠𝑡𝑎𝑡𝑢𝑠 is an indicator variable for whether the individual is an NDC case (1) or control 

(0). 

 

The child’s PGS is highly correlated with the parental PGS, and we observed correlation 

coefficients up to 0.59 (between children and mothers for PGSEA). To assess the severity of 

collinearity in the trio model, we calculated the variance inflation factor (VIF) for the three scores 

for the various PGSs examined. As expected, the VIF of the child’s PGS (ranging from 2.02 to 

2.35; highest VIF observed for PGSEA) is higher than that of the parental PGS (ranging from 

1.49 to 1.62), meaning that the variance explained by parental PGS in the child’s PGS is higher 

than that explained in a parent’s PGS by other two PGS. However, the highest VIF amongst all 

five PGSs examined did not exceed the commonly-used cutoff of 5, suggesting that collinearity 

is not too concerning.  

Testing whether prematurity mediates the effects of non-transmitted alleles 

To test the hypothesis that the effects of non-transmitted alleles associated with educational 

attainment and cognition might be mediated by prematurity, we reran the trio model (Figure 4) 

in several ways using a subset of trios for which data on gestational age were available, namely 

undiagnosed cases from DDD (N=1,521 trios) and control trios from MCS (N=2,451; 

Supplementary Figure 5, Supplementary Note 5). We ran the trio model adjusting for 
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prematurity as a binary covariate (<37 full weeks or ≥37 weeks), in trios excluding probands 

who were born prematurely (16% of cases and 6% of MCS controls), and in only premature 

probands. Among the probands who were born prematurely, the severity of prematurity in DDD 

was higher than MCS, with 5% born extremely prematurely (<28 weeks) in DDD versus 3% in 

MCS and 15% with a gestational age between 28 to 32 weeks in DDD vs 12% in MCS. To 

account for this, we also ran the trio model in premature probands controlling for the severity of 

prematurity as a categorical covariate indicating whether the proband belonged to any of the 

following three categories: with a gestational age <28 full weeks, 28 weeks to <32 weeks, or 32 

weeks to <37 weeks. 

Mendelian randomization  

To explore causal relationships between educational attainment, prematurity and 

neurodevelopmental conditions, we ran standard two-sample Mendelian randomization (MR) 

and the Latent Heritable Confounder MR (LHC-MR) method using the lhcMR v0.0.0.9000 

package in R 22. We used the GWAS summary statistics listed in Supplementary Table 14. For 

standard MR analysis, SNPs were chosen as genetic instruments for a given exposure using 

LD clumping with the 1000 Genomes EUR superpopulation as the reference (LD R2 < 0.001 by 

10 MB windows) and a p-value cutoff of 5x10-8, resulting in up to 297 SNPs for educational 

attainment, three SNPs for preterm delivery, and two SNPs for neurodevelopmental conditions. 

We performed univariate MR using four methods when there were three or more genetic 

instruments: inverse-variance weighted, weighted mode, weighted median, and MR Egger. Only 

the inverse-variance weighted method was run when there were two genetic instruments. In 

addition, we also assessed bi-directional causal effects between two given traits using LHC-

MR, which allows for a reverse causal effect and a latent heritable confounder of the exposure-

outcome relationship. LHC-MR used about 4 million genome-wide SNPs with LD score 

calculated. As recommended by the authors, to avoid potential bias, LHC-MR was performed 

when the total SNP heritability estimate (by LD score regression) of the exposure was >2.5%, 

which was the case for educational attainment (11%) but not for prematurity (1.2%). Thus, 

educational attainment was tested as the exposure for both prematurity and 

neurodevelopmental conditions, but allowing for a reverse causal effect in each case. 

Construction and incorporation of weights for the Millennium Cohort Study 

The Millennium Cohort Study (MCS) deliberately oversampled minority ethnic and 

disadvantaged individuals 23, which can lead to biased estimates of mean trait values, including 

PGSs, within the sample (sampling bias). In addition, nonrandom missingness in each wave of 

data collection (including the collection of DNA for genotyping) due to biased attrition can also 

lead to biased estimates of mean trait values (non-response bias). MCS developed sampling 

weights to adjust for the initial non-random sampling. To correct for non-response bias, we 

produced non-response weights using inverse probability weighting as previously described23,24. 

First, we conducted a logistic regression on whether a MCS child had genotype data using the 

following covariates collected at the first study sweep, which had minimal missingness: 

has_genotype_data ~ housing_tenure + parental_years_in_education + 

language_spoken_at_home + study_strata + single_parent_status + breastfeeding_status 

The variable study_strata consists of nine categories of individuals from each country in the UK 

(England, Wales, Scotland, Northern Ireland), each of which was stratified by classification as 

advantaged or disadvantaged, plus an additional classification of “ethnic” sampling only in 
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England. The variables from which these covariates were taken were as follows: ADROOW00, 

APLFTE00, ADHLAN00, PTTYPE2, ADHTYS00, ACBFEV00. Individuals with any missingness 

for these variables were excluded from the weighting procedure. As these variables were 

collected at the first sweep of the study, missingness was low, with >96% of individuals having 

complete data for the selected variables. 

 

We fitted this model to predict who was within the sample of unrelated GBR-ancestry individuals 

with genotype data (N=5,884 of 6,036 children who had no missingness on the variables above), 

and separately to predict who was within the subset of these that additionally had genotype data 

on both parents (N=2,445 of 2,498 trio children who had no missingness). In the latter model, 

we included an additional covariate for whether the child had any genotype data. These models 

had a Nagelkereke R2 of 0.51 and 0.42, respectively.  

 

We then extracted the predicted value for each genotyped individual as the probability of being 

genotyped (or the probability of being in a trio from which all three members were genotyped) 

and used the inverse of that probability as the non-response weight per individual. Intuitively, 

those with lower predicted probabilities for having genotype data but nonetheless were 

genotyped were assigned higher weights. We removed individuals with weights more than three 

standard deviations above the mean, as these likely represent phenotyping errors driving 

erroneously low non-response probabilities. This removed fourteen individuals for the weights 

in all genotyped individuals and three when restricting to those in trios. To calculate an overall 

weight taking into account both sampling and non-response bias, we multiplied the sampling 

weights provided by MCS with the non-response weights we had calculated.  

