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Abstract 

Quantitative characterization of the health impacts associated with exposure to chemical mixtures has 

received considerable attention in current environmental and epidemiological studies. With many existing 

statistical methods and emerging approaches, it is important for practitioners to understand when each 

method is best suited for their inferential goals. In this study, we conduct a review and comparison of 11 

analytical methods available for use in mixtures research, through extensive simulation studies for 

continuous and binary outcomes. These methods fall in three different classes: identifying important 

components of a mixture, identifying interactions and creating a summary score for risk stratification and 

prediction. We carry out an illustrative data analysis in the PROTECT birth cohort from Puerto Rico. 

Most importantly we develop an integrated package “CompMix” that provides a platform for mixtures 

analysis where the practitioner can implement a pipeline for several types of mixtures analysis.  

Our simulation results suggest that the choice of methods depends on the goal of analysis and there is no 

clear winner across the board. For selection of important toxicants in the mixture and for identifying 

interactions, Elastic net by Zou et al. (Enet), Lasso for Hierarchical Interactions by Bien et al (HierNet), 

Selection of nonlinear interactions by a forward stepwise algorithm by Narisetty et al. (SNIF) have the 

most stable performance across simulation settings. Additionally, the predictive performance of the Super 

Learner ensembling method by Van de Laan et al. and HierNet are found to be superior to the rest of the 

methods. For overall summary or a cumulative measure, we find that using the Super Learner to combine 

multiple Environmental Risk Scores can lead to improved risk stratification properties. We have 

developed an R package “CompMix: A comprehensive toolkit for environmental mixtures analysis”, 

allowing users to implement a variety of tasks under different settings and compare the findings.  

In summary, our study offers guidelines for selecting appropriate statistical methods for addressing 

specific scientific questions related to mixtures research. We identify critical gaps where new and better 

methods are needed. 

Introduction 

In recent years, many environmental health studies have explored chemical mixtures using a variety of 

statistical methods aimed at characterizing the mixture and assessing the mixture’s effects on health 

outcomes. For example, these chemical mixtures or multipollutant may include phthalates, phenols, 

polycyclic aromatic hydrocarbons (PAHs), per- and polyfluoroalkyl substances (PFAS), metals and more. 

Traditional studies of health impacts of environmental exposure have focused on examining individual 

agents one at a time, primarily due to the limitations in statistical methods and prohibitive sample sizes. 

However, in reality, humans are exposed to a wide range of chemicals they encounter in their 
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environments via various pathways simultaneously, which poses significant statistical challenges when 

studying the joint health effect of the mixture. For example, the chemicals may exhibit complex 

dependence; the response-dose associations are often highly nonlinear and nonadditive; the number of the 

multipollutant and their potential interactions could be high, with their effect sizes potentially small and 

challenging to detect compared to the larger effect of demographic covariates. These challenges are 

difficult to address satisfactorily via standard regression models. 

The National Institute of Environmental Health Sciences (NIEHS) has identified mixtures 

analyses as a high-priority area for research in 2013 and 2015 [1, 2], and launched the Powering Research 

through Innovative Methods for Mixtures in Epidemiology (PRIME) funding program to address 

methodological challenges in mixtures research in 2017 [3].  Despite the development and availability of 

numerous mixtures methods, there is continued discussion and debate on which methods are best suited 

for a given researcher’s hypothesis for  a given data set.  The central goal of this paper is to provide 

empirical evidence regarding performance of mixture methods to help guide researchers on selecting the 

best available methods to address three scientific questions in data analysis: (1) identifying the important 

toxic components of the mixture as related to the health outcome; (2) identifying the interaction effects 

from combinations of pollutants on the outcome; and (3) prediction of the health outcome and identifying 

high-risk mixture strata.  

Most importantly, we want to streamline implementation challenges so that practitioners are able 

to explore a variety of methods in a single platform. To this end, we have developed an R package 

“CompMix: A comprehensive toolkit for environmental mixtures analysis”. The package offers the 

flexibility to perform various tasks such as variable selection,  interaction detection, form composite 

summary risk scores and compare certain performance metrics across fitted models.  Our vision going 

forward is to update CompMix with emerging methods as they become available. 

Our study is motivated by a large-scale NIH-funded longitudinal birth cohort study taking place 

in Puerto Rico known as the PROTECT study, which aims to increase diversity and representation of 

historically neglected communities in biomedical research and investigate how exposures to a range of 

chemicals in the environment, including phthalates, phenols, PAHs, and metals, negatively impact birth 

outcomes and women’s health. The recruitment and study protocols for PROTECT have been previously 

described [4, 5]. Puerto Rico has 18 Superfund sites and suffers extensively from environmental 

contamination. At the same time, the population in Puerto Rico has higher rates of preterm birth and low 

birth weight with 11.6% of live births being preterm and 10.2% being low birthweight, compared to 

10.1% and 8.2%, respectively, in the general United States population in 2020 [6]. Adverse birth 

outcomes, such as preterm birth (less than 37 weeks gestation), and low birth weight (birth weight less 

than 2500 grams), are global health concerns linked to increased risks of developing conditions such as 

diabetes and cardiovascular disease in adulthood [7, 8]. Previous studies utilizing the PROTECT cohort 

have observed links between individual environmental chemical exposures during pregnancy and a 

greater risk of preterm birth [9]. However, due to unique statistical barriers, much remains unknown about 

the impact of exposure to environmental toxicant mixtures during pregnancy and these adverse birth 

outcomes.  Figure 1 shows a correlation heatmap of mean log-transformed concentrations across three 

prenatal visits for 39 chemical exposures from urine samples in the PROTECT study. 

The landscape of Statistical Methods: Popular approaches for identifying mixture components 

are high-dimensional penalized regressions such as Lasso [10] , Elastic Net (Enet [11]) and Group Lasso 

[12]. Other more flexible approaches with nonparametric natures include machine learning methods such 

as random forest (RF [13]) , neural networks and support vector machine. One important goal in mixtures 
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research is to identify interactions among exposures, which motivated the development of hierarchical 

integrative group least absolute shrinkage and selection operator (Higlasso [14]), selection of nonlinear 

interactions by a forward stepwise algorithm (SNIF [15]), factor analysis for interactions (FIN [16]), and 

Bayesian kernel machine regression (BKMR) [17, 18]. Lasso for Hierarchical Interactions (HierNet [19]) 

is a general method for interaction detection and has also been utilized for the mixtures analysis.  

One special area of machine learning is ensemble learning, and its representative work is Super 

Learner [20] targeted towards optimal prediction, but can also be used for variable identification through 

creation of an importance score.  Moreover, methods have also been developed to characterize the 

summary measures of environmental mixtures, including weighted quantile sum regression (WQS) [21] 

and quantile g-computation (Q-gcomp) [22]. In particular, Environmental Risk Score (ERS), a general 

method that utilizes a diverse range of predictive models to construct a one-dimensional risk score [23, 

24], has also attracted attention and has been broadly applied to quantify the health effects due to the 

pollutant mixtures. 

Several publications have provided an overview of many statistical approaches available for 

studying the health effects of chemical mixtures.  Davalos et al. [25] reviewed approaches used in 

examining air pollution exposures and classified these approaches into five classes. Gibson et al. [26] 

provided an extensive overview of the methods and illustrated their usage with the National Health and 

Nutrition Examination Survey (NHANES) dataset. Park et al. [24] focused on the machine learning 

approaches to construct the ERS with an NHANES data analysis as an illustration. These publications 

have focused on real data analysis,  meaning that one would never know the true contributing toxicants 

and associations given the data, and making it difficult to evaluate the selection accuracy of the pollutants 

among methods.  In contrast, simulation studies are a powerful tool for comprehensively comparing 

various methods under a broad range of data generating mechanisms.  Some sporadic works on simulation 

studies for mixtures analysis [27, 28] have emerged, but there still lacks a systematic evaluation of the 

popular methods used in mixture analyses under diverse data scenarios with varied sample sizes, 

changing number of pollutants for continuous and binary outcomes.  To address this gap, our goal is to 

utilize simulation studies to perform a head-to-head comparison among mixtures methods under different 

data settings and provide guidance for practitioners. 

The present study proposes an analytical framework that utilizes variable 

selection/prioritization/ranking techniques including Lasso, Enet, Group Lasso, BKMR, RF, Higlasso, 

HierNet and SNIF to identify the pollutants and interactions that are associated with the health outcome. 

We characterize the health effects from exposure to the mixtures as ERS, and adapt the ensemble learning 

approach of Super Learner [20] to combine the ERSs derived from various methods for improved 

prediction. We compare the different ERSs with summary measures derived from WQS and Q-gcomp. 

The evaluation metrics that we consider in our simulation study include: measures of variable selection 

accuracy, prediction accuracy under different outcome types, ability to stratify high-risk individuals and 

the computational cost. By varying the sample size, the number of pollutants, and the signal to noise ratio, 

we strive to provide a comprehensive evaluation of the representative methods and gain insight into their 

advantages and limitations in the context of mixtures analysis.   

General framework 

We select 11 representative statistical approaches and categorize them into three groups based on their 

ability to tackle the three main objectives of a typical mixture analysis plan: (1) identifying the important 

toxic components of the mixture; (2) identifying the interaction effects of combination of pollutants, and 

(3) evaluating the predictive performance of the summary measures and risk stratification.  Importantly, 
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all of these goals are specific to an underlying health outcome. The grouping of methods is presented in 

Figure 2, and further details of each method can be found in the Methods section. 

  For objective 1, which involves pollutant selection, we consider methods that perform variable 

selection or provide importance scores corresponding to the variables that can be used for ranking and  

can be thresholded for variable selection. These methods include penalized regressions such as Lasso, 

Elastic net (Enet), and Group Lasso (G-Lasso).  We also consider two  machine learning methods that 

provide rankings of the pollutant importance: BKMR and Random forests (RF).   

For objective 2, which involves interaction detection, we will consider three methods that were 

specifically developed for interaction selection. These methods include Hierarchical Integrative G-Lasso 

(HigLasso), Lasso for Hierarchical Interactions (HierNet), and Selection of nonlinear interactions by a 

forward stepwise algorithm (SNIF). HigLasso and SNIF are particularly motived by problems in chemical 

mixtures analysis.  It is worth noting that some of the Group 1 methods, such as Lasso, Enet and G-Lasso 

can also be used for interaction selection if one specifies the interaction terms in the underlying models. 

However, these methods were not initially designed for interaction selection, so they do not account for 

key assumptions such as heredity principles [14]. For the three methods in Group 2, only the individual 

pollutants need to be specified; the methods will automatically select the pairwise interactions or even 

quadratic terms of pollutants (HierNet). 

For objective 3, which involves prediction of health outcomes and risk stratification, we will 

consider four methods, including Environmental Risk Score (ERS), weighted quantile sum regression 

(WQS), quantile g-computation (Q-gcomp), and Super Learner (SL).  ERS utilizes predictive models to 

create a summary risk score, while WQS and Q-gcomp also construct a summary measure of body burden 

index from a weighted average of exposures.  These three summary measures are used to characterize the 

joint cumulative health impacts resulting from exposure to mixtures of pollutants, and all serve as 

dimension reduction measures in the mixture analysis.  SL uses cross-validation to create a weighted 

combination of different learners to improve prediction.  Motivated by the fundamental idea of SL, we 

have developed our own version of SL for ensembling various ERSs. We refer to this method as SL-ERS.  

