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E-Appendix 1: Supplementary Methods Details 

GRADS description 

In brief, eligible participants were between the ages of 18 and 85 (N=368). Participants 

were enrolled into nine pre-specified clinically-described phenotypes to ensure a 

spectrum of disease manifestations with a focus on pulmonary disease manifested by 

Scadding stage, treatment, and other specific organ involvement. To be included in the 

GRADS cohort, the subject had to (a) have a diagnosis of sarcoidosis established by 

consensus criteria (ATS/ERS)1 with confirmation by either biopsy or manifestations 

consistent with acute sarcoidosis (Löfgren’s syndrome) in the absence of other known 

diagnosis. 

 

Spirometry included forced expiratory volume in one second (FEV1), forced vital capacity 

(FVC), and FEV1 to FVC ratio (FEV1/FVC), and single-breath carbon monoxide diffusing 

capacity (DLCO). These measures were obtained for all subjects and DLCO was 

corrected for site elevation according to established criteria2,3. 

 

Measurement of Self-Identified Race and Ethnicity and Treatment in Analysis 

A combined category for self-reported primary race and ethnicity was constructed from 

available data due to modest numbers in several categories. Non-Hispanic participants 

identifying as primarily white or black were classified as white or black participants 



respectively. Hispanic participants were indicated as such regardless of primary race 

identification (of which there were very few that indicated Hispanic ethnicity and a non-

white race). Participants identifying as non-Hispanic and identifying primarily as Asian, 

American Indian, or Alaska Native, or not identifying a single primary race (identifying as 

multi-racial, having no primary race, or having unknown primary race) were combined into 

a single category for Table 1 summary measures and statistical analysis to address low 

event rates across groups and reduce accidental identification. Combined race/ethnicity 

was further collapsed to a binary variable of non-Hispanic white vs. not non-Hispanic 

white for statistical analysis given low events in radiomic groups. This variable was used 

as an adjustment factor in all adjusted analyses not as a factor of interest but to better 

assess how covariate measures contribute to understanding of PFT and PRO beyond 

what might be understood with other available demographic data.  

 

Image acquisition, processing, and visual assessment   

CXR was performed based on the site’s standard protocol and Scadding Stage was 

determined and provided by the site radiologist. The HRCT was obtained in the supine 

position without contrast and at full inspiration with the following parameters: 500msec 

exposure time, standard B35f kernel, 0.75mm thickness, and computed interval of 

0.5mm4. Images were acquired with a variety of scanners (e-Table 1) after calibration 

with a phantom and approval by GRADS5. CT radiation was adjusted based on body 

mass index (BMI) and the tube current ranged between 145-374 mA. The peak tube 

voltage ranged between 100-120 kVp. Detailed summary measures can be found in e-

Table 1. 



 

A visual assessment score (VAS) was derived for each HRCT based on the Oberstein 

score6 (e-Table 2), denoting the major abnormalities and extent of involvement (none, 

up to 1/3 of the lung involved, between 1/3 to 2/3 of the lung involved, and more than 

2/3s of the lung involved).  Additional information was obtained regarding presence of 

lymphadenopathy, airway and vasculature distortion, presence and distribution (cranial 

caudal versus axial) of parenchymal opacities, and scored based on Fleischner criteria. 

The HRCT was electronically transmitted from individual sites to the Genomics 

Informatics Core (GIC) and a single chest radiologist (CF) blinded to disease diagnosis 

reviewed all HRCT scans using the above scoring system.   

 

Images were obtained from the GIC in raw DICOM (Digital Imaging and 

Communications in Medicine) format and were converted to three-dimensional NIfTI 

(Neuroimaging Informatics Technology Initiative) using dcm2niix 

(https://github.com/rordenlab/dcm2niix) from the dcm2niir R package. We resampled all 

scans to 1x1x1mm (or 1 mm3) format and segmented the left and right lungs using 

segment_lung_lr from the lungct R package7 (https://github.com/ryansar/lungct); this 

function uses a combination of thresholding and region-based algorithms for 

segmentation.  