 

To calculate the mean PGS for the groups shown in Extended Data Figure 5C, we fitted a 

linear regression for the PGS in R (formula: 1 ~ PGS) with no covariates and included the 

weights using the “weights” argument, such that the intercept for the model returns the weights-

adjusted mean for the sample. To calculate the weighted correlation between PGS and rare 

variant burden score (RVBS) shown in Supplementary Figure 7, we fitted a linear regression 

in R regressing scaled PGS on scaled RVBS (formula: scale(RVBS) ~ scale(PGS)) 

incorporating the weights similarly, such that the regression coefficient returns the weights-

adjusted correlation.   
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Supplementary Figures 

Figure S1 

Supplementary Figure 1. Pearson correlations between the five polygenic scores (PGS) used 

throughout this paper. Correlations were estimated in the following three subgroups: probands 

with neurodevelopmental conditions (NDCs) regardless of trio status (N=3,618 from GEL and 

N=6,883 from DDD; N=597 in DDD excluding GWAS samples), parents of probands from 2,174 

DDD trios and 2,390 GEL trios, and controls individuals from GEL (N=13,667) and UKHLS 

(N=9,270). EA: educational attainment; CP: cognitive performance; NonCogEA: the non-

cognitive component of EA; SCZ: schizophrenia; NDC,DDD: neurodevelopmental conditions, 

with the GWAS conducted in DDD versus the UK Household Longitudinal Study, and the 

polygenic score tested only in samples excluded from the GWAS (GEL and DDD OmniChip).  

 

Figure S2 

Supplementary Figure 2. Polygenic transmission disequilibrium test (pTDT) results having 

excluded autistic probands, in either undiagnosed or diagnosed probands (N=1,298 
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undiagnosed in DDD, N=192 excluding NDC GWAS samples, N=907 in GEL; N=395 diagnosed 

in DDD, N=268 excluding NDC GWAS samples, N=389 in GEL). 

 
 

 

Figure S3 

Supplementary Figure 3. Polygenic transmission disequilibrium test (pTDT) results in 

probands with a monogenic diagnosis (N=443 in DDD, N=296 excluding GWAS samples; 

N=507 in GEL) 
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Figure S4 

Supplementary Figure 4. Sensitivity analysis to assess non-transmitted coefficients and direct 

genetic effects of PGS in A) only GEL trios, B) in all cases with neurodevelopmental conditions 

versus GEL control trios, C) in all cases versus MCS control trios, and D) in all cases versus 

ALSPAC control trios. All cases with neurodevelopmental conditions are undiagnosed and both 

parents are unaffected. Y axes show effect sizes of PGSs on case/control status, testing either 

the child’s PGS alone (“proband only”), or while additionally controlling for the parents’ PGSs 

(“trio model”). Two asterisks indicate significance at p-value < 0.01 (Bonferroni correction for 

five PGSs) and one asterisk indicates nominally significant at p-value <0.05. Error bars indicate 

95% confidence intervals. 
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Figure S5 

Supplementary Figure 5. Exploring whether prematurity may mediate the association between 

non-transmitted alleles of PGSEA and risk of neurodevelopmental conditions. Estimates of the 

effect of PGSEA from the “proband-only” model (grey) or the “trio model” (different shades of 

blue), as in Figure 4, run on various different subsets of probands. Three different models were 

run, plotted in this order: using all DDD and MCS probands either before (“DDD versus MCS”) 

or after controlling for whether or not the proband was born prematurely (“adj prematurity”), or 

using DDD and MCS probands excluding those who were born prematurely (“excluding 

premature probands”). Error bars indicate 95% confidence intervals. 
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Figure S6 

Supplementary Figure 6. Correlation coefficients between PGSs and the number of inherited 

rare coding variants defined in various ways within/between different sets of individuals, in 

different subsets of trios with neurodevelopmental conditions. The correlations within probands 

with neurodevelopmental conditions whose parents are unaffected are shown in blue (i.e. the 

child’s rare variant burden score, RVBS, with their own PGS), and those within their parents are 

shown in purple. The cross-parental correlation (i.e. one parent’s RVBS with the other parent’s 

PGS) is shown in orange. We conducted the analysis either in all trios with neurodevelopmental 

conditions in which both parents were unaffected (A), in undiagnosed trios with unaffected 

parents (B) or in trios with de novo diagnoses and unaffected parents (C). RVBSs were 

calculated using PTVs, PTV and missense variants combined, or synonymous variants in 

dominant DD genes with a loss-of-function mechanism or in constrained genes. Significant 

correlations that pass Bonferroni correction for 30 tests (P-value < 0.0017; five PGSs, three 

variant types, and two gene sets) are indicated by two asterisks, and nominally significant 

correlations (P-value < 0.05) are indicated by one asterisk. Note that both the rare variant burden 

scores and PGS have been corrected for 20 genetic principal components. Error bars represent 

95% confidence intervals.  
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Figure S7 

Supplementary Figure 7. Correlation coefficients between PGSs and the number of rare 

coding variants filtered in various ways within/between different sets of individuals, in control 

trios (N=2,246) from the Millennium Cohort Study (MCS). The correlations within children are 

shown in blue (i.e. the child’s inherited rare variant burden score, RVBS, with their own PGS), 

and those within their parents are shown in purple. The cross-parental correlation (i.e. one 

parent’s RVBS with the other parent’s PGS) is shown in orange. RVBSs were calculated using 

PTVs, PTV and missense variants combined, or synonymous variants in dominant DD genes 

with a loss-of-function mechanism or in constrained genes. The weighted correlations after 

adjusting for sampling bias and non-response bias (attrition) (Supplementary Methods) are 

shown in darker colours. Significant correlations that pass Bonferroni correction for 30 tests (P-

value < 0.0017; five PGSs, three variant types, and two gene sets) are indicated by two 

asterisks, and nominally significant correlations (p-value<0.05) are indicated by one asterisk. 