For fair evaluation, the simulated data are split evenly into training and testing sets.  In the 

training data, we compare the performance of pollutant selection and interaction detection for methods in 

Groups 1 and 2. The evaluation metrics include sensitivity, specificity, false discovery rate and false 

positive rate. In the testing data, we evaluate the prediction and risk stratification properties of summary 

measures for methods in Group 3, which include ERSs constructed from several methods that 

demonstrate good performance for pollutant selection and interaction detection, SL-ERS, WQS and Q-

gcomp. The evaluation metrics for continuous outcomes include correlation coefficient (Corr) between 

ERS (or WQS/Q-gcomp summary scores) and health outcomes and sum of squared error (SSE) 

corresponding to predicting the health outcome by these risk scores. For creating a binary outcome, we 

dichotomize the continuous outcome at 90th percentile, and compute the area under the receiver operating 

characteristic curve (AUC) as a measure of discrimination. Lastly, we stratify each summary risk score 

measures by the 25 and 75 percentiles (Q1 and Q3) to create the low- or high-risk groups, fit a logistic 

regression and report the odds ratio (OR) of having an extreme outcome between the group with the 

lowest quartile of the summary measure and the group with the highest quartile of the summary measure. 

The odds ratio serves as the metric for assessing the risk discrimination property of the summary scores. 

The details of all the evaluation metrics can be found in the Methods section. 

Results 
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Simulation Results 

We conduct simulation studies to compare the performance of different methods.  We consider 20 

pollutants representing three families of environmental chemicals, namely phthalates, PAHs, and metals. 

These pollutants are divided into three groups, with seven, six and seven pollutants in each group, 

respectively. There are five true features distributed as two, two and one pollutant in each group, 

respectively. The correlation matrix of pollutant exposures is specified according to the grouping 

structure, where within-group correlations and between-group correlations are set to 0.6 and 0.1. Table 8 

presents the complete list of simulation settings. The mean function for the continuous outcome variable 

𝑦 is generated under four settings: linear main effect model (LM), linear main and interaction effects 

model (LMI), nonlinear main effect model (NM) and nonlinear main and interaction effect model (NMI). 

In the settings of LMI and NMI, the 10 pairwise interactions of the five true features are also associated 

with the outcomes. For each of the four settings, we consider following four scenarios:  sample size 𝑛 =

1,000, 𝑝 = 20 and 𝑅2 = 0.2, 0.1; and sample size 𝑛 = 2,000, 𝑝 = 40 and  𝑅2 = 0.2, 0.1. For the binary 

outcomes, we also generate data from four settings: logit link main effect model (Logit), logit link main 

and interaction effect model (LogitI), logit link nonlinear main effect model (Nlogit), and logit link 

nonlinear main and interaction effect model (NlogitI).    

Selection/Identification of Important Exposures in the Mixture 

For continuous outcomes (Table 1: main/marginal), G-Lasso-MI has the lowest specificity (0.000) and 

highest false discovery rate (FDR=0.75) across all models, indicating it selects all 20 exposures.  G-Lasso 

will either select a group of correlated predictors or shrink the whole group to zero. In our simulation 

settings, each group has a true predictor; G-Lasso hence selects all the exposures. Comparing Lasso-M 

and Lasso-MI or Enet-M and Enet-MI under all data settings, the inclusions of interactions into the 

models consistently decrease the sensitivity slightly (e.g., 0.975 to 0.954 in LM for lasso), increase the 

specificity (0.643 to 0.775) and decrease the FDR (0.497 to 0.391). BKMR shows low specificities in LM 

and LMI (0.082, 0.052), but high specificities in NM and NMI (0.913, 0.769). Comparing the three 

methods designed for interactions, HierNet demonstrates the highest sensitivity and highest FDR, while 

SNIF has the highest specificity and lowest FDR across all settings.   

For binary outcomes (Table 2: main/marginal), similar to the results for continuous outcomes, G-

Lasso-M and G-Lasso-MI have shown very low specificity and highest FDR. Comparing Lasso-M and 

Lasso-MI or Enet-M and Enet-MI under all data settings, we see similar trends as continuous outcomes, 

where sensitivity decreases, specificity increases, and FDR decreases after including interactions. 

Excluding Glasso, Enet-M has the highest sensitivity in Logit and LogitI (0.978, 0.954), and HierNet has 

the highest sensitivity in Nlogit and NlogitI (0.780, 0.846).  Lasso-MI demonstrates the highest specificity 

and the lowest FDR in all four settings (e.g., 0.803 and 0.367 in Logit).   

Interaction detection 

For continuous outcomes (Table 1: interaction), G-Lasso-MI again exhibits a specificity of zero under 

LMI and NMI.  For the remaining five methods, SNIF achieves the lowest false positive rate (FPR) of 

0.000 in both LM and NM, while HierNet and Enet-MI have the highest FPR in LM (0.060) and NM 

(0.105), respectively. In LMI and NMI, Enet-MI demonstrates the highest sensitivity (0.661, 0.310), and 

SNIF again shows the highest specificity (0.999, 1.000) and lowest FDR (0.168, 0.016).  

For binary outcomes (Table 2: interaction), G-Lasso/G-Lasso-MI have high FPR and low 

specificity. Lasso-MI and HierNet have the lowest FPR in Logit and Nlogit (0.057, 0.053).  In LogitI and 

NlogitI, Enet-MI has the highest sensitivity (0.343, 0.251) and FDR (0.816, 0.867) among the three 
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methods, while HierNet has slightly higher specificity and lower FDR.  Overall, Lasso-MI, Enet-MI and 

HierNet produce similar results in interaction selection.  However, the sensitivity for interactions in LogitI 

and NlogitI is low for all three methods, suggesting that identification of interactions is challenging for 

binary outcomes.  

Prediction of health outcome and risk stratification 

For continuous outcomes (Table 3 “continuous outcome and continuous ERS/WQS/Q-gcomp”), in LM 

setting, Enet-M shows the highest correlation coefficient (Corr=0.43) and the smallest sum of squared 

errors (SSE=36.8), followed by SL with Corr of 0.42 and SSE of 37.2.  In LMI, Enet-MI and SL have 

competitive Corr (0.39, 0.39) and SSE (155.4, 155.7). Since the true model LMI includes the interactions, 

models that account for interactions in general fit the data much better than models with only main 

effects. For instance, the Corr for Enet-M and Enet-MI are 0.19 and 0.39, respectively.  This emphasizes 

the importance of including the interactions in the model fitting when there are true interactive 

associations.  BKMR performs the worst among the five ERSs that account for interactions in terms of 

lowest Corr of 0.26. In NM, SL has the highest Corr of 0.40 and lowest SSE of 69.4.  Note that even 

though the true model NM only has main effects, the ERS models considering interactions outperform the 

models considering only main effects. This is not surprising as interactions can capture nonlinear 

associations partially.  Similar results are found in the NMI setting, where SL fits the data best and 

models considering interactions demonstrate advantages over models with only main effects.  

Additionally, it is worth mentioning that BKMR seems to fit nonlinear models better than linear models. 

When comparing WQS-M* with WQS-M or Q-gcomp-M* with Q-gcomp-M under, the models with 

variable selection outperform the models without variable selection under most data scenarios.  Similar 

results are seen when comparing WQS-MI* with WQS-MI, where WQS-MI* has shown better or very 

similar Corr and SSE with WQS-MI. However, Q-gcomp-MI has shown a significant reduction in Corr 

and a large increase in SSE, suggesting that Q-gcomp-MI does not fit the full data well.  It is also 

noteworthy that WQS and Q-gcomp models have shown similar results compared to the other methods 

under the LM setting, but their predictions are worse under other settings with interactions and/or 

nonlinearity.  

For binary outcomes dichotomized from continuous outcome with the continuous ERS/WQS/Q-

gcomp, the area under the ROC curve (AUC) results are consistent with those of Corr and SSE. In LM, 

Enet-M, Enet-MI, HierNet and SL all achieve the highest AUC of 0.73; while in the remaining three 

settings, the five ERS methods considering interactions have a higher AUC than the methods with only 

main effects. SL achieves the highest AUC in all settings.  For categorical ERS/WQS/Q-gcomp, Enet-M 

is top-performing with highest risk stratification odds ratio (OR=11.2) followed by HierNet and SL 

(OR=10.8) in LM, and SL has highest OR in LMI, NM and NMI. To summarize Table 3, SL is the top-

performing method across all settings, demonstrating the strength of its ensemble algorithm that combines 

multiple learners.   

For binary outcomes (Table 4), Enet-M has the highest AUC of 0.812 and lowest Brier of 0.096 

and highest OR of 33.5 in Logit setting, followed by SL (AUC=0.801) and Lasso-MI, Enet-MI 

(Brier=0.098) and WQS-M* (OR=28.6).  In LogitI, the three models that only consider main effects, have 

higher or similar AUC and higher OR than the five ERS methods that incorporate interactions. In Nlogit 

and NlogitI, HierNet and SL achieve the highest AUC (0.753 and 0.780) and high ORs (11.3, 14.1). For 

WQS and Q-gcomp, the results comparing the models with and without variable selection show that the 

models with variable selection outperform the full models in terms of higher AUC, lower or similar Brier 

score, and higher risk stratification OR regardless of settings.  It is evident that variable selection can 

greatly improve the prediction accuracy for these two methods.  
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Computing time 

To compare the computing time for each method, Table S13 lists the mean computing time in seconds for 

each method under various data settings when signals are small. Specifically, we consider settings of 

𝑁𝑡𝑟𝑎𝑖𝑛 =  500 and 𝑝 = 20 or 𝑁𝑡𝑟𝑎𝑖𝑛 =  1,000 and 𝑝 = 40 with 𝑅2 = 0.1 for continuous outcomes and 

𝑅2 = 0.1 for binary outcomes. We run each setting with 100 data replications then calculate the mean 

time each takes.  There is a significant difference in computing time among these methods, with Q-gcomp 

being the fastest, requiring as little as 0.03 seconds, followed by RF, Enet, Lasso, SNIF and WQS, all of 

which with negligible computing time, and BKMR (2000 MCMC iterations) and HigLasso being the 

slowest, requiring 2,000 to 50,000 seconds.  The computing time varies only slightly for different true 

data settings for the same sample size/number of pollutants. However, computing time increases 

significantly when sample size increases from 500 to 1000 and number of pollutants increases from 20 to 

40. 

Summary 

Based on the simulation results presented in Tables 1-4 and S1-S12, we summarize recommendations for 

the methods in Table 5 under different settings of sample sizes, number of pollutants, and small or 

medium signals for continuous and binary outcomes.  For continuous outcomes, the results consistently 

suggest that HierNet, SNIF and Enet-MI have the most stable selections for pollutants and their 

interactions.  For pollutant selection, HierNet almost always shows the highest sensitivity, while SNIF 

exhibits the lowest sensitivity but the highest specificity and lowest FDR, suggesting even though it may 

miss important pollutants, it tends to select only the true significant pollutants. Depending on the specific 

research question, we recommend that researchers utilize both HierNet and SNIF to compare the results in 

the real data analysis, considering whether they prefer sensitivity or control of FDR.  For interaction 

selection, Enet-MI and SNIF seem to perform better than the other methods, but in general, the sensitivity 

is very low and FDR is high.  This suggests that there is a clear need for the development of new methods 

for detection of interactions. For prediction, SL and HierNet perform better than the rest of methods. SL 

has the advantage of ensemble learning from predictions via multiple methods, and HierNet, even though 

a linear method, can fit nonlinear data by selecting the interactions and quadratic terms.    

