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Abstract

In the realm of infectious disease control, accurate modeling of the transmission
dynamics is pivotal. As human mobility and commuting patterns are key components of
communicable disease spread, we introduce a novel travel time aware metapopulation
model. Our model aims to enhance estimations of disease transmission. By providing
more reliable assessments on the efficacy of interventions, curtailing personal rights or
human mobility behavior through interventions can be minimized. The proposed model
is an advancement over traditional compartmental models, integrating explicit
transmission on travel and commute, a factor available in agent-based models but often
neglected with metapopulation models.

Our approach employs a multi-edge graph ODE-based (Graph-ODE) model, which
represents the intricate interplay between mobility and disease spread. This granular
modeling is particularly important when assessing the dynamics in densely connected
urban areas or when heterogeneous structures across entire countries have to be
assessed. The given approach can be coupled with any kind of ODE-based model.

In addition, we propose a novel multi-layer waning immunity model that integrates
waning of different paces for protection against mild and severe courses of the disease.
As this is of particular interest for late-phase epidemic or endemic scenarios, we consider
the late-phase of SARS-CoV-2 in Germany.

The results of this work show that accounting for resolved mobility significantly
influences the pattern of outbreaks. The improved model provides a refined tool for
predicting outbreak trajectories and evaluating intervention strategies in relation to
mobility by allowing us to assess the transmission that result on traveling. The insights
derived from this model can serve as a basis for decisions on the implementation or
suspension of interventions, such as mandatory masks on public transportation.
Eventually, our model contributes to maintaining mobility as a social good while
reducing exuberant disease dynamics potentially driven by travel activities.

Author summary

As human contacts and contact networks are key to the development and prediction of
infectious disease spread, travel and commuting activities are important components to
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be considered in mathematical-epidemiological modeling. Two, often contrasting
modeling approaches, based on subpopulations and based on individuals can provide
insights of different granularity but also come at different levels of complexity.

With this article, we extend a recently introduced Graph-ODE-based model by the
explicit introduction of mobility-based infection models in which we allow focused
nonpharmaceutical interventions, like face mask mandates in public transport, and in
which we can explicitly keep track of secondary cases induced by travel activities, a
component mostly not available with equation-based models. In addition, we introduce
a novel multi-layer waning immunity model particularly suitable for late-phase epidemic
or endemic scenarios.

On a daily level and geographically small scale, the newly proposed model often
develops similarly, although our results show that complex mobility networks can lead
to substantially different disease dynamics in the entirety of a federal state or country.
The proposed model thus enables a better understanding of infectious disease dynamics
through mobility. It allows for targeted numerical investigations and thus leads to more
appropriate real-world interventions.

Introduction 1

According to the World Health Organization (WHO), the COVID-19 pandemic resulted 2

in 14.9 million excess deaths in 2020 and 2021 and, although fighting infectious diseases, 3

WHO predictions foresee communicable diseases to still account for 6 % of global deaths 4

by 2048 [1]. The unprecedented development and administration of COVID-19 vaccines 5

has undoubtedly saved many lives and years of live [2]. Past experiences have illustrated 6

that waning immunity [2] and reduced vaccine protection against simple transmission 7

(i.e., any infection) may require continuous pairing of vaccination with 8

nonpharmaceutical interventions (NPIs) such as face masks or physical distancing, in 9

particular in situations of high transmission (risk) [3]. For instance, after several 10

vaccination campaigns, most SARS-CoV-2 related interventions had been discontinued 11

in Germany until summer or early autumn 2022. To further protect vulnerable groups, 12

FFP2 masks became mandatory in all long-distance trains on October 1st, 2022 and 13

federal states could implement additional mask mandates in local or regional public 14

transport [4]. 15

In order to proactively react to infectious disease propagation, mathematical models 16

are of great aid. Models of different types have been largely used to guide policy-makers 17

towards evidence-based decisions, see, e.g. [5] for autumn and winter scenarios in 18

Germany in 2022/2023. Over the last years, to predict SARS-CoV-2 development in 19