Note that both the rare variant burden scores and PGS have been corrected for 20 genetic 

principal components. Error bars represent 95% confidence intervals.  
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Figure S8 

Supplementary Figure 8. Investigation of PGSs modifying penetrance of rare damaging coding 

variants within families. The plot shows results from one-sided, paired t-tests comparing PGSs 

between unaffected parents transmitting damaging rare variants and their undiagnosed 

children. A positive difference indicates that the unaffected parents have higher PGS than the 

children. One asterisk indicates a nominally significant difference; none of the differences 

passed Bonferroni correction for 20 tests (five PGSs, two variant types, and two gene sets). 

Error bars indicate 95% confidence intervals (CIs). The upper bound of CI is shown for PGSSCZ 

and PGSNDC,DDD, for which an upper-tailed test was used and the lower bound is -infinity. The 

lower bound of CI is shown for PGSEA, PGSCP, PGSNonCogEA, for which a lower-tailed test was 

used, and the upper bound is +infinity. 
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Figure S9 

Supplementary Figure 9. Venn Diagrams of DDD samples by genotyping array. Overlapping 

proband samples (left) and overlapping parent samples (right) across three genotype array 

chips used in the DDD cohort.  

  



 

23 

Figure S10 

Supplementary Figure 10. Principal components (PCs) of DDD Global Screening Array 

samples (N = 9,572) and 1,000 Genomes phase 3 samples (N=2,548). DDD individuals are in 

black, coloured by superpopulation, with the exception of GBR-ancestry individuals. GBR: Great 

British, EAS: East Asian, EUR: European, AFR: African, AMR: Ad Mixed American, SAS: South 

Asian.  
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Figure S11 

Supplementary Figure 11. UMAP using the first ten principal components from a principal 

component analysis (PCA) within loosely European-ancestry DDD samples on the Global 

Screening Array (N=9,534). Black lines indicate the cut-offs chosen to delineate the 

homogeneous European-ancestry group shown in the bottom left area of the plot, which was 

taken forward for analysis (N=8,489). 
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Figure S12 

Supplementary Figure 12. Principal components (PCs) of European-ancestry participants in 

DDD genotyped on the Global Screening Array and GBR-ancestry individuals genotyped on 

OmniExpress chip from Niemi et al.1.  
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Figure S13 

Supplementary Figure 13. Principal components (PCs) of GEL individuals with predicted 

European ancestry (N= 62,366). All individuals plotted here had a probability of being in the 

1,000 Genomes EUR super population > 0.8 (according to a random forest model), and a subset 

of those with probability of being in the 1,000 Genomes GBR subpopulation > 0.1 (according to 

a random forest model) are in orange. The black line on PC 2 indicates the PC2 cut-off for 

individuals selected as GBR ancestry.  
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Figure S14 

Supplementary Figure 14. A) Principal components (PCs) calculated in 1,000 Genomes phase 

3 individuals, with MCS individuals shown in black projected to the same PC space. Colours 

indicate continental-level populations from the 1,000 Genomes project: European (EUR), 

African (AFR), Ad Mixed American (AMR), East Asian (EAS) and South Asian (SAS). B) UMAP 

using the first four PCs. 
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Figure S15  

Supplementary Figure 15. A) Principal components (PCs) of 17,599 MCS samples who were 

reported to have White ethnicity clustered together with non-Finnish European samples from 

the 1,000 Genomes project. Red indicates outlier samples that were removed based on being 

below the line in panel (B). B) UMAP using the first four PCs. 
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Figure S16 

Supplementary Figure 16. Flow diagram of trio filtering in A) DDD and B) GEL.  
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Supplementary Tables 

Supplementary Table 1. Number of samples used in each analysis. All individuals have 

genetically inferred European ancestry. Note that we did not calculate the PGS for 

neurodevelopmental conditions in UKHLS samples and DDD probands genotyped using 

CoreExome chip or Global Screening Array, since they were in the original GWAS (Niemi et al., 

Nature, 2018), but rather only tested it in GEL probands and in DDD probands who were 

genotyped using the OmniChip as well as in parents and UK birth cohorts. Scottish participants 

and those who are related to GEL participants were excluded from DDD when they are analysed 

together with GEL samples in a combined analysis. 

 

Supplementary Table 2. Variance explained by polygenic scores (PGSs) for educational 

attainment (EA), cognitive performance (CP), the non-cognitive component of educational 

attainment (NonCogEA), schizophrenia (SCZ), and rare neurodevelopmental conditions 

(NDC,DDD) on the liability scale, either comparing DDD with UKHLS or GEL cases with GEL 

controls. 

 

Supplementary Table 3. SNP heritability estimates using different methods. LD score 

regression (LDSC) was run on summary statistics from the GEL-derived GWAS, DDD-derived 

GWAS, and the meta-analysed GWAS. LD- and MAF-stratified GREML (GREML-LDMS)25 and 

phenotype-correlation genotype-correlation (PCGC)26 regression were run in DDD and GEL 

GWAS samples separately, then the SNP heritability estimates were meta-analyzed. We 

observed higher SNP heritability estimates using GREML-LDMS and PCGC, possibly due to 

the fact that LDSC uses only the subset of SNPs in HapMap (Methods) and because the 

heritability estimate tends to be downward-biased at sample sizes of this order27. 

 

Supplementary Table 4. Genetic correlations (rg) between neurodevelopmental conditions and 

other brain-related traits and disorders. We calculated rg between brain-related traits and either 

GWAS of neurodevelopmental conditions derived from DDD or the GWAS meta-analysis of 

DDD and GEL using Linkage Disequilibrium Score Regression (LDSC). We also calculated rg 

between the GWAS meta-analysis of neurodevelopmental conditions and those brain-related 

traits after conditioning on educational attainment and cognitive performance using 

GenomicSEM. We performed two-sided z-score tests ("z_pvalue") to compare rg estimates 

before and after conditioning on the two traits. Confidence intervals (CI) were calculated using 

the standard error (se) of the rg estimate. We corrected for 13 traits using the Bonferroni 

approach. For each external trait, we also report SNP heritability on the observed scale by 

LDSC. See Supplementary Table 14 for information on external GWASs. 