For binary outcomes, there are limited methods available to use.  For pollutant selection, Enet-M, 

Lasso-MI and HierNet exhibit satisfactory sensitivity, but their FDRs are relatively high. For interaction 

detection, G-lasso-MI has low specificity, so the options remaining are Enet-MI, Lasso-MI and HierNet. 

Unfortunately, these methods suffer from low sensitivity and high FDR, making the selection for 

interactions in binary outcomes quite challenging.  For prediction, Enet-M outperforms many methods 

under various settings, suggesting that a parsimonious model might achieve the same or better prediction 

accuracy compared to other larger models for binary outcomes. For WQS and Q-gcomp, the results show 

that the models with variable selection provide higher AUC, lower or similar Brier score, and higher risk 

stratification OR regardless of settings than the models without variable selection.  

PROTECT Data Analysis Results 

Important pollutants, covariates, and interactions 

Table 6 reports the variables that are selected at least 30% of the time by each method in the 100 fittings 

using random training data. For birth weight, Enet-M selects two metals (Ba and As) and one phthalate 

(MCOP), and Figures S1 in the Supplementary Material show the distributions of the 100 coefficient 

estimates for these three chemicals, indicating positive associations with birth weight when Ba is selected 

and negative associations when As and MCOP are selected.  Note that Enet-M can only select 39 
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chemicals as covariates are controlled. Enet-MI only selects one main effect “gestational age”, and it 

tends to select interactions over main effects compared with Enet-M. BKMR selects all 39 chemicals at 

least 30 times, so we report the top eight compounds that are most frequently selected, ranging from 47 to 

55 times out of 100 times.  The frequently selected chemicals are three metals (Ba, As and Sn), two 

phthalates (MBZP and MCOP), two phenols (BP3 and TCS), and one PAH (4PHE).  HierNet selects 16 

main effects, of which seven are metals, and nine interactions, eight of which involve gestational age and 

a chemical.  SNIF only selects main effects of metals and covariates, and based on the simulations, SNIF 

tends to be conservative in selection as evidenced by the lowest FDR, indicating that the exposures or 

covariates it selects are almost always true predictors. Comparing the selections across methods, we find 

that metals (Ba, As and Co), phthalates (MBZP and MCOP), and phenol (BPA) are frequently selected as 

main effects or interactions.  

For preterm birth, we do not report the variable selection by RF as it is not designed for this 

purpose.  Lasso-MI and Enet-MI tend to select interactions over main effects, whereas HierNet selects 

main effects only.  The metals Mn and Cd or their interactions with other chemicals are selected across 

methods.  The only covariate selected is maternal education. It is worth noting that for both birth weight 

and preterm outcomes, HierNet also screens for any quadratic terms, but we omit summarizing them in 

this analysis as quadratic term selection is not a focus of this paper.  

Predictive Power Comparison  

Table 7 reports a comparison of the predictive power among summary scores of ERS, WQS and Q-gcomp 

for different outcomes.  For birth weight, the mean weight for SL across 100 times of random splits for 

Enet-MI, BKMR, HierNet and SNIF are 55.3%, 1.0%, 35.1% and 8.7%, indicating that Enet and HierNet 

have better overall predictive performance.  Enet-M and SL outperform other methods in terms of Corr 

and SSE for main effect and main and interaction effect models, respectively. For the low birth weight 

binary outcome, HierNet and SL achieve highest AUC (0.838) and the highest ORs of having low birth 

weight (12.73, 12.53) when comparing the lowest quartiles of ERSs versus the rest of the samples. For the 

high birth weight binary outcome, WQS-M and Enet-M achieve higher AUC (0.665, 0.664) than the other 

methods, suggesting that main effect models fit the data better for the high birth weight outcome.  WQS-

M also yields the highest OR of having high birth weight (2.70) when comparing the highest quartiles of 

predictive values versus the rest of the samples.    

For preterm binary outcome, the mean weight for SL across 100 times of random splits for Lasso, 

Enet, RF and HierNet are 20.8%, 11.1%, 10.8% and 57.3%, respectively, indicating that HierNet has 

better overall predictions than the other three approaches. The main effect models give higher AUC than 

the four individual ERSs accounting for interactions, where ERS-M has the highest AUC (0.597).  Enet-

M, WQS-M, Enet-MI, BKMR and SL all achieve the smallest Brier scores (0.083). ERS-M and Q-

gcomp-M have the highest OR of having a preterm birth when comparing the highest and lowest quartiles 

of summary measures. For the main and interaction models, SL has the best AUC, Brier and HierNet has 

the highest OR.  

Software 

To facilitate the implementation of the statistical methods among practitioners, we have developed an 

open-source R package “CompMix: A comprehensive toolkit for environmental mixtures analysis”, 

currently featuring the implementation of 8 methods, including Lasso, Enet, BKMR, RF, HierNet, SNIF, 

WQS and Q-gcomp for continuous outcomes, and 6 methods, including Lasso, Enet, RF, HierNet, WQS 

and Q-gcomp for binary outcomes. The package offers the flexibility to perform three tasks: (1) toxicant 
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selection and (2) interaction detection under various circumstances, and (3) the prediction performance 

across different models for users to determine which models fit their data best.  Our package offers 

several unique features to existing software: first, it provides easy-used interface with few input 

arguments. All tuning parameters have been set default values tested by extensive simulation studies, 

greatly facilitating off-the-shelf  tuning parameter selection. On the other hand, the package also provides 

an interface to modify the tuning parameters and model specifications for statisticians who are more 

familiar with those existing packages. Second, the users can also select one specific method, and examine 

results from different model specifications. For example, if the user would like to implement Lasso, the 

package will carry out the data analysis with different options, such as whether or not to perform the 

selection on interactions between exposures and/or covariates. Lastly, this package also provides a 

comprehensive summary of model fit, which offers useful information for the users to select the 

appropriate methods for their data.  We will update this software regularly and include more emerging 

methods as they become available in the future. The package can be downloaded from the Comprehensive 

R Archive Network.  

Discussion 

This paper presents an analytic framework to study the association between exposure to chemical 

mixtures and health outcomes.  We evaluate several statistical methods for three research questions in 

mixtures analyses through simulation studies that range from simple linear models to complex nonlinear 

models. While the methods evaluated in this paper are not exhaustive, they represent a diverse set of 

approaches with unique strengths that can be utilized to answer specific research questions. To enhance 

the prediction accuracy among ERSs, we propose a method inspired by SL, where we iteratively solve 

weights for each candidate learner and combine their predictions using their weighted sum of ERSs.  We 

have developed an R package “CompMix: A comprehensive toolkit for environmental mixtures analysis” 

for practitioners to analyze their data and compare results across versatile methods.  

Lessons learned from simulation studies: our simulation studies for continuous outcomes 

demonstrate that for pollutant selection, HierNet almost always shows the highest sensitivity; for 

interaction detection, Enet-MI and SNIF seem to perform better than the other methods; for prediction, 

SL and HierNet outperform other methods across the settings, highlighting SL’s strength as an ensemble 

algorithm that combines multiple learners. For pollutant and interaction selection with a binary outcome, 

all the investigated methods either exhibit high sensitivity and high FDR, or low sensitivity. For 

prediction, Enet-M outperforms many methods under various settings, suggesting that a parsimonious 

model might achieve the same or better prediction accuracy compared to other larger models. 

Furthermore, we notice that regardless of whether the true data are generated with interactions or not, 

fitting models that account for nonlinearity (such as BKMR) or include interactions generally yield better 

results than models with only main effects. Thus, we recommend considering models that accommodate 

interaction and nonlinearity in addition to linear models.  

New insights from PROTECT data analysis: metals (Ba, As and Co), phthalates (MBZP, 

MCOP), and phenol (BPA) are more likely to be associated with the birth weight after adjusting for 

possible confounding factors such as such as age, gestational age at delivery. In particular, the interaction 

effects between Co and BPA on birth weight are more frequently identified compared with others.   Our 

analysis also indicates that metals Mn and Cd and their interactions may have high impact on the preterm 

birth. All these findings are confirmed by different methods, which deserve further investigations by 

environmental epidemiologists.  
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Limitations of the current study:  first, our simulation studies did not include any covariates in 

the model when comparing different methods. This is because some methods such as HierNet and SNIF 

cannot separate the covariates from pollutants for selection. However, in real world data analysis, the 

associations between the outcome and the predictors are much more complex, requiring the inclusion of 

multiple categorical and continuous covariates.  Second, our simulation studies only focus on dataset with 

complete observations, while some chemicals in the PROTECT study may involve the high percentages 

of measurements below limit of detection (LOD) or missing measurements across three visits. The impact 

of imputation methods on the data analysis and scientific findings are worth further investigating.  Third, 

our analysis for real data in the PROTECT study did not include all possible confounders such as family 

income, parity, occupation, and others, which may influence both exposures and outcome.  

Open problems and future directions: to further study the health impact of mixtures, new and 

efficient statistical methods are urgently needed to address many important issues, including missing data 

and measurement errors [29], longitudinal measurements [30] , nonlinear interaction detection [31], 

integrating multi-omics data [32], mediation analysis with mixtures [33, 34], causal inference with 

mixtures [35].  Estimating the health effect from exposure to chemical mixtures is a complex and 

challenging topic that requires a multidisciplinary team comprising epidemiologists, statisticians, and 

toxicologists. This team must work together to formulate the scientific question, identify the statistical 

barriers, interpret the study findings, and understand the limitations of the research. Through close 

collaborations, innovative methods can be designed and implemented in mixtures research to enhance our 

understanding of the health impacts from exposure to chemical mixtures.   

Methods 

We will provide a detailed overview of current statistical methods for mixtures analysis, with a focus on 

supervised methods that can be implemented to construct ERS. To begin, we introduce the notations and 

problem setup. Consider a random sample of 𝑁 subjects. For subject 𝑖(𝑖 = 1,… , 𝑁), let  𝑥𝑖,𝑝 denote the 

𝑝th environmental pollutant exposure, 𝑝 = 1,… , 𝑃;  𝑧𝑖,𝑘 denote the 𝑘th confounding factor, 𝑘 = 1,… , 𝐾; 

𝑦𝑖 denote the one dimensional continuous or binary outcome of interest.  Let 𝑥𝑝 = { 𝑥𝑖,𝑝}𝑖=1

𝑁
, 𝑧𝑘 =

{ 𝑧𝑖,𝑘}𝑖=1

𝑁
 and 𝑦 = {𝑦𝑖}𝑖=1

𝑁 . Let 𝐷𝑖 = (𝑥𝑖,1, … 𝑥𝑖,𝑃 ,  𝑧𝑖,1, … , 𝑧𝑖,𝐾 , 𝑦𝑖 ) represent the observed data for subject 

𝑖.  Additionally, we define ‖𝑎‖2
2 = 𝑎⊤𝑎 for any vector 𝑎. For simplicity of the illustration and without 

loss of generality, we assume that confounders are not present when reviewing some existing literature. 

Group 1 Methods 

This group of approaches aim to perform the variable selection of the main effects of the pollutants. They 

can be divided into two categories: penalized regression approaches and machine learning approaches. 

