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Abstract 

 

Background 

Recent studies have explored the application of multimodal large language models (LLMs) in 

radiological differential diagnosis. Yet, how different multimodal input combinations affect 

diagnostic performance is not well understood.  

 

Purpose 

To evaluate the impact of varying multimodal input elements on the accuracy of GPT-4(V)-

based brain MRI differential diagnosis. 

 

Methods 

Thirty brain MRI cases with a challenging yet verified diagnosis were selected. Seven prompt 

groups with variations of four input elements (image, image annotation, medical history, image 

description) were defined. For each MRI case and prompt group, three identical queries were 

performed using an LLM-based search engine (© PerplexityAI, powered by GPT-4(V)). 

Accuracy of LLM-generated differential diagnoses was rated using a binary and a numeric 

scoring system and analyzed using a chi-square test and a Kruskal-Wallis test. Results were 

corrected for false discovery rate employing the Benjamini-Hochberg procedure. Regression 

analyses were performed to determine the contribution of each individual input element to 

diagnostic performance. 

 

Results 

The prompt group containing an annotated image, medical history, and image description as 

input exhibited the highest diagnostic accuracy (67.8% correct responses). Significant 

differences were observed between prompt groups, especially between groups that contained 

the image description among their inputs, and those that did not. Regression analyses 

confirmed a large positive effect of the image description on diagnostic accuracy (p << 0.001), 

as well as a moderate positive effect of the medical history (p < 0.001). The presence of 

unannotated or annotated images had only minor or insignificant effects on diagnostic 

accuracy. 

 

Conclusion 

The textual description of radiological image findings was identified as the strongest 

contributor to performance of GPT-4(V) in brain MRI differential diagnosis, followed by the 

medical history. The unannotated or annotated image alone yielded very low diagnostic 
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performance. These findings offer guidance on the effective utilization of multimodal LLMs in 

clinical practice.  
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Introduction 

Rapid developments in the field of large language models (LLMs) have attracted significant 

interest in potential medical applications. In radiology, LLMs have been explored for the 

generation of radiology reports (1–3), differential diagnosis based on case presentations (4–

7), the automated definition of imaging protocols (8,9), the extraction of structured data from 

radiology reports (10,11) and more. 

Recent studies have further explored the diagnostic application of multimodal LLMs (also 

called ‘vision-language models’) that are able to ingest not only text but also image data as 

input (12–20). However, several studies demonstrated low performance of Generative Pre-

trained Transformer 4 Vision (GPT-4V) by OpenAI in differential diagnosis based on various 

types of radiological images (12,16,18,20,21). These studies evaluated queries with only 

images (12,18,20,21) or clinical information and images (16) as input. 

Importantly, the provided types of model input were shown to have a relevant impact on 

diagnostic performance. One study showed higher diagnostic performance with multimodal 

input (image and medical history) as compared to text-only or image-only prompts (17). 

However, more granular variations in input elements such as textual descriptions of image 

findings and image annotations have not been investigated systematically. 

Therefore, the aim of this study was to evaluate the impact of multimodal input elements on 

the accuracy of GPT-4(V)-based brain MRI differential diagnosis.  
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Methods 

Study Design 

Ethical approval was waived by the ethics committee of the Technical University of Munich. 

Seven different prompt groups with varying input types were defined (Table 1). For each 

clinical case, up to four representative slices were selected by two neuroradiology residents 

(SHK and SS) from up to two MRI sequences adequate for each respective pathology and 

uploaded as model input (groups 1-5). In group 2 and 5, key findings were additionally 

annotated using up to four arrows. The medical history was obtained from the patient record 

to simulate a realistic clinical scenario. Descriptions of key image findings were created by 

SHK and SS and included details about location, morphology, signal behavior, and contrast 

enhancement in a standardized manner. 

 

Group No. Abbreviation Description 

1 I Image 

2 I + A Image + Annotation 

3 I + H Image + Medical History 

4 I + D Image + Image Description 

5 I + A + H + D Image + Annotation + Medical History + Image Description 

6 H + D Medical History + Image Description 

7 D Image Description 

Table 1: Prompt groups. 

 

Case Selection 

A total of 30 brain MRI cases with challenging yet definitive diagnoses were selected from the 

local imaging database. Diagnoses had been verified either by histopathology or through the 

independent agreement of at least two senior neuroradiologists. Scans had been obtained 

between 01/01/2016 and 12/31/2023. 20 out of 30 cases have been published previously (20). 

An overview of clinical cases with respective medical histories and image descriptions is 

provided in Supplement 1. 

 

Queries and Prompt Design 

PerplexityAI (© Perplexity AI Inc., San Francisco, USA), served as the query interface. Search 

queries were processed by GPT-4(V), OpenAI’s latest multimodal LLM. The base prompt was 

formulated as follows: “You are a senior neuroradiologist. Below, you will find information 

regarding a brain MRI scan. Based on this information, identify the three most likely differential 

diagnoses, ranked by their likelihood. Present your findings in a table format with the following 
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columns: ‘Rank’, ‘Differential Diagnosis’, and ‘Explanation’.” For each MRI case and prompt 

group, three identical queries were performed to account for probabilistic variations of the LLM 

output. Before each query, a new thread was started to exclude undesired influences of prior 

queries on the LLM response. 