 

Supplementary Table 5. Two-sided t-tests comparing average polygenic scores (PGSs) 

between subsets of probands with neurodevelopmental conditions and control individuals 

shown in Figure 2A. The table contains comparisons (1) between subsets of probands with 

neurodevelopmental conditions (from DDD+GEL combined) and (2) between probands with 

neurodevelopmental conditions and control individuals from a combined set of unrelated 

individuals from GEL and UKHLS. The PGS for neurodevelopmental conditions derived from 

the GWAS of DDD and UKHLS samples was tested in only GEL samples and a held-out set in 

DDD. Nominally significant t-test results are indicated by one asterisk and tests that pass the 

Bonferroni correction for five PGSs are indicated by two asterisks. The last column highlights 

comparisons that were mentioned in the main text. 
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Supplementary Table 6. Two-sided t-tests comparing polygenic scores (PGSs) between 

different control cohorts and subsets thereof, subsets of probands with neurodevelopmental 

conditions, and their parents in Extended Data Figure 5. The table contains comparisons (1) 

between MCS children before and after reweighting to adjust for sampling bias and attrition, (2) 

between probands with neurodevelopmental conditions or parents (from DDD+GEL combined) 

with reweighted MCS children, (3) between control subsets, (4) between probands with 

neurodevelopmental conditions or parents (from DDD+GEL combined) with each control 

subset, and (5) between trio and non-trio probands with neurodevelopmental conditions and 

those from birth cohorts. The PGS for neurodevelopmental conditions was derived from the 

GWAS of DDD and UKHLS samples so it was not tested in the GWAS sample. Nominally 

significant t-test results are indicated by one asterisk and tests that pass the Bonferroni 

correction for five PGSs are indicated by two asterisks.                                                                                    

 

Supplementary Table 8. Association between the polygenic score (PGS) for educational 

attainment (PGSEA) and factors affecting the chance of getting a monogenic diagnosis in DDD 

probands with white British ancestry affected by neurodevelopmental conditions (as shown in 

Figure 2BC). PGSEA was regressed on the indicated variable in a linear regression. The 

probands’ PGSEA was tested in a maximum of 7,549 probands with neurodevelopmental 

conditions (without excluding Scottish samples). The fathers’ or mothers’ PGSEA was tested in 

a maximum of 2497 trios. Nominally significant differences are indicated by one asterisk and 

tests that pass the Bonferroni correction of seven factors are indicated by two asterisks. We 

also estimated the effect size (in odds ratio) of each factor on the chance of getting a genetic 

diagnosis in this subset of 7,549 probands with neurodevelopmental conditions, with and without 

controlling for proband's PGS for educational attainment. 

 

Supplementary Table 7. Two-sided t-tests comparing average PGS between parents and their 

affected offspring from different subsets of trios, and between probands with 

neurodevelopmental conditions or parents and control individuals, shown in Figure 3B and 

Extended Data Figure 4. More specifically, the table contains comparisons (1) between 

undiagnosed probands with unaffected parents and their parents (in DDD+GEL combined; 

Figure 3B), (2) between these two groups and control individuals, (3) between parents and 

probands in other subsets of trios (Extended Data Figure 4), and (4) between other subsets of 

probands with neurodevelopmental conditions or their parents and control individuals (Extended 

Data Figure 4). The PGS for neurodevelopmental conditions derived from the GWAS of DDD 

and UKHLS samples was not tested in the GWAS samples. Nominally significant differences 

are indicated by one asterisk and tests that pass the Bonferroni correction for five PGSs are 

indicated by two asterisks. 

 

Supplementary Table 9. Genetic correlations (rg) between neurodevelopmental conditions and 

prenatal risk factors shown in Extended Data Figure 8A. We calculated rg for the GWAS meta-

analysis of DDD and GEL using Linkage Disequilibrium Score Regression (LDSC). We also 

calculated rg between the meta-GWAS and those risk factors after conditioning on educational 

attainment and cognitive performance using GenomicSEM. Confidence intervals (CI) were 

calculated using the standard error (se) of the rg estimate. We corrected for five traits using the 

Bonferroni approach. For each external trait, we also report SNP heritability on the observed 

scale estimated by LDSC. 
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Supplementary Table 10: Number of samples and variants remaining after each step of quality 

control for two batches of Global Screening Array data from DDD samples, prior to merging. 

 

Supplementary Table 11. Number of samples and variants remaining after each step of quality 

control for Global Screening Array data from DDD samples, after merging the two initial batches. 

 

Supplementary Table 12. Variant quality control filters applied to whole genome sequence 

data from the Genomics England 100,000 Genomes variant callset known as "aggV2". We used 

variants that passed all these filters ("PASS" variants). 

 

Supplementary Table 13. Variant quality control filters applied to whole-exome sequence data 

from DDD, for the analyses of polygenic scores modifying penetrance of rare coding variants 

and correlations between polygenic scores and rare variant burden.  

 

Supplementary Table 14. Previously-published GWASs used to calculate genetic correlations 

and/or polygenic scores, including the number of SNPs in the polygenic score. 

Supplementary Data 

Supplementary Data 1. Summary statistics from the GWAS of neurodevelopmental 

conditions comparing cases to controls within the Genomics England (GEL) 100,000 

Genomes Project. 

 

Supplementary Data 2. Summary statistics from the GWAS of neurodevelopmental 

conditions comparing DDD cases to UKHLS controls, excluding the Scottish samples from 

DDD. 

 

Supplementary Data 3. Summary statistics from the GWAS meta-analysis of 

neurodevelopmental conditions combining the DDD and GEL GWASs. 