 

Decorrelation Filter 

The decorrelation filter measures pairwise correlation to identify features to keep and 

remove to reduce feature redundancy among retained features and preserve 



representation of removed features. The filter functions by iteratively selecting a 

candidate feature to keep according to a ranking function and then discarding all 

candidate features which are represented by the kept variable according to a 

prespecified correlation cutoff. Formally, let A be the set of variables kept and D be the 

set of variables discarded by the filter. The redundance of a kept variable x in A and the 

representation of a discarded variable x’ in D are given, respectively, by: 

Redundance of x = max of {y in A-x} |Corr(x,y)|; 

Representation of x' =max of {y in D}|Corr(x',y)|. 

 

For a specified joint tolerance, the filter guarantees that no retained feature has 

redundance above tolerance and simultaneously no discarded feature has 

representation below tolerance. We specified a tolerance of 0.9 on the redundance and 

representation. We considered two ranking functions. The first is a small set ranking 

which leads to greedy selection of small kept sets A by ranking candidate variables 

higher if they will result in a larger number of discarded candidates when kept. 

Specifically, R(x|k) = # {y in Ck : |Corr(x, y)| ≥ 0.9} with ties broken at random where Ck 

is the set of candidate variables remaining at iteration k. The second is a radiomics-

specific modification of the small set ranking in which the rank of second order radiomic 

features (spatial features) is set to 0 if any first order radiomic features (non-spatial 

features) remain in the set of candidate variables. A filter with this ranking function 

selects second order features to keep only when no candidate first order feature 

remains which may be selected to represent it. This decorrelation filter with first-order-



preferred ranking was used in all analyses to better distinguish contributions of second-

order (spatial) radiomic features from first-order (non-spatial) features. 

 

Validation Analysis 

When applying a decorrelation filter to the radiomics and then clustering, randomness 

arises in four ways. There is randomness in the sample, in the decorrelation filter, in the 

initializations of the fitting algorithm, and in the permuted data sets used for estimating 

the L1 bound and number of clusters. In the following two analyses, we aim to quantify 

the sensitivity of clustering and secondary analysis results to these four sources of 

randomness. In the first analysis, we consider simultaneously randomness due to the 

decorrelation filter, algorithm initialization, and permutations in estimating the number of 

clusters and L1 bound in RSKC. In the second analysis, using a bootstrap approach, we 

consider simultaneously randomness due to the sample, the decorrelation filter, and 

algorithm initialization. 

 

As a first validation analysis, we analyze the radiomics data 512 times using the same 

approach. First, we apply the decorrelation filter with a small set ranking, which greedily 

selects small representative sets of radiomic features and breaks ties in rank at random. 

Using the filtered data, we estimate the number of L1 bound and number of clusters 

appropriate for clustering using a standardized BCS-based gap statistic from 10 

permutations and 10 cluster fitting initializations per setting. Here, the number of 

clusters is assumed to take a value between 2 and 8 while the L1 bound is assumed to 

take a value between 1.5 and the square root of the number of features selected by the 



filter rounded to the nearest 0.5. Using the estimated L1 bound and number of clusters, 

clusters are fit to the filtered data and cluster labels are recorded. 

 

From these labels, we report the distribution of the pairwise ARI between pairs of the 

512 analyses, as well as the maximum ARI between fit clusters and Scadding stage. 

 

Using the labels, we fit two linear models. The first predicts pre-BD FVC from cluster 

labels and base factors (age, sex, race, BMI, and height) and the second predicts pre-

BD FVC from cluster labels, base factors, and Scadding stage. Partial F-test P-values 

are used to quantify significance of cluster label in these models. 

 

We report maximum P-values for the cluster and base factor model and for the cluster, 

Scadding, and base factor model over the 512 analyses, as well as the proportion of P-

values less than 0.01. 

 

As a second validation analysis, we sample 500 bootstrap data sets from the radiomics 

data. To each data set, we fit the same number of clusters using the same L1 bound 

from primary analyses with 10 initializations. Cluster labels and number of unique 

observations in the data set are recorded. For pairs of analyses, we report the 

distribution of the ARI of clusters fit to the pair's unique overlapping set of observations 

as well as the size of the unique overlapping set. We report also the maximum ARI 

between fit clusters and Scadding stage for each analysis. 