 

Analysis 

Two distinct scoring systems were applied to evaluate the accuracy of differential diagnoses. 

First, LLM responses were classified as "correct" if the correct diagnosis appeared within the 

top three suggestions, or "incorrect" if it did not (binary scoring system). Second, a score from 

0 to 3 was assigned based on the rank of the correct diagnosis within the LLM response 

(numeric scoring system). Ratings for edge cases where the suggested diagnosis was only 

partially correct were determined through consensus by SHK and SS (e.g. the response 

“cerebral microbleeds” was rated as incorrect in a case with diffuse axonal injury). 

Statistical analyses were conducted in RStudio (RStudio, 2022.02.3 Build 492; © 2009-2022 

RStudio, PBC). Statistical significance was set at p < 0.05. Binary and numeric scores were 

reported using descriptive statistics.  

To compare scores between prompt groups, two tests were applied on the median scores 

across the three measurements. For the binary scoring system, a chi-square test was 

performed over all groups with subsequent pairwise testing. For the numeric scoring system, 

a Kruskal-Wallis test was conducted across all groups followed by pairwise testing using 

Dunn’s test (21). For both scoring systems, results were adjusted to a false-discovery rate of 

0.05 by employing the Benjamini-Hochberg procedure (22). 

Additionally, two mixed-effects regression models (binomial logistic model for binary scores, 

ordinal cumulative link model for numeric scores) were used to determine the contribution of 

individual input elements (image [I], annotation [A], medical history [H], and image description 

[D]) (23). The four input elements were modelled as explanatory variables, while the binary 

and numeric score were treated as response variables. For each case, a random intercept 

was included to model heterogeneities between individual cases and to factor in that three 

identical prompts were used for each case and prompt group.  
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Results 

Descriptive Statistics 

Prompt group 5 (I + A + H + D) exhibited the highest diagnostic accuracy (67.8% correct 

responses, median numeric score of 2). The three other groups containing the image 

description as input followed: group 6 (H + D), group 4 (I + D), and group 7 (D) yielded 61.1%, 

60.0%, 56.7% correct responses and a median numeric score of 2, 2, and 1, respectively. 

Group 3 (I + H) followed with a big margin, with 21.1% correct responses and a median 

numeric score of 0. Group 1 (I) and group 2 (I + A) revealed the lowest diagnostic accuracy 

with only 4.4% and 2.2% correct responses, and a median numeric score of 0 for both (Figure 

1). 

 

Inferential Statistics 

Groups 4-7, all of which contained the image description among their inputs, consistently 

showed significantly higher diagnostic accuracy over groups 1-3, as measured by median 

binary (p < 0.01) and numeric score (p < 0.001). No significant differences in median score 

were observed between groups 1-3. 

The binomial logistic mixed-effects regression model was fitted to 630 individual 

measurements and retained 624 residual degrees of freedom. The model indicated a large 

positive effect of D (coefficient 4.420; p << 0.001), a moderate positive effect of H (coefficient 

1.1960; p < 0.001), a minor positive effect of I (coefficient 0.761; p < 0.05), and a minor 

negative effect of A (coefficient -0.801; p < 0.05) in reference to the binary score. The 

cumulative link regression model for numeric scores was similarly fitted to 630 measurements 

and retained 622 residual degrees of freedom. Similarly to the binomial model, we observed 

a large positive effect for D (coefficient 4.564; p << 0.001) and a moderate positive effect of H 

(coefficient 1.042; p < 0.001) on numeric scores. Neither I nor A had a significant effect on the 

numeric score. Model details are presented in Table 4.  
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Figure 1: Diagnostic accuracy. A: Binary scores. B: Numeric scores (0-3). 1: Image only. 2: Image + 
Annotation. 3: Image + Medical History. 4: Image + Image Description. 5: Image + Annotation + Medical 
History + Image Description. 6: Medical History + Image Description. 7: Image Description.    
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Figure 2: Sample query. The prompt includes the annotated MRI images, the medical history, and an 
image description (prompt group 5). The correct diagnosis in this case was subependymoma.  
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Chi-Square Test 1 (I) 2 (I+A) 3 (I+H) 4 (I+D) 5 (I+A+H+D) 6 (H+D) 

2 (I+A) 1.000      

3 (I+H) 0.162  0.162     

4 (I+D) << 0.001 << 0.001  0.004    

5 (I+A+H+D) << 0.001 << 0.001  0.002 1.000   

6 (H+D) << 0.001 << 0.001  0.007 1.000 1.000  

7 (D) << 0.001 << 0.001  0.007 1.000 1.000 1.000 

Table 2: Pairwise testing for inter-group differences in binary scores. Values indicate p-values for the 
respective group differences. All p-values were adjusted for a false-discovery rate of 0.05.  
 