 

Supplementary Notes 

Supplementary Note 1: Phenotypic comparisons of the cohorts 

We compared the sex, age and Human Phenotype Ontology (HPO) terms between DDD and 

GEL patients with neurodevelopmental conditions included in the study. There was no 

significant difference in the sex of probands in DDD compared to GEL (DDD 41.0% female 

versus GEL 39.3% female, Fisher’s exact test p-value = 0.08). DDD probands, however, were 

significantly younger at assessment than probands in GEL (DDD mean 7.74, standard deviation 

6.29; GEL mean 10.78, standard deviation 9.10; Welch’s t-test two-sided p-value = 9.51 x 10-

71) (Extended Data Figure 2A). 

 

DDD probands had fewer HPO terms on average than GEL probands (DDD mean 7.28, 

standard deviation 4.04; GEL mean 9.34, standard deviation 5.34) (Extended Data Figure 2B). 

This difference was significant after controlling for age at assessment and sex in a multiple 

Poisson regression (p-value = 6.31 x 10-251).  We then compared the prevalence of HPO terms 
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in overarching HPO chapters and some selected phenotypes in DDD and GEL, controlling for 

age and sex. There were significant differences between the two cohorts for numerous HPO 

chapters and chosen terms (Extended Data Figure 2C). Three notable differences between 

the cohorts were the greater proportion of GEL probands recorded as having autistic behaviours 

(31% of GEL vs 16% DDD; p-value < 0.0001), speech and language impairment (66% GEL vs 

25% DDD; p-value < 0.0001), and ID/DD cases of unspecified/unknown severity (80% GEL vs 

33% DDD; p-value < 0.0001).  

 

Differences in HPO term prevalence may reflect differing practices in how terms were recorded. 

The DDD recruitment form asked the recruiting clinicians (who were all clinical geneticists) to 

record HPO terms they thought were relevant to the child’s condition. In contrast, patients were 

recruited into GEL by a range of clinical practitioners (clinical geneticists, other speciality 

doctors, clinical/research nurses, genetic counsellors), who were asked to select 

‘yes/no/unsure’ against a set of HPO terms considered to be common for patients in the 

phenotypic category into which the patient was recruited (e.g. ‘intellectual disability’/’epilepsy 

plus other features’/’malformations of cortical development’). Clinical geneticists may have been 

more likely to select terms focused holistically on signs and symptoms of the monogenic 

presentation rather than non-specific HPO terms or terms relating to only one organ system (as 

a single organ/system specialist doctor may select). Additionally, the clinical geneticists 

recruiting to DDD were likely more focused on the degree of severity of ID/DD than the 

healthcare professionals recruiting to GEL, since they were asked a specific question about it 

as it was relevant to the inclusion criteria for DDD. (Patients could be included if they had 

moderate/severe ID/DD or if they had mild ID/DD plus other abnormalities.) These differing 

coding practices are likely to have artificially created HPO term differences between the cohorts 

rather than reflecting true clinical differences. To test this, we compared the prevalence of HPO 

terms in GEL versus DDD for neurodevelopmental probands who were recruited to both cohorts 

(N=789), controlling for age at recruitment to that study and sex. We saw similar significant 

differences in the HPO terms recorded for this identical set of probands between the two 

programs, re-enforcing these differences were likely created by differences in recording 

practises rather than actual differences between the GEL and DDD cohorts (Extended Data 

Figure 2D). However, it is possible that part of the reason for the increased prevalence of 

autistic behaviour in GEL is that the GEL recruitment of probands began a few years later than 

DDD (recruitment 2015-18 versus 2011-15), and the rates of diagnosed autism have been 

increasing over time 28.  

Supplementary Note 2: Genome-wide significant hits from the GWAS 

meta-analysis of neurodevelopmental conditions 

We found two genome-wide significant loci in the GWAS meta-analysis of neurodevelopmental 

conditions (Extended Data Figure 3). The locus on chromosome 22 is in an intron of SREBF2. 

Variants in this gene have been reported to be significantly associated with brain-related traits 

including intelligence29–31, mathematical ability17, and schizophrenia19 (GWAS Catalog  

https://www.ebi.ac.uk/gwas/, queried on 24 Oct 2023). The lead SNP associated with 

neurodevelopmental conditions (rs2284084, odds ratio of risk allele T = 1.16, p = 1.71x10-8) is 

in weak LD with rs2267442 (r2 = 0.22 estimated in 1000 Genomes GBR-ancestry 

subpopulation), which is associated with decreased intelligence29,30.  
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The other genome-wide significant locus is located upstream of gene PWRN4. Lead SNP 

rs113446150 (odds ratio of risk allele A = 1.12, p = 4.04x10 -8) is in high LD with a SNP 

associated with height (rs4396492; r2 = 0.89)32 reported in the GWAS Catalog. The lead SNP is 

a splice quantitative trait locus (sQTL) for PWRN4 specific to the pituitary gland in GTEx. Other 

variants in PWRN4 are reported to be associated with age at menarche33.  

 

Formal colocalization would be required to determine whether the GWAS hits from our GWAS 

of neurodevelopmental conditions are the same as those reported for these other traits, but the 

power of these is likely to be limited by the small size of our GWAS. None of the other variants 

within 500 kb of and in moderate or high LD with our lead SNPs (LD r2 >0.5 in 1000 Genomes 

GBR-ancestry subpopulation) were reported to have a significant association in the GWAS 

Catalog.    

 

Supplementary Note 3: Potential ascertainment biases in control cohorts 

and their effects 

In this section, we first describe how the various control cohorts were recruited and discuss 

whether they are likely to be biased according to educational attainment. We then consider the 

extent to which this affects our comparisons with these groups, and conduct a sensitivity 

analysis using MCS. 

Likely ascertainment biases in control cohorts 

The four control cohorts used in this study were as follows: 

● The UK Household Longitudinal Study (UKHLS), which was a continuation of the British 

Household Panel Survey34. The study aimed to capture a representative sample of 

people living in the UK and to collect longitudinal socioeconomic and other data on them. 