Lasso  

The Least absolute shrinkage and selection operator (Lasso) was proposed by Tibshirani in 1996 [10]. It 

is a broadly used linear regression method that performs feature selection by penalizing the sum of the 

absolute values of the coefficients, termed as L1 penalty. It was developed to improve the prediction 

accuracy by selecting the most important predictors, while shrinking other coefficients to zero.  Lasso 

minimizes the following objective function, 

‖𝑦 − 𝛽0 − ∑ 𝑥𝑝𝛽𝑝
𝑃
𝑝=1 ‖

2

2
+ 𝜆∑ |𝛽𝑝|

𝑃
𝑝=1 ,  
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where 𝛽𝑝(𝑝 = 0,… , 𝑃) are model parameters, and 𝜆 (𝜆 ≥ 0) is the tuning parameter to regulate the size 

of parameters that are shrunk to zero. When 𝜆 = 0, Lasso is equivalent to ordinary linear regression, as 𝜆 

increases, many regression coefficients 𝛽𝑝 are shrunk to zero. In our analysis, we select the 𝜆 value that 

gives the minimum mean cross-validated error. One limitation of Lasso is that when handling a group 

correlated predictors, it often selects one pollutant from the group while shrinking the coefficients of other 

members to zero. We implement Lasso via R package “glmnet” (version 4.1-4) [36].  

Enet 

The Elastic net (Enet) was proposed by Zou et al. in 2005 [11]. It is also a variable selection and 

penalized regression method and it addresses the issue of L1 penalty that Lasso used by adding an L2 

penalty, which is the sum of the squared coefficients. This advantage of Elastic net is especially appealing 

in the context of mixture analysis, where exposure to multipollutant within the same family class tend to 

be highly correlated. Enet minimizes the following objective function, 

‖𝑦 − 𝛽0 − ∑ 𝑥𝑝𝛽𝑝
𝑃
𝑝=1 ‖

2

2
+ 𝜆∑ (𝛼|𝛽𝑝| + (1 − 𝛼)𝛽𝑝

2)𝑃
𝑝=1 ,  

where 0 ≤ 𝛼 ≤ 1 is another tunning parameter in addition to 𝜆 and 𝛼 controls weights between L1 and L2 

penalties.  In our analysis, we specify 𝛼 = 0.5 and select 𝜆 value that gives the minimum mean cross-

validated error. We implement Enet via R package “glmnet” (version 4.1-4) [36]. 

G-Lasso  

Group Lasso (G-Lasso) was proposed by Yuan et al. in 2006 [12]. It is an extension of Lasso that 

performs variable selections on prespecified groups of variables.  It allows the entire group of variables to 

be either included or excluded from the model.  As Enet, this unique feature is particularly suitable since 

multipollutant exposure are often correlated and presented in groups. However, not all pollutants in a 

group may be relevant to the outcome, despite being highly correlated.  Therefore, G-Lasso may 

potentially have a high FDR.  Suppose the data consists of 𝐺 groups of exposures. For each group 𝑔 =

1,… , 𝐺, let 𝑥𝑔 denote the design matrix of the exposure variables in the group 𝑔. The objective function is 

as follows, 

‖𝑦 − ∑ 𝑥𝑔𝛽𝑔
𝐺
𝑔=1 ‖

2

2
+ 𝜆∑ ‖𝛽𝑔‖

2
𝐺
𝑔=1 , 

where 𝛽𝑔 (𝑔 = 1,… , 𝐺) are vector parameters, and ‖∙‖2 indicates L2 norm. In our analysis, we select 𝜆 

value that gives the minimum mean cross-validated error. We implement G-lasso via R package 

“gglasso” (version 1.5) [37]. 

BKMR  

Bayesian kernel machine regression (BKMR) was proposed by Bobb et al. in 2015 [18]. It is a machine 

learning approach developed to address the statistical challenges in estimating the simultaneous effects 

from exposure to multiple pollutants.  We consider the following model,  

𝑦 = ℎ(𝑥1,⋯,𝑥𝑃) + 𝜶𝑇𝒛 + 𝜀, 

where ℎ(⋅) is unknown function of exposures to be estimated. Covariates 𝒛 enter the model linearly, 

however, if nonlinearity between covariates and outcome are suspected, covariates can also be added into 

the ℎ(⋅) function to improve overall prediction accuracy and selection. BKMR performs pollutant 

selection by providing the posterior inclusion probability (PIP, between 0 and 1) for each variable 
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considered in the ℎ(⋅) function. The PIP can be viewed as an importance score, where a higher PIP 

indicates greater importance of the variable.  BKMR does not directly conduct variable selection as the 

shrinkage method, thus, researchers need to prespecify a threshold value for PIP (e.g., 0.50) to select 

pollutants with PIPs higher than the threshold.  Another aspect to note when using BKMR is that despite 

BKMR fitting nonlinear functions to the exposures that account for non-additivity, one cannot easily draw 

conclusions about interaction selection.  Therefore, BKMR cannot be evaluated for comparisons of 

interaction selection accuracy among different methods. In BKMR, one needs to specify the number of 

iterations of the Markov Chain Monte Carlo (MCMC) sampler, and we run 2000 iterations for all the 

simulations and 5000 iterations for data analysis.  We implement BKMR via R package “bkmr” (version 

0.2.0) [38]. 

RF  

Random Forest (RF) was proposed by Breiman in 2001 [13]. It is an ensemble learning method for 

classification that combines randomly generated tree-structured classifiers.  It has been successfully 

applied in a broad range of areas including environmental health. It is more robust to outliers and noise 

than other methods and it provides variable importance score. For RF, setting a threshold value as in 

BKMR would be challenging as the importance score describes the accuracy loss if a pollutant is 

removed. To carry out a pollutant selection function, we propose using k-means clustering [39] to group 

the pollutant importance into two clusters, and the pollutants in the cluster with higher importance scores 

are the ones selected.  It is important to note that for all other methods except RF, the predictions are 

based on the selected variables and their model fitting. However, for RF, the variables selected by k-

means are meant only as guidelines, as RF is not designed as a variable selection tool. The prediction is 

based on the model fitting using all the pollutants, not just the selected ones. We implement RF via R 

package “randomForest” (version 4.6-14) [40]. 

Group 2 Methods 

This group of approaches aims to perform interaction detection in addition to main effect selection.    

HierNet 

A Lasso for Hierarchical Interactions (HierNet) was proposed by Bien in 2013 [41]. HierNet extends the 

Lasso for selecting linear main and interaction effects under heredity constraints. The user can choose 

between strong or weak heredity constraints. With strong heredity, an interaction term is selected into the 

model only when both of its corresponding main terms are selected, whereas with weak heredity 

constraint, an interaction term is selected only at least one of its corresponding main terms is selected. 

Apart from selecting interactions, HierNet also automatically screens for quadratic terms. However, since 

quadratic terms are not the primary interest, they are not summarized in this paper. We implement 

HierNet via R package “hierNet” (version 1.9) [19].  

HigLasso  

Hierarchical Integrative G-Lasso (HigLasso) was proposed by Boss et al. in 2021 [14]. It explores the 

nonlinear associations between exposures and health outcomes and has been developed as a general 

shrinkage method that selects nonlinear main and interaction effects of exposures. To specify complex 

nonlinear relationships, HigLasso adopts a basis expansion approach and it also assumes strong heredity 

constraint. HigLasso performs variable selection by imposing sparsity on coefficient estimates using G-

Lasso penalties. We implement the HigLasso via R package “higlasso” (version 0.9.0) [42]. 

SNIF  
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Selection of nonlinear interactions by a forward stepwise algorithm (SNIF) was proposed by Narisetty et 

al. in 2019 [15]. It was motivated by the need to identify chemical mixtures that affect health outcomes 

and was developed for a general regression model with interaction effects.  Like HigLasso, SNIF adopts a 

basis expansion approach for modeling the nonlinear exposure effects and performs interaction effects 

selection under the strong heredity constraint. However, SNIF has additional flexibility to retain linear 

effects of exposures in its selection path, which helps effectively reduce the number of parameters in the 

model when the linear model fits data well. We implement SNIF via R package “snif” 

 (version 0.5.0) [43].  

Group 3 Methods 

This group of approaches aims to optimize the accuracy of predictions for health outcomes while 

constructing summary risk measures from exposure to chemical mixtures and covariates.   

ERS 

The classic Environmental Risk Score (ERS) was proposed by Park et al. in 2014 and 2017 [23, 24]. It is 

constructed as a one-dimensional risk score through various predictive models. However, a limitation of 

this ERS is that it has been restricted to the estimated health effects due to pollutants. The penalization 

methods such as Lasso, Enet and G-Lasso, can be used to compute the classic ERS as the weighted sum 

of pollutants or their interactions while controlling for covariates. However, the cutting-edge machine 

learning algorithms such as BKMR, RF and SNIF are not readily applicable for computing the classic 

ERS, because they estimate health effects from pollutants and covariates in complex functions without 

direct separation of pollutant-only effects from other effects.  Thus, in this paper we redefine the ERS 

concept as the prediction for the continuous health outcome or the logit of the probability for the binary 

outcome. With this updated definition, we can compare ERSs computed through various statistical 

methods in terms of predictive power, interpretability, and risk stratification.  Consider the following 

model 𝑦 = 𝑔(𝑥1, … , 𝑥𝑃 , 𝑧1, … , 𝑧𝐾  ) + 𝜀, 𝜀~𝑁(0, 𝜎2), we use training data to obtain 𝑔̂(⋅), and define ERS 

as 𝑦̂ = 𝑔̂(𝑥1, … , 𝑥𝑃 , 𝑧1, … , 𝑧𝐾) for a collection of pollutants and covariates.    

We have selected four methods to construct ERS, namely Enet, BKMR, HierNet, and SNIF, each 

with distinct strengths in modeling: linear data with easy interpretation (Enet), nonlinear exposure-

response relationship (BKMR), linear data with interaction detection (HierNet) and nonlinear data with 

interaction detection (SNIF). We construct four ERSs, i.e., ERSEnet, ERSBKMR, ERSHierNet and ERSSNIF. To 

enhance the prediction accuracy of these four ERSs, inspired by the concept of Super Learner (SL [20]), 

we then construct ERSSL as WEnetERSEnet+ WBKMRERSBKMR+ WHierNetERSHierNet + WSNIFERSSNIF, where the 

unknown weights WEnet, WBKMR, WHierNet and WSNIF each range from 0 and 1 and sum to 1. We iteratively 

solve for these weights using a coordinate descent algorithm.  The SL construction is explained below.  

SL  

Super Learner (SL) was proposed by Van der Laan et al. in 2007 [20]. It is a prediction algorithm which 

aims to find an optimal combination for a collection of candidate learners to minimize the overall risk.  