 



Using the labels, we fit two linear models to the bootstrap sample. The first predicts pre-

BD FVC from cluster labels and base factors (age, sex, race, BMI, and height) and the 

second predicts pre-BD FVC from cluster labels, base factors, and Scadding stage. 

Partial F-test P-values are used to quantify significance of cluster label in these models. 

 

We report maximum P-values for the cluster and base factor model and for the cluster, 

Scadding, and base factor model over the 500 analyses, as well as the proportion of P-

values less than 0.01. 

 

E-Appendix 2: Results of the Validation Analyses 

In the first validation analysis, pairwise ARI values ranged from 0.3 to 1 and peaked 

around 0.5 (e-Figure 2). The maximum ARI of fit clusters with Scadding stage was 

0.076. In the linear models, in the demographic adjusted and demographic and 

Scadding stage adjusted model, the maximum P-value for the significance of cluster 

was <0.0001 and the corresponding proportion of P-values less than 0.01 was 100%.  

 

In the second validation analysis, bootstrap samples contained between 183 and 218 

unique observations and contained 203 on average. Pairs of bootstrap samples 

contained between 98 and 155 unique overlapping observations and contained 128 on 

average or about 63% of the sample is used in each ARI calculation. Pairwise ARI 

values computed from unique overlapping observations ranged from 0.2 to 1 and had a 

distribution with two peaks around 0.55 and 0.85 (e-Figure 2). The maximum ARI of fit 

clusters with Scadding stage was 0.17. For significance of cluster label in linear models 



fit to bootstrap samples, maximum P-value for the significant of cluster in the 

demographic adjusted model was <0.0001 and the proportion of P-values less than 0.01 

was 100%.  In the demographic and Scadding stage adjusted models, the maximum P-

value for the significance of cluster was 0.02 and the proportion of P-values less than 

0.01 was 99.8% 
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E-Table 1: IBSI Standards Scanner and Scanner Protocol Summary Measures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aSoftware Versions: coreload.81, gmp_vct.42, 07MW18.4, gmp_vct.26, sles_hde.84, syngo CT 
2012B, syngo CT VA48A, syngo CT 2010A, syngo CT 2009E, 3.2.0, syngo CT 2011A 
bManufacturers: GE MEDICAL SYSTEMS, SIEMENS, Philips 
cManufacturer Model Names: Optima CT660, LightSpeed VCT, Discovery CT750 HD, SOMATOM 
Definition Flash, SOMATOM Definition AS+, SOMATOM Definition, Sensation 64, iCT 128 
dConvolutionKernel: STANDARD, B35f, B 

  

Measure mean std min max num.non.na pct.non.na 
KVP 119.9 1.2 100 120 197744 1 
XRayTubeCurrent 251.2 58.4 145 374 197744 1 
Exposure 87.4 67.6 1 190 197744 1 
ExposureTime 500.9 2.5 500 508 197744 1 
SliceThickness 0.70 0.082 0.625 3 197744 1 
SpacingBetweenSlices 0.5 0 0.5 0.5 88325 0.45 
InstanceNumber 313.0 184.0 1 784 197744 1 
PixelSpacing1 0.69 0.084 0.52 0.96 197744 1 
PixelSpacing2 0.69 0.084 0.52 0.96 197744 1 
PixelSpacing3 0.50 0.076 0 3 197744 1 
SoftwareVersionsa       
Manufacturerb       
ManufacturerModelNamec        
ConvolutionKerneld       



 

E-Table 2: The distribution of scanner type across radiomic groups to assess the 

effectiveness of harmonization .  