Dunn’s Test 1 (I) 2 (I+A) 3 (I+H) 4 (I+D) 5 (I+A+H+D) 6 (H+D) 

2 (I+A) 0.500      

3 (I+H) 0.265   0.285     

4 (I+D) << 0.001 << 0.001 < 0.001    

5 (I+A+H+D) << 0.001 << 0.001 << 0.001 0.313   

6 (H+D) << 0.001 << 0.001 < 0.001 0.500 0.343  

7 (D) << 0.001 << 0.001 < 0.001 0.525 0.334 0.527 

Table 3: Pairwise testing for inter-group differences in numerical scores. Values indicate p-values for 
the respective group differences. All p-values were adjusted for a false-discovery rate of 0.05. 
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Binomial Logistic Mixed Model 

(Binary Score) 

Cumulative Link Mixed Model 

(Numeric Score) 

I 0.761* (0.348) 0.486 (0.287) 

A -0.801* (0.382) -0.479 (0.323) 

H 1.196** (0.276) 1.042** (0.241) 

D 4.420** (0.411) 4.564** (0.372) 

Intercept -4.611** (0.646)  

0|1  4.487 (0.633) 

1|2    4.786 (0.640) 

2|3  6.281 (0.676) 

Var. Rand. Int. 4.878 6.152 

Observations 630 630 

Res. Deg. Fr. 624 622 

Note: * p < 0.05; ** p < 0.01 
 

Table 4: Parameters of the regression models fitted to the binary and numeric scores. Values indicate 
coefficients and intercepts, with values in brackets indicating the respective standard error. 
Abbreviations: Annotation (A), Description (D), Medical History (H), Image (I). 
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Discussion 

This study aimed to investigate the impact of varying input elements on the accuracy of GPT-

4(V)-based brain MRI differential diagnosis. In summary, our findings suggest that the image 

description has the strongest influence on diagnostic performance of GPT-4(V) by far, followed 

by the medical history. In contrast, diagnostic accuracy was very low with annotated or non-

annotated MRI images alone, highlighting the importance of expert image descriptions even 

in multimodal settings. 

This is in line with several prior studies reporting low diagnostic performance of GPT-4(V) with 

radiological images alone as input (12,18,20,21). Consistent with the findings of Schubert et 

al, we observed that the combination of medical history and radiological images yielded higher 

diagnostic accuracy than images alone, although the difference did not reach statistical 

significance (17). 

Remarkably, our study identified the textual description of radiological image findings as the 

strongest contributor to diagnostic performance, exceeding other input factors by a 

considerable margin. One possible explanation is that GPT-4(V)’s training data likely contains 

only a limited quantity of radiological images with high-quality labels, unlike abundant textual 

content on radiological imaging features of various diagnoses. It is yet to be determined 

whether utilization of LLM-generated image descriptions as input for sequential LLM queries 

could increase diagnostic accuracy. 

Importantly, interactions between radiologists and multimodal LLMs remain to be investigated. 

In a previous study, we observed that inaccurate or incomplete LLM prompts phrased by 

human users can result in misleading LLM responses (22). Future investigations should 

examine whether systematic education of radiologists on optimal LLM prompting strategies 

can translate into improved diagnostic accuracy of LLM-enhanced human readers. 

 

Limitations 

This study has several limitations.  

First, GPT-4(V) is a generic, non-domain-specific LLM. Multimodal LLMs specifically trained 

for medicine or radiology are likely to exhibit superior performance in radiological differential 

diagnosis, although the lack of high-quality data remains a barrier for their development. 

Second, the brain MRI cases evaluated in this study were highly complex, and the diagnostic 

performance of GPT-4(V) is presumably higher in an average brain MRI case sample. 

Third, image descriptions were created in knowledge of the correct diagnosis and might 

therefore be biased, although terminology highly specific to the true diagnosis had been 

avoided. The level of variability of image descriptions among radiology readers in a realistic 
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clinical scenario and its impact on LLM-generated differential diagnoses are yet to be 

examined. 

Fourth, despite choosing representative slices in MRI sequences adequate for each 

respective diagnosis, other slice selections might have led to different results. A full 3D 

representation of each pathology could potentially increase diagnostic performance. Further 

studies may consider a dedicated evaluation of this possibility. 

Fifth, the regression analyses do not directly reflect the far more complex statistical processes 

underlying LLM response generation. For example, different wordings of the prompt elements 

might have led to different results, since each input is processed as a joint input unit. 

Therefore, the findings should be understood as observations on the purely functional level 

that do not extend to the underlying algorithmic computations. 

 

In conclusion, this study provides early insights into the role of distinct prompt inputs on the 

diagnostic performance of LLMs. Our findings inform effective application of LLMs in clinical 

practice. The presented methodological approach may serve as a benchmark for similar 

studies evaluating further clinical use cases. 
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