Germany, contributions have been made by a variety of different approaches. Among 20

these approaches are agent-based models [6, 7], models based on ordinary differential 21

equations (ODE) [8–10] or delay differential equations [11], advanced ODE-based 22

models [12] using the linear chain trick [13] to waive the implicit assumption of 23

exponentially distributed transition times, and in particular metapopulation or 24

graph-ODE models [14]. 25

Mathematical models based on systems of ordinary differential equations (ODE), 26

often denoted compartmental models, are popular tools used in the context of modeling 27

infectious diseases, see, e.g., [15]. This is due to their well-understood character and 28

established methods for model analysis but also because of the low computational cost. 29

However, transmission dynamics of communicable diseases naturally follow the complex 30

network structures of human mobility. Standard ODE-based metapopulation (see, 31

e.g., [16]) or Graph-ODE models [17] can be seen as a simple compromise between too 32

simple ODE-based and complex agent-based models. They combine the low 33

computational effort of ODE-based modeling on small- or medium-sized regional entities 34
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with realistic mobility networks between these regions. 35

Although we see certain advantages of Graph-ODE models [17] over classic 36

ODE-based metapopulation approaches, the model in [17] neglected travel times and 37

explicit transmission during commuting. In the current paper, we propose an extended 38

travel time-aware Graph-ODE model that allows for explicit modeling of travel time 39

and transmission on travel and commute. 40

Aside from mobility, disease dynamics can be driven or mitigated by non-protection 41

or protection against a given pathogen. In particular for late-phase epidemic or endemic 42

scenarios, waning immunity is an important factor to be considered. However, a recent 43

review study [18] on models used in different forecast and scenarios hubs showed that 44

only four out of 90 models provided information or modeling on waning immunity. We 45

thus propose a multi-layer waning immunity model based on ordinary differential 46

equations. In this model, we can consider three different subpopulations with 47

corresponding immunity layers and protection factors. Furthermore, protection against 48

mild and severe courses of the disease wane with different paces. 49

The current paper is organized as follows. In the first part of materials and methods, 50

we introduce a simple ODE-SIR model and extend it by a mobility-model. We then 51

extend a recently proposed hybrid Graph-ODE ansatz to use our novel travel-time 52

aware model locally. Then, we additionally introduce an advanced ODE-SECIRS model 53

containing three different immunity layers and two different paces for waning immunity, 54

against any and severe infection, respectively. Then, we provide parameters for mobility, 55

contact patterns, and transmission dynamics. In the results section, we show how the 56

new model advances the previous one. Eventually, we discuss advantages and 57

limitations and draw a conclusion. 58

Materials and methods 59

In this section, we will introduce a novel travel time aware metapopulation model which 60

will be implemented in a multi-edge graph based on [17] to account for spatially 61

heterogeneous disease dynamics. For a county-level resolution of Germany, we provide 62

travel and commute patterns based on [19]. Furthermore, we introduce a multi-layer 63

waning immunity model based on ordinary differential equations (ODEs) and which is 64

of particular interest in late-phase epidemic or endemic scenarios. Finally, we will 65

summarize parameters used in our estimations for the late-phase SARS-CoV-2 66

demonstrator case. 67

A novel travel time aware metapopulation model 68

For compartment-based modeling, we need to define a list of disease or infection states.
In the simplest SIR case, we have the states Susceptible for persons who can get infected,
Infected or Infectious for persons who can infect others, and Recovered or Removed for
individuals that cannot get reinfected. In order to introduce our travel time aware
metapopulation model, we start from this simple ODE-SIR model which writes

S(k)′(t) = −λ(k)(t)S(k)(t)

I(k)
′
(t) = λ(k)(t)S(k)(t)− 1

T
(k)
I

I(k)(t)

R(k)′(t) =
1

T
(k)
I

I(k)(t)

λ(k)(t) = ρ(k)(t)ϕ(k)(t)
I(k)(t)

N (k)(t)

(1)
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and where ϕ(k)(t) represents the (mean) daily contacts of a person at time t, ρ(k)(t) the 69

(mean) transmission risk, T
(k)
I the (mean) time a person stays infected, and 70