Individuals were selected to include in the study based on their postcodes, and 

incentivised with monetary reward. In waves two and three of the study (2010-2012), 

participants aged 16 and over were invited to take part in a nurse visit, at which blood 

samples were taken if participants consented 35, and used to extract DNA. Those with 

genotype data were slightly enriched for having a university degree compared to the 

2011 UK census (33.8% versus 27.2%). 

● Adult cancer patients and relatives of other rare disease patients not affected by 

neurodevelopmental conditions or DDD-like developmental disorders from the 

Genomics England (GEL) 100,000 Genomes Project. GEL participants were recruited 

from the National Health Service, which is free at the point of care to all residents of the 

UK. Thus, in theory, we would not expect the control samples chosen from this cohort 

to be biased according to educational attainment, unless there are education/cognition-

related risk factors for cancer or for rare conditions other than neurodevelopmental 

conditions, or unless patients who agreed to participate tended to come from a particular 

socioeconomic background. 

● The Avon Longitudinal Study of Parents and Chidlren (ALSPAC), a birth cohort which 

recruited 14,775 babies born in the Avon region of southwest England in 1991-1992. 

About three-quarters of those eligible agreed to participate10. ALSPAC mothers are 

known to have slightly higher average socioeconomic status (SES) than mothers in the 
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whole of Avon and of Britain 36. Most of the mothers’ and children’s DNA samples were 

obtained from blood samples taken at birth. Most of the fathers’ DNA samples were 

obtained at clinics when their children were teenagers or in their early 20s. 

● The Millennium Cohort Study (MCS), a birth cohort which recruited 18,827 children born 

‘between 1 September 2000 and 31 August 2001 (for England and Wales), and between 

24 November 2000 and 11 January 2002 (for Scotland and Northern Ireland), alive and 

living in the UK at age 9 months, and eligible to receive child benefit at that age’ 23. 

Certain subgroups were intentionally over-sampled, namely children living in 

disadvantaged areas, children of ethnic minority backgrounds, and children growing up 

in the smaller nations of the UK23. DNA samples were taken when the probands were 

aged 14, at sweep 6. Only 11,872 (63%) of the original sample participated in this sweep, 

and they were biased towards families with higher SES compared to eligible families 

who did not participate 37. Thus, this biased attrition might be expected to reduce the 

bias introduced by the initial over-sampling of low-SES families, but it is unclear to what 

extent. 

Comparing average PGSEA between these different control cohorts can give us a sense of the 

relative degrees of education-related ascertainment bias (Extended Data Figure 5A; 

Supplementary Table 6). On average, we see that differences in PGSs between the GEL 

controls and UKHLS controls are small, although significant (difference in mean PGS = -0.042 

SD, two-sided t-test p = 0.002). Within the GEL controls, we found that the cancer patients had 

a slightly higher average PGSEA than the relatives of other rare disease probands without 

neurodevelopmental conditions (difference in mean PGS = 0.05 SD, two-sided t-test p=0.013). 

ALSPAC children were very similar to UKHLS and GEL controls in their average PGSEA (on 

average 0.027 SD higher than GEL and 0.015 SD lower than UKHLS; two-sided t-test p=0.06 

and 0.34), but MCS children had lower average PGSEA than all of the control groups (difference 

ranging from 0.090 to 0.132 SD, two-sided t-test p < 7x10-9), likely reflecting the cohort’s 

deliberate over-sampling of low-SES households.  

In ALSPAC and MCS, as well as amongst the cases with neurodevelopmental conditions, trio 

probands had significantly higher PGSEA than probands who did not have genetic data on both 

parents (Extended Data Figure 5B; Supplementary Table 6) (average difference in PGSEA 

between trio and non-trio probands > 0.20 SD, two-sided t-test p<3x10-14). This likely reflects 

the fact that families with low SES backgrounds are more likely to be single-parent households38. 

Additionally, in ALSPAC, it may reflect the fact that most of the paternal DNA samples were 

taken when the children were teenagers or older, so the fathers who were still engaged in the 

study at this point might have been biased towards higher educational attainment. 

Sensitivity analyses to assess the effect of ascertainment bias in controls 

Unsurprisingly given the results above, the estimates of differences between probands with 

neurodevelopmental conditions and controls are sensitive to the selection of control samples. 

For example, the set of all probands with neurodevelopmental conditions had significantly lower 

PGSEA than all control groups considered (two-sided t-test p-value < 2x10-7), but the difference 

in mean ranged from -0.09 SD with the MCS children (two-sided t-test p=5.2x10-9) to -0.5 SD 

with the ALSPAC trio children (p=6.3x10-60; Extended Data Figure 5A, Supplementary Table 

6). Since it is impossible to know which (if any) of these control cohorts are really unbiased 

samples of the general population, we turned to a different approach using MCS.  
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MCS has calculated weights based on various sociodemographic variables (e.g. SES) which 

can be used to reweight the individuals in the study to make them representative of the general 

population, in order to calculate adjusted prevalences/mean estimates and robust standard 

errors23. These include the initial sampling weights, which are intended to reweight the initial 

sample gathered in the first sweep, and non-response weights for each sweep. We constructed 

new weights for the set of MCS children who had genetic data (or specifically, the unrelated 

GBR-ancestry sample shown in Extended Data Figure 5A) and for the set who had genetic 

data on themselves and both parents (i.e. trio children used in Figure 4 and Extended Data 

Figure 5A) (see Supplementary Methods). Applying these to recalculate the PGSEA for all 

MCS children adjusting for sampling and non-response bias, the mean PGSEA did not 

significantly change, with a mean PGSEA of -0.1069 (standard error, se=0.0129) prior to 

weighting versus -0.073 (0.0132) after (p=0.065, Wald test). When conducting the same 

analysis for MCS trio children, the mean PGSEA significantly decreased, with a mean of 0.012 

(0.020) prior to weighting versus -0.055 (0.020) after (p=0.0178; Extended Data Figure 5C). 