On the training dataset with sample size 𝑁𝑡𝑟𝑎𝑖𝑛, we use ten-fold cross-validation and split the data into 

60% for estimation and 40% for validation. We then apply the coordinate descent algorithm with 

constraint that the four weights are nonnegative and sum to 1.  For the 𝑡th fold (𝑡 = 1,… ,10), let 𝐼𝑒𝑠𝑡
(𝑡)

⊂

{1,… ,𝑁}  and  𝐼𝑣𝑎𝑙𝑖𝑑
(𝑡)

⊂ {1,… ,𝑁} represent the 60% and 40% indices of subjects that are randomly drawn 

from the training data for estimation and validation respectively,  i.e., |𝐼𝑒𝑠𝑡
(𝑡)

| = 0.6𝑁𝑡𝑟𝑎𝑖𝑛  and |𝐼𝑣𝑎𝑙𝑖𝑑
(𝑡)

| =

0.4𝑁𝑡𝑟𝑎𝑖𝑛, where |⋅| represents the cardinality of the set.  For each learner 𝑗 (𝑗 = 1,⋯ , 4), we estimate 
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𝑔𝑗(⋅) by using the 𝑡th fold estimation data (𝑦𝑖 , 𝑥𝑖,1, … , 𝑥𝑖,𝑃 , 𝑧𝑖,1, … , 𝑧𝑖,𝐾)
𝑖∈𝐼𝑒𝑠𝑡

(𝑡) denoted as 𝑔̂𝑗
(𝑡)(⋅).  To obtain 

the weights of the learner, we minimize the loss function on the validation data for continuous outcome, 

i.e., min
𝒘⃗⃗⃗ 

∑ ∑ (𝑦𝑖 − ∑ 𝑤𝑗𝑔̂𝑗
(𝑡)

(𝑥𝑖,1, … ,𝑥𝑖,𝑃 , 𝑧𝑖,1, … , 𝑧𝑖,𝐾  )4
𝑗=1 )

2

𝑖∈𝐼𝑣𝑎𝑙𝑖𝑑
(𝑡)

𝑇
𝑡=1 , where 𝒘⃗⃗⃗ = {𝑤1, … , 𝑤4}.  For 

binary outcome, we use a cross-entropy loss function. Once weights 𝒘⃗⃗⃗  are obtained from training data, on 

the testing data, we compute 𝑦̂𝑡𝑒𝑠𝑡 = 𝐸𝑅𝑆𝑆𝐿 = ∑ 𝑤𝑗
𝐽
𝑗=1 𝐸𝑅𝑆𝑗, where 𝐸𝑅𝑆𝑗 =

𝑔̂𝑗(𝑥𝑡𝑒𝑠𝑡,1, … , 𝑥𝑡𝑒𝑠𝑡,𝑃 , 𝑧𝑡𝑒𝑠𝑡,1, … , 𝑧𝑡𝑒𝑠𝑡,𝐾  ) is the ERS independently constructed for each learner 𝑗 (𝑗 =

1,⋯ , 4) on the testing data.   

WQS  

Weighted quantile sum regression (WQS) was proposed by Carrico et al. in 2015 [21]. It aims to estimate 

a single dimension disease risk score, called the WQS index, from exposure to mixtures of chemicals. The 

WQS index is calculated as a weighted sum of individual exposure quantiles.  The model is given below, 

𝑔(𝜇) = 𝛽0 + 𝛽1(∑ 𝑤𝑝𝑥𝑝
𝑞𝑃

𝑝=1 ) + 𝜶𝑇𝒛, 

where 𝑔(∙) is the link function in generalized linear model [44] and 𝜇 is the mean outcome.  ∑ 𝑤𝑝𝑥𝑝
𝑞𝑃

𝑝=1  is 

defined as WQS index, and the weights 𝑤𝑝 (𝑝 = 1,…𝑃) are estimated using bootstrapping on training 

data, which comprises 40% of the total samples by default using R package “gWQS” (version 3.0.4) [45, 

46]. The weights  𝑤𝑝 are between 0 and 1 and sum to 1.  The categorical variable 𝑥𝑖,𝑝
𝑞

 is determined by 

the quantile of 𝑝th pollutant exposure for 𝑖th subject. The quantile transformation enjoys the advantage of 

standardizing the exposures, and hence the weights describe the relative contribution of each chemical to 

the joint effect of the health outcome. The remaining 60% of the data is used to test the significance of the 

coefficient 𝛽1 for the WQS index on the health outcome.  The model can also include a set of covariates 𝒛 

which enter the model linearly and 𝜶𝑇 denotes a vector of regression coefficients.   

  WQS offers a straightforward interpretation by creating a summary index that captures the joint 

effect of multiple pollutants as well as the relative importance characterized by the magnitude of the 

weights.  However, the validity of directional homogeneity assumption that assumes all the components 

in the mixture share the same direction of associations with the outcome, should be carefully considered.  

In addition, transforming continuous pollutant exposures into categorical ones may potentially lead to a 

loss of information and changes in the correlation structure among pollutants and their true association 

with the outcome. The package allows users to include interaction terms or quadratic terms of the WQS 

index to characterize nonlinear association, but these interactions are usually treated as covariates rather 

than pollutant effects of primary interest.  

Q-gcomp  

Quantile g-computation (Q-gcomp) was proposed by Keil et al. in 2020 [22]. It extends the framework of 

WQS by relaxing the assumption of directional homogeneity and allowing for positive and negative 

effects of pollutants.  The model without covariates is given by,  

𝑔(𝜇) = 𝛽0 + ∑ 𝛽𝑝𝑥𝑝
𝑞𝑃

𝑝=1 = 𝛽0 + 𝜓+ ∑ 𝑤𝑝𝑥𝑝
𝑞

𝛽𝑝>0 + 𝜓− ∑ 𝑤𝑝𝑥𝑝
𝑞

𝛽𝑝<0 , 

where 𝜓+ = ∑ 𝛽𝑝𝛽𝑝>0 ,  𝜓− = ∑ 𝛽𝑝𝛽𝑝<0 , and 𝑤𝑝 =
𝛽𝑝

𝜓+
𝐼(𝛽𝑝 > 0) +

𝛽𝑝

𝜓−
𝐼(𝛽𝑝 < 0). A linear regression 

model is fit to obtain the coefficients 𝛽𝑝 (𝑝 = 1,…𝑃) that determine the estimate of 𝜓 = 𝜓_ + 𝜓_ for the 

summary index and weight 𝑤𝑝 for each chemical.  The parameter estimation procedure for WQS and Q-
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gcomp differs in that WQS first estimates the weights 𝑤𝑝 on the training data and then estimates 𝜓 and its 

p-value on the validation data based on the estimated weights; while Q-gcomp use all the data to estimate 

𝛽𝑝 and obtain 𝜓. We implement Q-gcomp via R package “qgcomp” (version 2.8.5) [47]. 

  While both WQS and Q-gcomp provide meaningful summary risk scores from mixtures and rank 

exposure importance by chemical weights, they do not offer variable selection, potentially limiting their 

effectiveness in high-dimensional settings.  ERS, on the other hand, has two advantages over WQS and 

Q-gcomp. First, ERS can be constructed using a wide range of statistical prediction approaches, allowing 

us to incorporate methods with distinct strength to create candidate ERSs that address questions such as 

variable selection and interaction detection.  These candidate ERSs can then be combined to obtain a 

weighted ERS, referred to as ERSSL to achieve better outcome prediction.  Second, since each ERS is 

constructed using pollutant measurements rather than quantiles, it does not lose any information from the 

pollutants, leading to more accurate prediction and association detection.     

Simulation Study 

Simulated Data Settings 

The simulation studies aim to investigate the associations between chemical mixtures, their interactions 

and the continuous or binary health outcomes under settings of cross-sectional studies. The 20 pollutants 

are partitioned into three groups of size seven, six and seven, respectively. For continuous outcomes, we 

simulate 20 exposures 𝑥1, … , 𝑥20 from a multivariate normal distribution, with mean zero and the 

marginal variance one. True features are 𝑥1 and 𝑥2; 𝑥3 and 𝑥4; and 𝑥5 from three groups, reflecting that 

each group includes important toxins. The correlation matrix is specified according to the grouping 

structure, with within-group correlations and between-group correlations set to 0.6 and 0.1, respectively. 

Figure 3 shows the heatmap of Pearson correlations among the simulated 20 pollutants. Let 𝑞 = 5 denote 

the number of true features 𝑥1 to 𝑥5. In settings of LMI and NMI, the 10 pairwise interactions are also 

true features of outcome 𝑦. We adopt the specific mean function 𝑔(∙) forms from Boss et al. [48]. A full 

list of simulation settings and parameters specifications can be found in Table 8.  

Evaluation Criteria  

Under our analytical framework for analyzing the multipollutant mixture, we utilize standard criteria to 

evaluate the performance of a collection of statistical methods.  For each of the 500 datasets, we randomly 

spilt 1,000 samples into training and testing datasets, each with 500 samples (i.e., 𝑁𝑡𝑟𝑎𝑖𝑛 = 𝑁𝑡𝑒𝑠𝑡 = 500). 

We evaluate the feature selection and interaction detection on the training dataset and compare the 

predictive power of three summary scores on the testing dataset. In each dataset under the continuous 

outcome setting, to assess the feature selection and interaction detection, we consider 20 pollutants and 

their 190 pairwise interactions, totaling 210 predictors for Lasso, Enet, and G-Lasso (Lasso-MI/Enet-

MI/G-Lasso-MI). For comparison purposes, we also fit these three regularization methods with 20 

pollutants for main effects only (Lasso-M/Enet-M/G-Lasso-M). We consider 20 pollutants for underlying 

models of BKMR, RF, HigLasso, HierNet and SNIF, as BKMR and RF do not allow the separation 

between main and interaction effects, while HigLasso, HierNet and SNIF automatically screen for 

pairwise interactions for the 20 exposures. For binary outcomes, we have similar settings except that 

HigLasso and SNIF are no longer available, and BKMR shows unstable simulation results, thus we have 

to omit these three methods from the analysis of binary outcomes.   
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To evaluate the accuracy of selecting important pollutants, we use sensitivity, specificity, and 

false discovery rate (FDR) metrics. These metrics are defined as follows, where 𝐽 = 500 is the number of 

simulated datasets, and there are 5 true and 15 null effects.  

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 (𝑆𝑒𝑛) =
1

𝐽
∑

# 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑

# 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑒𝑓𝑓𝑒𝑐𝑡𝑠

𝐽

𝑗=1
 , 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 (𝑆𝑝𝑒) =
1

𝐽
∑

# 𝑜𝑓 𝑛𝑢𝑙𝑙 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑

# 𝑜𝑓 𝑛𝑢𝑙𝑙 𝑒𝑓𝑓𝑒𝑐𝑡𝑠

𝐽

𝑗=1
 , 

𝐹𝐷𝑅 =
1

𝐽
∑

# 𝑜𝑓 𝑛𝑢𝑙𝑙 𝑒𝑓𝑓𝑒𝑐𝑡𝑠 𝑖𝑛 𝑡ℎ𝑜𝑠𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑒𝑓𝑓𝑒𝑐𝑡𝑠

# 𝑜𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑒𝑓𝑓𝑒𝑐𝑡𝑠
  

𝐽

𝑗=1
. 

To evaluate the accuracy of interaction detection, we calculate the same three metrics for four 

settings with interactions: LMI, NMI, LogitI, and NlogitI, where there are 10 true and 180 null interaction 

effects. In the absence of true interaction effects (settings of LM, NM, Logit, and Nlogit), we utilize the 

false positive rate (FPR) to assess the proportion of falsely selected interactions out of all 190 

interactions. Specifically, FPR is defined as one minus Specificity.  The higher the Sensitivity and 

Specificity values and the lower the FDR and FPR values, the better the feature selection and interaction 

detection.   

For the continuous outcome, to evaluate the prediction performance of three main summary 

scores (ERS/WQS/Q-gcomp) under various model specifications, we use the testing data.  For main effect 

models, we predict ERS using Enet-M; fit and predict WQS and Q-gcomp models with either pollutants 

selected by Enet (WQS-M*/Q-gcomp-M*) or all 20 pollutants (WQS-M/Q-gcomp-M).  For models 

considering both main and interactions, we construct ERS using Enet-MI, BKMR, HierNet, SNIF and SL, 

where the weights of SL are obtained from training data.  We also fit and predict WQS and Q-gcomp 

models with either pollutants and their interactions selected by Enet-MI (WQS-MI*/Q-gcomp-MI*) or all 

210 effects (WQS-MI/Q-gcomp-MI).    