  Radiomics Cluster P-value 

Scanner Modela Overall 1 2 3 4 >0.9 

Discovery CT750 HD 4 (1.3%) 1 (1.8%) 2 (1.8%) 1 (1.9%) 0 (0%) 
 

iCT 128 34 (11%) 8 (14%) 15 (14%) 3 (5.6%) 8 (8.0%) 
 

LightSpeed VCT 108 (34%) 19 (34%) 38 (35%) 18 (33%) 33 (33%) 
 

Optima CT660 3 (0.9%) 1 (1.8%) 0 (0%) 1 (1.9%) 1 (1.0%) 
 

Sensation 64 8 (2.5%) 2 (3.6%) 2 (1.8%) 1 (1.9%) 3 (3.0%) 
 

SOMATOM Definition 38 (12%) 7 (13%) 13 (12%) 7 (13%) 11 (11%) 
 

SOMATOM Definition AS+ 91 (28%) 15 (27%) 27 (25%) 17 (31%) 32 (32%) 
 

SOMATOM Definition 

Flash 

34 (11%) 3 (5.4%) 13 (12%) 6 (11%) 12 (12%) 
 

aDiscovery = Discovery CT750 HD; iCT = iCT 128; LightSpeed = LightSpeed VCT; Optima = 

Optima CT660;  Sensation = Sensation 64; SOM Def = SOMATOM Definition; SOM Def AS = 

SOMATOM Definition AS;  SOM Def Flash = SOMATOM Definition Flash 

  



E-Table 3: Oberstein component definitions 

Component Definition Scoring (0-3) 

BVB Thickening or irregularity of the 
bronchovascular bundle 

0=none; 1=1-33% lung volume affected; 
2=34-67% lung volume affected; 3=68-100% 
lung volume affected 

PC Parenchymal consolidation 
(including ground-glass 
opacifications) 

0=none; 1=1-33% lung volume affected; 
2=34-67% lung volume affected; 3=68-100% 
lung volume affected 

ND Intra-parenchymal nodules 0=none; 1=1-33% lung volume affected; 
2=34-67% lung volume affected; 3=68-100% 
lung volume affected 

LS Septal and nonseptal lines 0=none; 1=1-33% lung volume affected; 
2=34-67% lung volume affected; 3=68-100% 
lung volume affected 

PLT Focal pleural thickening 0=none; 1=mild; 2=moderate; 3=severe 

LN Enlargement of the lymph nodes 
(short axis >1cm) 

0=none; 1=mild; 2=moderate; 3=severe 

 

  



e-Table 4: Oberstein components by radiomic cluster and differences in 
distributions compared using simulated Fisher’s P-values to address small cell 
sizes. 
  

 Overall 1 2 3 4  

 N=317 N=56 N=108 N=53 N=100 P-value 

Oberstein_BVB      < 0.01 

0 100 (31.5%) 28 (50.0%) 53 (49.1%) 8 (15.1%) 11 (11.0%) 
 

1 79 (24.9%) 20 (35.7%) 29 (26.9%) 13 (24.5%) 17 (17.0%) 
 

2 72 (22.7%) 5 (8.9%) 21 (19.4%) 15 (28.3%) 31 (31.0%) 
 

3 66 (20.8%) 3 (5.4%) 5 (4.6%) 17 (32.1%) 41 (41.0%) 
 

Oberstein_PC  
    

< 0.01 

0 155 (48.9%) 46 (82.1%) 74 (68.5%) 19 (35.8%) 16 (16.0%) 
 

1 63 (19.9%) 6 (10.7%) 20 (18.5%) 15 (28.3%) 22 (22.0%) 
 

2 65 (20.5%) 4 (7.1%) 14 (13.0%) 11 (20.8%) 36 (36.0%) 
 

3 34 (10.7%) 0 (0.0%) 0 (0.0%) 8 (15.1%) 26 (26.0%) 
 

Oberstein_ND  
    

< 0.01 

0 147 (46.4%) 35 (62.5%) 57 (52.8%) 18 (34.0%) 37 (37.0%) 
 

1 109 (34.4%) 14 (25.0%) 39 (36.1%) 18 (34.0%) 38 (38.0%) 
 

2 38 (12.0%) 3 (5.4%) 9 (8.3%) 11 (20.8%) 15 (15.0%) 
 

3 23 (7.3%) 4 (7.1%) 3 (2.8%) 6 (11.3%) 10 (10.0%) 
 

Oberstein_LS  
    

< 0.01 

0 232 (73.2%) 51 (91.1%) 85 (78.7%) 35 (66.0%) 61 (61.0%) 
 