N (k) = N (k)(t) = S(k)(t) + I(k)(t) +R(k)(t) the (constant) total population size. Note 71

that in these model, we always use mean or averaged values so that we drop the mean 72

or average description to parameters in the following. 73

For the sake of a consistent development of the new model, we have already 74

introduced the index k that will later be used to refer to a particular region k but which 75

is without meaning for the presentation in this subsection. 76

We suppose some initial conditions at t0 to be given by (S(k)(t0), I
(k)(t0), R

(k)(t0)). 77

In the following paragraphs, we will introduce our mobility-model approach for 78

ODE-based models. In the end, the model (1) can be replaced by any kind of complex 79

equation-based model. 80

In infectious disease modeling, the number of daily contacts is often estimated from 81

surveys or contact diaries like [20] and we assume that we can estimate the number of 82

contacts in traffic modes ϕ
(k)
tr (t). 83

Classic traffic contacts integration and traffic-related NPIs 84

A straightforward approach modeling (local) traffic-related contacts in compartmental
models is given with a separation of contacts in traffic and nontraffic. We can then write

ϕ(k)(t) = ϕ
(k)
tr (t) + ϕ

(k)
nt (t) (2)

where ϕ
(k)
nt (t) represents all contacts that happen elsewhere, i.e., in home, school,

workplace, or leisure activity settings. If Eq (2) is plugged into Eq (1), we can model a
reduction in travel contacts from day t1 > t0 with factor r ∈ [0, 1] by using

ϕ̃
(k)
tr (t) :=


ϕ
(k)
tr (t), t ≤ t1

ϕ̂(t), t ∈ (t1, t1 + δ)

(1− r)ϕ
(k)
tr (t− δ), t ≥ t1 + δ

, 0 < δ < 1, (3)

where we define δ as a transition interval and ϕ̂ as a transition contact rate between the 85

change of the contact rate to ensure that ϕ̃
(k)
tr (t) ∈ C1((t1 − ϵ, t1 + δ+ ϵ)) with 0 < ϵ ≪ 1 86

for Eq (1) to be well defined. 87

This type of contact reduction for contact locations such as home, school, work, and 88

other has been considered in [14,17,21]. For noncontinuously differentiable parameters, 89

we actually compute the solution of a new initial value problems (IVP) from t1. 90

Explicit traffic or mobility modeling 91

In order to separate disease dynamics on travel and commute from nontraffic (i.e., home 92

or work) dynamics, we propose a new way by introducing a mobility-based infection 93

model in which dynamics follow the same mechanisms but in which the population 94

distribution as well as transmission or mitigation parameters differ; see Fig. 1. In the 95

following and for the sake of simplicity, we will refer to the mobility-based infection 96

model simply as mobility model or traffic model – although the model is a pure infection 97

dynamics model, just parameterized for mobility settings. 98

Note that the novel model is indeed different and expected to behave different where 99

it relaxes assumptions such as homogeneous mixture. However, for meaningful 100

comparisons and in order to be consistent, contact patterns across both models have to 101

be adjusted. In the following, we will explain how to scale contacts that are obtained 102

from classical diary studies to our new model. 103

Without loss of generality, let us assume that all individuals have contacts in 104

nontraffic locations (which is trivial, i.e., in home or work) while only a portion 105

p
(k)
tr ∈ [0, 1] also has contacts in traffic locations (which is nontrivial as people might not 106
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Fig 1. Compartmental transmission model (white) complemented by
compartmental transmission mobility model (gray).

commute at all or only use individual traffic where there is no contact with others). For 107

demonstration purposes, we consider the classic and the new model on a timescale of 108

one day, where each day has unit length, and neglect the daily return trip for now. In 109

the final implementation, this approach is then just down-scaled to half-a-day. 110

As we are still working with a mean-value model, we assume that mobility 111

completely happens either at the beginning or the end of the day, respectively. We will 112

provide graphs for both realizations, but provide the following description with mobility 113

taking place at the end of the day. To that end, we introduce the daily travel time 114