We evaluate the predictive performance of different methods in three aspects.  First, we calculate 

the Corr and SSE between predicted and observed continuous outcome. Second, to assess the predictive 

power of summary scores for a binary outcome, we dichotomize the continuous outcome at the 90 

percentiles so that the values more than 90 percentiles are 1, calculate AUC to measure the prediction 

probability of distinguishing between binary outcomes. Third, to evaluate the risk stratification property, 

we stratify each summary measure on the testing data by the two thresholds of 25 and 75 percentiles of 

summary measure from the training data. We define the test samples as low (or high) risk group and 

conduct a logistic regression for these subsets of samples with the dichotomous outcome to obtain an OR  

of having an extreme outcome between the group with the lowest quartile of the summary measure and 

the group with the highest quartile of the summary measure. For the binary outcome, in addition to AUC, 

we also calculate the Brier score defined as the mean of sum of squared errors between the predicted 

probability and the observed binary outcome. In cases where methods (Enet-M, Enet-MI, BKMR, 

HierNet and SNIF) fail to select any predictors, we define Corr=0 and OR=1, indicating no predictive 

power and no risk stratification property from ERS. Figure 4 illustrates the simulation procedure and 

comparisons among the methods for a continuous outcome, and the procedure for analyzing the binary 

outcome is similar. 

PROTECT Data Application 

Data description 
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We apply the proposed framework to a data analysis from PROTECT study, which aim to determine the 

impacts of exposure to mixtures from four chemical classes (metals, phthalates, phenols and PAHs) 

during pregnancy on adverse outcomes of birth weight and preterm birth. Women were eligible to 

participate if they were between the ages of 18 and 40 years, had their first clinic visit before their 20th 

week of pregnancy, did not use in vitro fertilization to become pregnant, did not use oral contraceptives 

within three months of becoming pregnant, and had no known preexisting medical or obstetric conditions. 

The PROTECT study was approved by the research and ethics committees of the University of Michigan 

School of Public Health, University of Puerto Rico, Northeastern University, and all participating 

hospitals and clinics. All participants provided full informed consent prior to participation.  

Exposures, covariates, and outcomes 

We start with a dataset that included 61 pollutants, including 19 phthalates, 12 phenols, 8 PAHs and 22 

metals, collected from urine samples of 1,747 women during gestation across three visits.  We then create 

reduced datasets including only individuals with complete data on each outcome (birth weight, preterm 

birth status) and covariates. This result in sample sizes of 1,348 for birth weight (kg) and 1,379 for 

preterm birth (yes/no).  To analyze birth weight as a binary outcome, we dichotomize it at 2.5 kg for low 

birth weight and at 4.0 kg for high birth weight (formally termed as fetal macrosomia).  Among our 

sample, we have 93 out of 1,348 children with low birth weight (6.90%), 55 out of 1,348 children with 

high birth weight (4.08%).  Preterm birth is defined as gestational age less than 37 weeks at delivery. We 

have 126 out of 1,379 children born preterm (9.14%).  We adjust for covariates of infant sex, education 

(high school or less, some college, college or above) and maternal age at recruitment (years) for birth 

weight.  We impute exposure concentrations (ng/dL) measured below limit of detection (LOD) with 

LOD/√2, and correct them by urine specific gravity (SG) using the equation  
𝐶𝑖,𝑝,𝑣(𝑆𝐺𝑚𝑒𝑑−1)

𝑆𝐺𝑖,𝑣
, where 

𝑆𝐺𝑚𝑒𝑑 is the median urine specific gravity in this dataset (1.019); 𝑆𝐺𝑖,𝑣 is the individual 𝑖 urine specific 

gravity at visit 𝑣; and 𝐶𝑖,𝑣,𝑝 is the 𝑝-th pollutant concentration for individual 𝑖 at visit 𝑣. Due to the right-

skewed distributions of SG-adjusted concentrations, we apply the logarithmic transformation with base 10 

on the concentrations.     

After evaluating the percentage of samples measured above LOD for each pollutant, we eliminate 

14 pollutants from our analysis, due to their measurements above LOD less than 70% of the samples at 

any visit. Furthermore, we exclude eight additional pollutants due to missingness in more than 20% of 

samples after taking the mean across three visits in our dataset. We impute missing values for all 

remaining chemicals (4.23-15.50% missing) via R package “missForest” (version 1.4) [49, 50] based on 

single imputation.  After these preprocessing steps, our final dataset consists of 39 chemical exposures 

(14 metals, 7 PAHs, 11 phthalates and 7 phenols), four covariates (three covariates for preterm), and 903 

pairwise interactions among all chemicals and covariates.  

Statistical analysis 

For birth weight, we randomly split the 1,348 samples into 674 samples each for training and testing data. 

For feature selection, we fit Enet with underlying models considering first 39 main effects (Enet-M) 

adjusting for four covariates. Next, we fit 43 main effects along with their pairwise 903 interactions 

(Enet-MI). For BKMR, we fit 39 chemicals in the nonlinear function while adjusting for four covariates 

linearly, with PIP’s cutoff of 0.80. For HierNet and SNIF, we fit the models with 43 main effects, where 

the HierNet and SNIF screens for main and 903 interaction effects by default. We compare three main 

effect models that are adjusted for covariates: ERS obtained from Enet (ERSEnet-M), WQS (WQS-M) and 

Q-gcomp (Q-gcomp-M). We don’t fit WQS and Q-gcomp with the main effects selected from Enet-M as 
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in our simulations, because Enet fails to select any chemicals in 22 of the 100 training datasets.  For main 

and interaction effect models, we compare five ERSs (Enet-MI, BKMR, HierNet, SNIF and SL) on the 

testing data using following metrics. First, we calculate Corr and SSE between observed birth weight and 

ERSs. Second, we use low birth weight (Yes=1/No=0) as the binary outcome and calculate AUC to 

evaluate the prediction power of ERSs. Third, we categorize ERSs from the testing data using Q1 obtained 

from training data and define the subjects with ERS below Q1 as high risk group, and compute the OR of 

low birth weight between the high risk group and the rest of the samples to evaluate the risk 

discrimination ability of each ERS.  For high birth weight, we calculate the OR of high birth weight for 

subjects with ERS more than Q3 versus the rest of the subjects.  Due to the uncertainties with each random 

split of the samples, we repeat the entire model fitting and validation procedure 100 times and report the 

pollutants and interactions that are consistently selected by each method for at least 30% of the 100 times.  

For preterm birth (Yes=1/No=0), the analysis is similar and for main and interaction models, we compare 

five ERSs (Lasso-MI, Enet-MI, RF, HierNet and SL), report brier scores and define ERS less than Q1 as 

low risk group and higher than Q3 as high-risk group to reflect the higher the ERS, the higher the 

probability of a preterm birth. 
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Figure 1: Correlation heatmap of mean concentrations across three prenatal visits for 39 chemicals from urine samples in the PROTECT 

study, where the concentrations were adjusted for specific gravity and taken logarithm with base 10. The chemicals are ordered by four 

families: metals, PAHs, phthalates, and phenols.  
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Figure 2: Methods for mixtures analysis categorized in three groups.  
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Figure 3: Heat map of Pearson correlations among 20 simulated pollutants with sample size of 1000 and 

the within-group correlations and between-group correlations are set to 0.6 and 0.1. 
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Figure 4: Schematic diagram of the simulation study 

LM linear main effects, LMI linear main effects and interactions, NM nonlinear main effects, NMI nonlinear main effects and interactions 

Lasso-M lasso for main effects, Enet-M elastic net for main effects, G-Lasso-M group lasso for main effects, Lasso-MI lasso for main effects and interactions, Enet-MI elastic net 

for main effects and interactions, G-Lasso-MI group lasso for main effects and interactions, BKMR Bayesian kernel machine regression, RF random forest, HigLasso hierarchical 

integrative group lasso, HierNet lasso for hierarchical interactions, SNIF selection of nonlinear interactions by a forward stepwise algorithm, WQS-M* weighted quantile sum 

regression (WQS) for selected main effects by Enet-M, WQS-M WQS for main effects, WQS-MI* WQS for selected main effects and interactions by Enet-MI, WQS-MI WQS for 

main effects and interactions, Q-gcomp-M* quantile g-computation (Q-gcomp) for selected main effects by Enet-M, Q-gcomp-M Q-gcomp for main effects, Q-gcomp-MI* Q-

gcomp for selected main effects and interactions by Enet-MI, Q-gcomp-MI Q-gcomp for main effects and interactions 
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Table 1: Selection accuracy for main and interaction identification among eight methods, where continuous outcome is generated from LM, NM, 

LMI, and NMI. Means of Sen, Spe, FDR and FPR are obtained from 500 data replications with 𝑵𝒕𝒓𝒂𝒊𝒏 =  𝟓𝟎𝟎, 𝒑 = 𝟐𝟎, 𝒒 = 𝟓, and 𝑹𝟐 = 𝟎. 𝟐 

 

Data Type Metric Lasso-M Enet-M G-Lasso-M Lasso-MI Enet-MI G-Lasso-MI BKMR RF HigLasso HierNet SNIF 

  Sen 0.975 0.980 1.000 0.954 0.966 1.000 0.986 0.635 0.766 0.971 0.714 

 Main/Marginal Spe 0.643 0.602 0.329 0.775 0.728 0.000 0.082 0.906 0.831 0.603 0.965 

LM  FDR 0.497 0.527 0.618 0.391 0.437 0.750 0.716 0.232 0.291 0.523 0.112 

              

 Interaction FPR -- -- -- 0.045 0.052 1.000 -- -- 0.002 0.060 0.000 

  Sen 0.680 0.704 0.980 0.676 0.698 1.000 0.996 0.636 0.554 0.986 0.387 

 Main/Marginal Spe 0.703 0.682 0.387 0.775 0.753 0.000 0.052 0.852 0.885 0.176 0.943 

  FDR 0.535 0.551 0.594 0.480 0.497 0.750 0.729 0.342 0.308 0.706 0.256 

LMI              

  Sen -- -- -- 0.624 0.661 1.000 -- -- 0.162 0.496 0.088 

 Interaction  Spe -- -- -- 0.894 0.885 0.000 -- -- 0.992 0.907 0.999 

  FDR -- -- -- 0.736 0.745 0.947 -- -- 0.366 0.757 0.168 

  Sen 0.614 0.634 1.000 0.552 0.571 1.000 0.588 0.421 0.664 0.902 0.597 

 Main/Marginal Spe 0.733 0.692 0.316 0.820 0.783 0.000 0.913 0.950 0.928 0.514 0.979 

NM  FDR 0.516 0.559 0.632 0.447 0.493 0.750 0.145 0.153 0.151 0.594 0.071 

              

 Interaction FPR -- -- -- 0.093 0.105 1.000 -- -- 0.002 0.062 0.000 

  Sen 0.649 0.670 1.000 0.588 0.611 1.000 0.732 0.474 0.684 0.944 0.620 

 Main/Marginal Spe 0.712 0.682 0.298 0.800 0.771 0.000 0.769 0.921 0.931 0.464 0.976 

  FDR 0.532 0.554 0.642 0.472 0.502 0.750 0.285 0.215 0.149 0.611 0.080 

NMI              

  Sen -- -- -- 0.288 0.310 1.000 -- -- 0.086 0.227 0.011 

 Interaction Spe -- -- -- 0.905 0.895 0.000 -- -- 0.999 0.935 1.000 

  FDR -- -- -- 0.845 0.851 0.947 -- -- 0.040 0.826 0.016 

LM linear main effects, LMI linear main effects and interactions, NM nonlinear main effects, NMI nonlinear main effects and interactions 