Prior to adding weights, the difference in mean PGSEA between all children versus only those in 

trios was highly significant (p<10-5), but was fully attenuated after weighting (p=0.45). (Extended 

Data Figure 5C). Many of the subsets of probands with neurodevelopmental conditions 

considered showed significantly lower PGSEA than the weighted MCS mean, including the 

undiagnosed probands (Δ = -0.17, p=3.3x10-21) and diagnosed probands with affected parents 

(Δ = -0.258, p=0.0022); however, the diagnosed probands with unaffected parents or with de 

novo diagnoses did not significantly differ from the weighted MCS sample (Extended Data 

Figure 4A; Supplementary Table 7). 

Supplementary Note 4: Examining sex differences in polygenic risk 

There are 1.5-times more male (N=6,879) than female (N=4,694) probands with 

neurodevelopmental conditions in DDD and GEL combined, which is consistent with the “female 

protective effect” whereby females either have lower mean liability for neurodevelopmental 

conditions, or require higher liability than males to get a diagnosis 39–48. Indeed, female patients 

in DDD are more likely to get a monogenic diagnosis 20 and have a higher burden of damaging 

de novo mutations than males 49. We did not detect any significant differences in PGS between 

male and female undiagnosed probands with neurodevelopmental conditions for any PGS 

(Extended Data Figure 7A). This is not inconsistent with recent work in autism: Wigdor et al. 

found that autistic females have higher autism PGS than males after accounting for co-occurring 

ID45, but saw no significant difference otherwise. Similarly, Warrier et al. showed that amongst 

autistic individuals without ID, females over-inherited more polygenic risk for autism than 

males50., but did not detect a difference when including individuals with ID. In our data, although 

PGSNDC,DDD was significantly over-transmitted in females (pTDT deviation = 0.10, p-value = 

0.0078, N=589 trios in DDD and GEL combined) but not males (pTDT deviation = 0.036, p-value 

= 0.27, N=978 trios), there was no significant difference in the pTDT deviation between them 

(two-sided z-test p=0.19) (Extended Data Figure 7C). Notably, in contrast to our findings, 

Antaki et al. showed that autistic females have higher values for a combined PGS for autism + 

educational attainment + schizophrenia than autistic males 51. Our findings from these sex 

comparisons emphasise that ID, which is present in the majority of DDD and GEL NDC 

probands, has a distinct genetic architecture from autism more broadly.  

 

In families of autistic children in whom neither parent has a known autism diagnosis, mothers 

were found to have a higher PGS for autism than fathers, possibly reflecting the fact that women 
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can ‘tolerate’ a higher burden of risk alleles before manifesting the phenotype due to the so-

called “female protective effect” 45. Thus, we also compared the five NDC-related PGSs between 

mothers and fathers, focusing on unaffected parents of undiagnosed probands (Extended Data 

Figure 7B). We found no significant differences. 

Supplementary Note 5: Exploring the role of prenatal risk factors in 

mediating common variant risk  

Genetic correlations 

We hypothesized that the effects of non-transmitted parental alleles on risk of 

neurodevelopmental conditions (Figure 4) may be partly mediated by the prenatal environment, 

aspects of which are associated with risk of these conditions. For example, being born 

prematurely is a risk factor for neurodevelopmental conditions52–54, and we see a negative 

genetic correlation between preterm delivery 55 and educational attainment (rg=-0.30; p=2x10-

10). This correlation may be partly explained by the fact that women with lower educational levels 

are more likely to have risk factors for premature birth, such as exposure to tobacco smoke 

during pregnancy56,57. Within DDD, lower PGSEA and PGSNonCogEA in mothers was significantly 

associated with the proband having been born prematurely (Extended Data Figure 8B).  

 

To explore the potential contribution of prenatal risk factors to polygenic risk for 

neurodevelopmental conditions, we calculated genetic correlations between our GWAS meta-

analysis and risk factors for which GWASs were available: preterm delivery 52–55, smoking54,58, 

alcohol use54,58, gestational hypertension54,59 and sleep apnoea60–62 (Extended Data Figure 

8A). We observed significant genetic correlations between neurodevelopmental conditions and 

preterm delivery (rg=0.58; p=0.004) and smoking initiation (rg=0.27; p=2x10-5). After conditioning 

on the educational attainment GWAS with GenomicSEM, the genetic correlation with smoking 

initiation was greatly attenuated and no longer significant (rg=0.04; p=0.62), while that with 

preterm delivery was slightly attenuated but still nominally significant (rg=0.48; p=0.04) 

(Supplementary Table 9). Conversely, after conditioning on the preterm delivery GWAS, the 

genetic correlation between educational attainment and neurodevelopmental conditions was 

still highly significant (rg=-0.60, p=8x10-7), although slightly attenuated compared to the 

unconditional result (rg=-0.65, p=5x10-12).  

Mendelian randomization 

Given these genetic correlation results, we explored potential causal relationships between 

educational attainment, preterm delivery and neurodevelopmental conditions using different 

Mendelian Randomization (MR) methods (Extended Data Figure 9; Supplementary 

Methods). We hypothesized that the following causal effects exist:  

- a causal effect of lower educational attainment on neurodevelopmental conditions that 

reflects indirect effects via the parents 

- a causal effect of lower educational attainment on preterm delivery, reflecting the 

association between lower education levels and risk factors for preterm delivery (e.g.  a 

short inter-pregnancy interval63, exposure to tobacco smoke during pregnancy56,57, and 

pre-eclampsia64 

- a causal effect of preterm delivery on lower educational attainment and on 

neurodevelopmental conditions, reflecting the strong associations between premature 
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birth and adverse neurodevelopmental outcomes that hold after controlling for 

socioeconomic confounders 52,65–71 

 

We employed several standard two-sample MR methods using genome-wide significant SNPs 

from the GWAS for the exposure, as well as the Latent Heritable Confounder-Mendelian 

randomisation (LHC-MR)22 method which exploits genome-wide SNPs. Consistent with our 

hypothesis, two out of the four standard methods tested showed statistically significant evidence 

that lower educational attainment causally increases risk for neurodevelopmental conditions 