1 82 (25.9%) 5 (8.9%) 23 (21.3%) 17 (32.1%) 37 (37.0%) 
 

2 3 (0.9%) 0 (0.0%) 0 (0.0%) 1 (1.9%) 2 (2.0%) 
 

Oberstein_PLT  
    

0.35 

0 311 (98.1%) 56 

(100.0%) 

107 (99.1%) 51 (96.2%) 97 (97.0%) 
 



1 5 (1.6%) 0 (0.0%) 1 (0.9%) 1 (1.9%) 3 (3.0%) 
 

2 1 (0.3%) 0 (0.0%) 0 (0.0%) 1 (1.9%) 0 (0.0%) 
 

Oberstein_LN  
    

0.01 

0 136 (42.9%) 35 (62.5%) 47 (43.5%) 20 (37.7%) 34 (34.0%) 
 

1 88 (27.8%) 14 (25.0%) 29 (26.9%) 19 (35.8%) 26 (26.0%) 
 

2 90 (28.4%) 7 (12.5%) 30 (27.8%) 14 (26.4%) 39 (39.0%) 
 

3 3 (0.9%) 0 (0.0%) 2 (1.9%) 0 (0.0%) 1 (1.0%) 
 

 

  



 

e-Table 5: Results of the regression analysis of the five discriminatory radiomic 
measures for PRO’s. Each linear regression model included all five radiomic features 
and was additionally adjusted for age, sex, race, BMI and height. Bolded cells are 
statistically significant (p-values in the footnote). GLCM - Gaussian is the sum of the 
GLCM with a Gaussian weight applied. GLCM-Inv Gaussian is the sum of the GLCM for 
the inverse Gaussian weighting scheme. GLCM Sum Entropy is a measure of the 
disorder of the GLCM. GLCM Min is the minimum of the GLCM. 
 

 

PRO 

GLCM 

Gaussian 

GLCM Inv 

Gaussian 

Kurtosis GLCM 

Sum 

Energy 

GLCM Min P-

valueb  

Rsq Rsq - 

base 

FAS 1.50 (1.21) 0.11 (0.88) 1.00 (0.90) 0.85 (1.00) 0.54 (0.96) 0.151 0.112 0.069 

GERDQ -0.12 (0.35) 0.35 (0.27) -0.40 (0.25) 0.08 (0.29) -0.19 (0.28) 0.201 0.063 0.04 

CFQ 3.32 (2.86) 0.56 (2.20) -0.73 (2.09) 4.02 (2.35) 0.69 (2.29) 0.465 0.067 0.053 

SOBQ 4.24 (3.69) 3.61 (2.82) -0.05 (2.69) -4.62 (3.03) -0.61 (2.96) <0.000

1 

0.18 0.111 

Promis 3.37 (1.56)a 2.34 (1.19) 1.08 (1.14) 0.94 (1.30)  -1.32 (1.27) 0.258 0.054 0.031 

SF12 - 

Physical 

0.75 (1.81) -0.25 (1.39) 0.64 (1.32) 2.22 (1.49) 0.74 (1.45) 0.006 0.155 0.109 

SF12 - 

Mental 

-0.94 (1.69) -1.48 (1.30) 0.72 (1.24) -0.04 (1.40) -0.75 (1.36) 0.706 0.066 0.057 

a P-value <0.0032; b Overall P-value testing whether any of the radiomic measures are 
significant in the regression model. 
  



 
E Figure 1: Diagram of patient population leading to analysis datasets (N=321 and N=318). 
 
 368: GRADS cohort 

365: People with 
signed consent and 
some clinical data 

328: People with valid 
CT and standard lung 

reconstruction 

321: People with 
confirmed Sarcoidosis 

diagnosis 

317: People with 
Scadding stage and 

VAS 

320: People with 
demographics (N=1 

missing sex) 



  
 

 
E-Figure 2: Distribution of HU from HRCT images with the maximum, median, and minimum 
kurtosis. 
 
 

 
 
E-Figure 3: Results from the validation studies. Left shows the distribution of ARI for scenario 1. 
Right shows the distribution of ARI for scenario 2.  
 