Sen sensitivity, Spe specificity, FDR false discovery rate, FPR false positive rate 

Lasso-M lasso for main effects, Enet-M elastic net for main effects, G-Lasso-M group lasso for main effects, Lasso-MI lasso for main effects and interactions, Enet-MI elastic 

net for main effects and interactions, G-Lasso-MI group lasso for main effects and interactions, BKMR Bayesian kernel machine regression, RF random forest, HigLasso 

hierarchical integrative group lasso, HierNet lasso for hierarchical interactions, SNIF selection of nonlinear interactions by a forward stepwise algorithm 
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Table 2: Selection accuracy for main and interaction identification among five methods, where binary outcome is generated from Logit, LogitI, 

NLogitI, and NLogitI. Means of Sen, Spe, FDR and FPR are obtained from 500 data replications with 𝑵𝒕𝒓𝒂𝒊𝒏 =  𝟓𝟎𝟎, 𝒑 = 𝟐𝟎, 𝒒 = 𝟓 and  𝑹𝟐 = 𝟎. 𝟐 

 

Data Type Metric Lasso-M Enet-M G-Lasso-M Lasso-MI Enet-MI G-Lasso-MI RF HierNet 

  Sen 0.965 0.978 0.980 0.919 0.963 1.000 0.557 0.908 

 Main/Marginal Spe 0.635 0.543 0.293 0.803 0.691 0.000 0.752 0.589 

Logit  FDR 0.507 0.567 0.624 0.367 0.470 0.750 0.523 0.498 

           

 Interaction FPR -- -- -- 0.057 0.087 1.000 -- 0.066 

  Sen 0.930 0.954 0.988 0.822 0.892 0.996 0.515 0.920 

 Main/Marginal Spe 0.650 0.558 0.177 0.816 0.727 0.004 0.706 0.520 

  FDR 0.504 0.563 0.679 0.377 0.461 0.747 0.594 0.558 

LogitI           

  Sen -- -- -- 0.260 0.343 0.996 -- 0.279 

 Interaction  Spe -- -- -- 0.937 0.909 0.004 -- 0.934 

  FDR -- -- -- 0.800 0.816 0.944 -- 0.759 

  Sen 0.630 0.691 0.958 0.528 0.579 0.976 0.405 0.780 

 Main/Marginal Spe 0.734 0.624 0.220 0.866 0.773 0.024 0.791 0.605 

Nlogit  FDR 0.515 0.597 0.666 0.383 0.512 0.732 0.500 0.518 

           

 Interaction FPR -- -- -- 0.063 0.094 0.976 -- 0.053 

  Sen 0.717 0.772 0.954 0.578 0.648 0.962 0.410 0.846 

 Main/Marginal Spe 0.712 0.599 0.236 0.863 0.759 0.038 0.770 0.560 

  FDR 0.512 0.590 0.656 0.373 0.502 0.722 0.530 0.530 

NlogitI           

  Sen -- -- -- 0.183 0.251 0.962 -- 0.159 

 Interaction Spe -- -- -- 0.937 0.901 0.038 -- 0.943 

  FDR -- -- -- 0.851 0.867 0.911 -- 0.783 

Logit logit-link linear main effects, LogitI logit-link linear main effects and interactions, Nlogit logit-link nonlinear main effects, NlogitI logit-link nonlinear main effects and 

interactions 

Sen sensitivity, Spe specificity, FDR false discovery rate, FPR false positive rate 

Lasso-M lasso for main effects, Enet-M elastic net for main effects, G-Lasso-M group lasso for main effects, Lasso-MI lasso for main effects and interactions, Enet-MI elastic 

net for main effects and interactions, G-Lasso-MI group lasso for main effects and interactions, RF random forest, HierNet lasso for hierarchical interactions 

Mean prevalence of outcome over 500 replicates equals to 13.6%, 12.9%, 14.5% and 11.2% for Logit, LogitI, Nlogit and NlogitI, respectively 
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Table 3: Risk prediction performance by different statistical methods, when data are generated from LM, NM, LMI, and NMI. Means of Corr, SSE, 

AUC, and median of OR are obtained from 500 data replications for 𝑵𝒕𝒆𝒔𝒕 = 𝟓𝟎𝟎, 𝒑 = 𝟐𝟎, 𝒒 = 𝟓, and 𝑹𝟐 = 𝟎. 𝟐 

 

Data Metric 
ERS 

Enet-M 

WQS 

-M* 

WQS 

-M 

Q-gcomp 

-M* 

Q-gcomp 

-M 

ERS 

Enet-MI 

ERS 

BKMR 

ERS 

HierNet 

ERS 

SNIF 

ERS 

SL 

WQS 

-MI* 

WQS 

-MI 

Q-gcomp 

-MI* 

Q-gcomp 

-MI 

  
Continuous Outcome and Continuous ERS/WQS/Q-gcomp 

 

LM 
Corr 0.43 0.41 0.41 0.40 0.39 0.42 0.32 0.42 0.41 0.42 0.39 0.33 0.37 0.20 

SSE 36.8 37.6 37.6 37.8 38.3 37.4 40.8 37.3 37.6 37.2 38.4 40.0 39.4 66.0 

LMI 
Corr 0.19 0.19 0.20 0.18 0.16 0.39 0.26 0.36 0.28 0.39 0.34 0.34 0.32 0.17 

SSE 176.1 176.9 176.5 178.0 180.8 155.4 172.6 159.2 176.3 155.7 162.4 161.7 170.7 275.0 

NM 
Corr 0.31 0.28 0.28 0.27 0.26 0.37 0.38 0.40 0.37 0.40 0.30 0.29 0.28 0.14 

SSE 74.7 76.1 76.2 76.6 77.8 71.8 70.6 69.5 80.5 69.4 75.3 76.0 78.6 128.9 

NMI 
Corr 0.30 0.28 0.27 0.27 0.25 0.37 0.37 0.39 0.35 0.39 0.31 0.31 0.29 0.15 

SSE 111.7 113.6 113.9 114.3 116.2 106.4 106.4 104.4 121.9 104.3 111.4 111.5 116.1 189.5 

  
Dichotomous Outcome and Continuous ERS/ WQS/Q-gcomp 

 

LM AUC 0.73 0.72 0.72 0.72 0.72 0.73 0.68 0.73 0.72 0.73 0.72 0.70 0.71 0.62 

LMI AUC 0.65 0.65 0.65 0.64 0.63 0.73 0.67 0.72 0.68 0.73 0.72 0.71 0.71 0.64 

NM AUC 0.70 0.68 0.68 0.68 0.67 0.72 0.73 0.74 0.73 0.74 0.69 0.68 0.68 0.60 

NMI AUC 0.70 0.69 0.69 0.68 0.67 0.72 0.72 0.73 0.72 0.73 0.70 0.69 0.69 0.61 

  
Dichotomous Outcome and Categorical ERS/ WQS/Q-gcomp 

 

LM OR 11.2 10.0 9.8 9.8 9.4 10.4 8.0 10.8 10.3 10.8 9.0 6.1 8.2 3.0 

LMI  OR 2.9 2.9 3.0 2.8 2.7 6.7 5.8 5.6 4.3 6.9 6.0 5.7 5.4 3.1 

NM OR 5.6 5.0 4.9 5.1 4.7 7.2 7.8 8.7 7.0 8.7 5.8 4.9 5.1 2.4 

NMI OR 5.5 5.0 4.9 4.9 4.7 7.2 6.8 7.4 6.3 7.8 5.5 5.1 5.3 2.6 

LM linear main effects, LMI linear main effects and interactions, NM nonlinear main effects, NMI nonlinear main effects and interactions 

Corr correlation, SSE sum of squared error, AUC area under the receiver operating characteristic curve, OR odds ratio 

Enet-M elastic net for main effects, WQS-M* weighted quantile sum regression (WQS) for selected main effects by Enet-M, WQS-M WQS for main effects, Q-gcomp-M* 

quantile g-computation (Q-gcomp) for selected main effects by Enet-M, Q-gcomp-M Q-gcomp for main effects, Enet-MI elastic net for main effects and interactions, BKMR 

Bayesian kernel machine regression, HierNet lasso for hierarchical interactions, SNIF selection of nonlinear interactions by a forward stepwise algorithm, SL super learner, WQS-

MI* WQS for selected main effects and interactions by Enet-MI, WQS-MI WQS for main effects and interactions, Q-gcomp-Mi* Q-gcomp for selected main effects and 

interactions by Enet-MI, Q-gcomp-MI Q-gcomp for main effects and interactions 
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Table 4: Risk prediction performance by different statistical methods, when data are generated from Logit, LogitI, Nlogit, and NLogitI. Means of AUC 

and Brier, and median of OR are obtained from 500 data replications for 𝑵𝒕𝒆𝒔𝒕 = 𝟓𝟎𝟎, 𝒑 = 𝟐𝟎, 𝒒 = 𝟓 and 𝑹𝟐 = 𝟎. 𝟐 

 

Data  Metric 
ERS 

Enet-M 

WQS 

-M* 

WQS 

-M 

Q-gcomp 

-M* 

Q-gcomp 

-M 

ERS 

Lasso-MI 

ERS 

Enet-MI 

ERS 

RF 

ERS 

HierNet 

ERS 

SL 

WQS 

-MI* 

WQS 

-MI 

Q-gcomp 

-MI* 

Q-gcomp 

-MI 

 
 Dichotomous Outcome and Continuous ERS WQS/Q-gcomp 

 

Logit 
AUC 0.812 0.799 0.798 0.795 0.787 0.800 0.800 0.778 0.796 0.801 0.770 0.740 0.763 0.594 

Brier 0.096 0.099 0.099 0.100 0.103 0.098 0.098 0.101 0.100 0.099 0.102 0.104 0.109 0.273 

LogitI 
AUC 0.771 0.762 0.761 0.758 0.749 0.756 0.757 0.735 0.761 0.759 0.732 0.721 0.723 0.589 

Brier 0.094 0.096 0.097 0.097 0.099 0.094 0.094 0.098 0.095 0.094 0.097 0.098 0.104 0.271 

Nlogit 
AUC 0.751 0.733 0.731 0.727 0.714 0.750 0.748 0.732 0.753 0.753 0.712 0.698 0.702 0.561 

Brier 0.108 0.112 0.112 0.114 0.116 0.109 0.109 0.110 0.109 0.108 0.114 0.114 0.121 0.297 

NlogitI 
AUC 0.778 0.760 0.759 0.755 0.743 0.779 0.776 0.762 0.780 0.780 0.742 0.727 0.729 0.586 

Brier 0.085 0.088 0.088 0.089 0.092 0.084 0.085 0.086 0.085 0.085 0.089 0.089 0.097 0.254 

 
 Dichotomous Outcome and Categorical ERS WQS/Q-gcomp 

 

Logit OR 33.5 28.6 27.2 27.0 23.4 23.9 24.1 15.4 25.5 25.6 13.6 8.7 14.2 2.1 

LogitI OR 10.5 10.2 9.8 9.8 9.4 9.0 9.2 4.8 9.5 9.1 7.1 6.6 6.6 2.0 

Nlogit OR 11.0 9.6 9.0 9.3 8.1 10.7 10.5 6.7 11.3 11.2 7.3 6.0 6.6 1.6 

NlogitI OR 13.6 11.9 11.4 11.7 10.6 13.7 12.9 8.7 13.9 14.1 8.7 7.9 8.7 2.0 

Logit logit-link linear main effects, LogitI logit-link linear main effects and interactions, Nlogit logit-link nonlinear main effects, NlogitI logit-link nonlinear main effects and 

interactions 

AUC area under the receiver operating characteristic curve, Brier Brier score, OR odds ratio 