(weighted median p-value = 9.2x10-8 and inverse variance weighted p-value = 5.2x10-18), as did 

LHC-MR (p = 6.3x10-44) (Extended Data Figure 9A). Also consistent with the hypotheses 

above, LHC-MR showed significant negative bi-directional causal effects between educational 

attainment and preterm delivery (p = 3.9x10-12 and p = 0.016 for the forward and reverse causal 

effects, respectively). However, a caveat of this is that the inferred causal effect of preterm 

delivery on educational attainment could simply reflect the effect of transmitted variants from 

the mother with predispose to lower educational attainment; we acknowledge that LHC-MR is 

not intended to test for the kind of intergenerational causality we hypothesize may be at play 

here, and it also assumes a single heritable confounding variable and can give biased estimates 

if this is violated22. Using standard Mendelian randomization, we found only weak evidence for 

lower educational attainment being causally associated with preterm delivery with only the 

inverse variance weighted method being significant (p = 1.5x10 -5). We did not find significant 

evidence that preterm delivery causally influences neurodevelopmental conditions or 

educational attainment using standard MR methods (Extended Data Figure 9BC). However, 

this analysis is limited by the relatively small GWASs of neurodevelopmental conditions and 

preterm delivery. Specifically, these underpowered GWASs lead to noisy estimates when they 

are considered as outcomes in both standard MR and LHC-MR analyses, and additionally, 

Winner’s Curse (i.e. overestimation of effect sizes) in the original GWAS of the exposure will 

reduce power in standard MR, which uses genome-wide significant SNPs as genetic 

instruments. Furthermore, when considering them as exposures, power was limited by weak 

instrument bias in the standard MR analyses, which biases the estimate towards the null, and 

by the fact that the preterm delivery GWAS was conducted in mothers whereas our GWAS was 

done in offspring. Finally, we note that MR based on population-based GWAS is prone to 

confounding, and these analyses should be revisited once sufficiently large within-family 

GWASs are available72. 

Testing whether prematurity mediates the effect of non-transmitted common alleles 

Based on these results, we hypothesized that prematurity may partly mediate the effect of non-

transmitted common variants associated with educational attainment on risk of 

neurodevelopmental conditions. To test this, we reran the “trio model” from Figure 4 using 

PGSEA in several different ways, restricting to undiagnosed DDD cases and MCS controls for 

which information on gestational age at birth was available (Supplementary Figure 5A). After 

excluding probands born prematurely from both cases (16%) and controls (6%), the effect of 

non-transmitted parental alleles was slightly attenuated compared to that seen when using all 

trio probands, particularly in mothers (βmother = -0.14 [-0.23 – -0.06] and p=6x10-4 using all 

samples, versus βmother = -0.11 [-0.20 – -0.02] and p=0.02 after excluding probands born 

prematurely). A similar result was obtained when using all probands but controlling for whether 

they were born prematurely. We would expect such attenuation if there were an indirect genetic 

effect of PGSEA mediated partly via premature delivery. However, the effect sizes were not 
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significantly altered for any PGS in either analysis compared to the original analysis of all trio 

probands (z-test p>0.05). Thus, there is no significant evidence from these data that indirect 

genetic effects mediated through prematurity contribute to the association between non-

transmitted common variants of PGSEA and risk of neurodevelopmental conditions.  

 

Supplementary Note 6: Role of PGS in modifying the penetrance of rare 

variants  

Various lines of evidence from both neurodevelopmental conditions 73 and autism 39,74 cohorts 

and from population-based studies 75 suggest that incompletely penetrant inherited rare coding 

variants contribute to risk of rare neurodevelopmental conditions. A recent study found that 

undiagnosed rare disease patients with variants of unknown significance (VUS) had on average 

more polygenic risk than their unaffected carrier parent, suggesting PGS might modify 

penetrance of VUS 76. Rare protein-truncating variants (PTVs) and predicted damaging 

missense variants in constrained (loss-of-function-intolerant) genes77 have been shown to act 

additively with PGSs on fluid intelligence and educational attainment within UK Biobank 78,79. 

This implies that PGSs are likely to modify penetrance of these rare variants within families with 

neurodevelopmental conditions.  

 

To test this, we used the whole-genome sequence data from GEL and exome sequence data 

from DDD to extract rare damaging coding variants from undiagnosed probands and their 

parents; specifically, we extracted heterozygous PTVs and predicted damaging missense 

variants with minor allele frequency < 1x10-4 within each cohort and < 1x10-5 in each gnomAD 

super-population in either dominant DD-associated genes (DDG2P)80 with a loss-of-function 

mechanism, or in constrained genes (see Methods). In unpublished work, such variants are 

seen to be enriched in undiagnosed DDD cases compared to controls, and over-transmitted 

from unaffected parents to affected offspring (K. Samocha, personal communication). We tested 

whether unaffected parents transmitting a damaging rare variant have significantly more 

protective PGSs than their affected children without a monogenic diagnosis. We observed 

nominally significant differences in PGSNDC,DDD between parents who transmitted a damaging 

rare variant in a dominant DD-associated gene and their children in a combined analysis of DDD 

and GEL (one-sided p=0.009, mean difference = -0.16 SD, N=186 pairs; Supplementary 

Figure 8). However, none of the differences passed multiple testing correction (p>0.05/[5 PGSs 

* 2 gene sets * 2 consequence classes]) (Supplementary Figure 8).  

 

The interpretation of these results is potentially complicated by several factors, including the 

correlation between rare and common variants that is likely generated by parental assortment 

(Figure 5). Power may be reduced by our limited sample size and aggregation of rare variants 

with heterogeneous effects; it may be that many of the rare variants considered are not 

damaging, but due to their rarity, we aggregated across variants and genes to try to boost power. 

Additionally, if some parents actually show sub-clinical phenotypes as a result of these rare 

variants or polygenic burden, the inclusion of these parents in the analyses could be 

confounding these results. 
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