Enet-M elastic net for main effects, WQS-M* weighted quantile sum regression (WQS) for selected main effects by Enet-M, WQS-M WQS for main effects, Q-gcomp-M* quantile g-

computation (Q-gcomp) for selected main effects by Enet-M, Q-gcomp-M Q-gcomp for main effects, Lasso-MI lasso for main effects and interactions, Enet-MI elastic net for main 

effects and interactions, RF random forest, HierNet lasso for hierarchical interactions, SL super learner, WQS-MI* WQS for selected main effects and interactions by Enet-MI, WQS-

MI WQS for main effects and interactions, Q-gcomp-Mi* Q-gcomp for selected main effects and interactions by Enet-MI, Q-gcomp-MI Q-gcomp for main effects and interactions 

Mean 𝑅2 over 500 replicates equals to 0.22, 0.22, 0.18 and 0.23 for Logit, LogitI, Nlogit and NlogitI, respectively 

Mean prevalence of outcome over 500 replicates equals to 13.6%, 12.9%, 14.5% and 11.2% for Logit, LogitI, Nlogit and NlogitI, respectively 
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Table 5: Recommendation table of the methods under various data settings 
 

Continuous outcome 

Sample size medium (n=1000/p=20) Sample size large (n=2000/p=40) 

Signal medium 

Tables 2&4 

Signal small 

Tables S1&S2 

Signal medium 

Tables S5&S6 

Signal small 

Tables S9&S10 

Pollutant selection HierNet, SNIF HierNet, SNIF HierNet, SNIF HierNet, SNIF 

     

Interaction detection Enet-MI, SNIF Enet-MI, SNIF Enet-MI, SNIF Enet-MI, SNIF 

     

Prediction  

 
 SL, HierNet SL, HierNet SL, HierNet SL, Enet-M 

Binary outcome 

Sample size medium (n=1000/p=20) Sample size large (n=2000/p=40) 

Signal medium 

Tables 3&5 

Signal small 

Tables S3&S4 

Signal medium 

Tables S7&S8 

Signal small 

Tables S11&S12 

Pollutant selection 
Enet-M, Lasso-MI, 

HierNet 
Enet-M, Lasso-MI Lasso-MI, HierNet 

Enet-M, Lasso-MI, 

HierNet 

     

Interaction detection Enet-MI, HierNet Enet-MI, HierNet Lasso-MI, Enet-MI Enet-MI, HierNet 

     

Prediction Enet-M, SL Enet-M Enet-M, SL Enet-M, SL 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 4, 2024. ; https://doi.org/10.1101/2024.03.03.24303677doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.03.24303677


31 
 

 

Table 6: Main and interaction effects selected at least 30% of the 100 random sampled training data 

 

Outcome Method Selected term (selection percentage) 

Birth weight 

Enet-M Ba (47%) MCOP (38%) As (34%)   

  

Enet-MI 

Ga (100%) Age × Ga (81%) Age × Sex (70%) Sex × Ga (62%) BPA × Co (56%) 

Mo × Ga (45%) Hg × Mn (40%) As × MCOP (39%) Co × Mn (37%) As × Cd (36%) 

Cd × MEHP (36%)     

  

BKMR* 
MBZP (55%) BP3 (50%) TCS (50%) MCOP (49%) Ba (48%) 

As (47%) Sn (47%) 4PHE (47%)   

  

HierNet 

Ga (100%) Sex (90%) Age (86%) Ba (68%) Sn (63%) 

Cu (62%) As (51%) Tl × Ga (51%) MBZP × Age (51%) Ni (50%) 

Mn × Ga (50%) MCOP (46%) MBZP (44%) Co (43%) BPA (42%) 

MIBP × Ga (41%) MIBP (39%) Zn × Ga (39%) 1NAP (37%)  Edu × Ga (37%) 

As × Ga (35%) Cd (34%) Co × Ga (33%) Cs × Ga (33%) MCPP (31%) 

  

SNIF Co (100%) Ga (99%) Sex (77%) Ba (50%) Age (49%) 

  Mn (40%)     

Preterm birth 

Enet-M 

BP3 (67%) Mn (65%) Cd (61%) MBP (58%) Mo (54%) 

PPB (52%) Zn (46%) MCNP (44%) 2NAP (41%) MEHP (39%) 

1PYR (35%)     

      

Lasso-MI Cd × MBP (40%) BP3 × Edu (34%)    

      

Enet-MI Cd × MBP (44%) BP3 × Edu (42%) Hg × Mn (35%) Mo × Zn (33%) Mo × Edu (33%) 

      

HierNet Mn (52%) Ba (33%) BP3 (31%)   

Enet-M elastic net for main effects, Enet-MI elastic net for main effects and interactions, HierNet lasso for hierarchical interactions, SNIF selection 

of nonlinear interactions by a forward stepwise algorithm, Lasso-MI lasso for main effects and interactions 

Ga gestational age at delivery (weeks), Age maternal age at recruitment (years), Edu maternal education in three categories (high school or less, 

some college, college or above)) 
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Table 7: Comparison of risk prediction performance by different methods 

 

Outcome ERSEnet-M WQS-M Q-gcomp-M ERSEnet-MI ERSBKMR ERSHierNet ERSSNIF ERSSL 

 
 Continuous birth weight and continuous ERS 

 

Birth weight 

Corr 0.542 0.542 0.510 0.533 0.512 0.522 0.479 0.534 

SSE 0.197 0.198 0.208 0.200 0.208 0.204 0.310 0.200 

 Low birth weight and continuous ERS 

 

AUC 0.835 0.836 0.826 0.837 0.830 0.838 0.822 0.838 

 Low birth weight and categorical ERS (Q1 vs rest) 

OR  11.82 12.11 9.97 12.49 11.22 12.73 11.79 12.53 

 High birth weight and continuous ERS 

 

AUC 0.665 0.664 0.631 0.657 0.652 0.657 0.629 0.658 

 High birth weight and categorical ERS (Q4 vs rest) 

OR 2.52 2.70 1.98 2.33 2.43 2.56 2.10 2.43 

  ERSEnet-M WQS-M Q-gcomp-M ERSLasso-MI ERSEnet-MI ERSRF ERSHierNet ERSSL 

 
 Preterm birth and continuous ERS 

 

Preterm birth 

AUC 0.597 0.570 0.594 0.547 0.544 0.549 0.527 0.553 

Brier 0.083 0.083 0.088 0.083 0.083 0.086 0.083 0.083 

 Preterm birth and ERS (high vs low risk) 

 

OR  2.31 1.91 2.31 1.56 1.49 2.00 1.23 1.73 

The covariates accounted for in birth weight are infant sex, gestational age at delivery (weeks), education (high school or less, some college, college 

or above) and maternal age at recruitment (years); covariates accounted for preterm include aforementioned variables except gestational age.  The 

covariates are adjusted and not penalized in models of Enet-M, WQS-M, Q-gcomp-M, and BKMR; while covariates can be selected in Enet-MI, 

HierNet and SNIF.  

Corr correlation, SSE sum of squared error, AUC area under the receiver operating characteristic curve, OR odds ratio, Brier Brier score 

Enet-M elastic net for main effects, WQS-M weighted quantile sum regression (WQS) for main effects, Q-gcomp-M quantile g-computation (Q-

gcomp) for main effects, Enet-MI elastic net for main effects and interactions, BKMR Bayesian kernel machine regression, HierNet lasso for 

hierarchical interactions, SNIF selection of nonlinear interactions by a forward stepwise algorithm, SL super learner, Lasso-MI lasso for main effects 

and interactions, RF random forest 
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Table 8 Complete list of simulation settings 
 

Model Outcome Sample 

size  

Number of 

pollutants  

Number of 

true effects 
𝑹𝟐 Mean function* 

LM continuous 1000 20 5 0.2 (1) 

LMI continuous 1000 20 5 0.2 (2) 

NM continuous 1000 20 5 0.2 (3) 

NMI continuous 1000 20 5 0.2 (4) 

Logit binary 1000 20 5 0.2 (1) 

LogitI binary 1000 20 5 0.2 (2) 

Nlogit binary 1000 20 5 0.2 (3) 

NlogitI binary 1000 20 5 0.2 (4) 

LM continuous 2000 40 5 0.2 (1) 

LMI continuous 2000 40 5 0.2 (2) 

NM continuous 2000 40 5 0.2 (3) 

NMI continuous 2000 40 5 0.2 (4) 

Logit binary 2000 40 5 0.2 (1) 

LogitI binary 2000 40 5 0.2 (2) 

Nlogit binary 2000 40 5 0.2 (3) 

NlogitI binary 2000 40 5 0.2 (4) 

LM continuous 1000 20 5 0.1 (1) 

LMI continuous 1000 20 5 0.1 (2) 

NM continuous 1000 20 5 0.1 (3) 

NMI continuous 1000 20 5 0.1 (4) 

Logit binary 1000 20 5 0.1 (1) 

LogitI binary 1000 20 5 0.1 (2) 

Nlogit binary 1000 20 5 0.1 (3) 

NlogitI binary 1000 20 5 0.1 (4) 

LM continuous 2000 40 5 0.1 (1) 

LMI continuous 2000 40 5 0.1 (2) 

NM continuous 2000 40 5 0.1 (3) 

NMI continuous 2000 40 5 0.1 (4) 

Logit binary 2000 40 5 0.1 (1) 

LogitI binary 2000 40 5 0.1 (2) 

Nlogit binary 2000 40 5 0.1 (3) 

NlogitI binary 2000 40 5 0.1 (4) 

*Mean functions  

(1) 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 

(2) 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥1𝑥4 + 𝑥1𝑥5 + 𝑥2𝑥3 + 𝑥2𝑥4 + 𝑥2𝑥5 + 𝑥3𝑥4 + 𝑥3𝑥5 + 𝑥4𝑥5 

(3) 𝑥1𝐼(𝑥1 > 0) + exp(𝑥2) + |𝑥3| + 𝑥4
2 + (𝑥5 + 1)2 

(4) 𝑥1𝐼(𝑥1 > 0) + exp(𝑥2) + |𝑥3| + 𝑥4
2 + (𝑥5 + 1)2 + 𝑥1 exp(𝑥2) 𝐼(𝑥1 > 0) + 𝑥1|𝑥3|𝐼(𝑥1 > 0) +

𝑥1𝑥4
2𝐼(𝑥1 > 0) + 𝑥1(𝑥5 + 1)2 𝐼(𝑥1 > 0) + exp(𝑥2) |𝑥3| + exp(𝑥2) 𝑥4

2 + exp(𝑥2) (𝑥5 + 1)2 + |𝑥3|𝑥4
2 +

 |𝑥3|(𝑥5 + 1)2  +  𝑥4
2 (𝑥5 + 1)2 

LM linear main effects, Logit logit link linear main effects, LMI linear main effects and interactions, LogitI 

logit link linear main effects and interactions, NM nonlinear main effects, Nlogit logit link nonlinear main 

effects, NMI nonlinear main effects and interactions, NlogitI logit link nonlinear main effects and interactions 
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