0 ≪ t
(k)
tr < 1, such that the mobility process starts near the end of the day. Note that 115

we will later use a time scale of half a day, with a length of stay in another region and 116

return trip to the home region, once we introduced a second spatial region. For a 117

visualization on the final implementation with round trips and stay times in other 118

nodes, see Fig. 4 (right). 119

We further assume that the number of contacts in nontraffic locations, ϕ
(k)
nt (t), is

independent of the additional contacts during travel. In order to compute the number of
contacts in traffic modes per individual traveler, we compute

ϕ
(k)
tr|tr(t) :=

N (k)ϕ
(k)
tr (t)

p
(k)
tr N (k)

=
ϕ
(k)
tr (t)

p
(k)
tr

. (4)

The end-of-day approximation of our novel model is then given after solving three
initial value problems. We solve

Eq (1) with ϕ(k)(t) := (1− p
(k)
tr )ϕ

(k)
nt (t) + p

(k)
tr

ϕ
(k)
nt (t)

t
(k)
tr

, t ∈ [0, t
(k)
tr ], (5)

with initial values (S0, I0, R0) := (S(k)(0), I(k)(0), R(k)(0)). The scaling of contacts

comes from the fact that p
(k)
tr N (k) many individuals now have all their nontraffic related

contacts within t
(k)
tr many days, t

(k)
tr < 1. This means that the value ϕ

(k)
nt (t), given on

daily scale, needs to be rescaled. Let ŷ(t
(k)
tr ) := (Ŝ(k)(t

(k)
tr ), Î(k)(t

(k)
tr ), R̂(k)(t

(k)
tr )) be the

solution of (5) at t
(k)
tr . We define the IVP

Eq (1) with ϕ(k)(t) := ϕ
(k)
nt (t), t ∈ [t

(k)
tr , 1], (6)

with initial values (1− p
(k)
tr )ŷ(t

(k)
tr ) and a total population of (1− p

(k)
tr )N (k), i.e., the

people that do not travel, in the denominator. Furthermore, we define the IVP in the
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travel node by

Eq (1) with ϕ(k)(t) :=
ϕ
(k)
tr|tr(t)

1− t
(k)
tr

, t ∈ [t
(k)
tr , 1], (7)

with initial values p
(k)
tr ŷ(t

(k)
tr ) and a total population of p

(k)
tr N (k) in the denominator. 120

The complete solution at t = 1 is then given by the summed solutions of (6) and (7). 121

Geometrically, IVPs (5) and (6) are assigned to the white local model from Fig. 1, 122

while (7) corresponds to the grey traffic or mobility model. 123

Here, with p
(k)
tr and 1− p

(k)
tr , we used an equal and potentially unrealistic distribution 124

of the population compartments to traffic and nontraffic node, respectively. In a more 125

complex model, one would also reduce the relative share of infected commuters, letting 126

p
(k)
tr susceptible but only κp

(k)
tr , κ ∈ [0, 1), infected individuals commute. This reduction 127

has already been used in [17] and naturally translates to our new model. 128

In order to give the motivation for our scaling, we assume constant contact patterns

over the considered day, i.e., ϕ
(k)
nt (t) = ϕ

(k)
nt and ϕ

(k)
tr (t) = ϕ

(k)
tr , t ∈ [0, 1]. For the total

number of contacts, we then directly obtain∫ t
(k)
tr

0

N (k)

(
(1− p

(k)
tr )ϕ

(k)
nt + p

(k)
tr

ϕ
(k)
nt

t
(k)
tr

)
dt+

∫ 1

t
(k)
tr

(1− p
(k)
tr )N (k)ϕ

(k)
nt dt

+

∫ 1

t
(k)
tr

p
(k)
tr N (k)

ϕ
(k)
tr|tr

1− t
(k)
tr

dt

=N (k)
(
(1− p

(k)
tr )ϕ

(k)
nt t

(k)
tr + p

(k)
tr ϕ

(k)
nt + (1− p

(k)
tr )ϕ

(k)
nt (1− t

(k)
tr ) + ϕ

(k)
tr

)
=N (k)

(
ϕ
(k)
nt + ϕ

(k)
tr

)
,

(8)

where we recognize Eq (2). 129

In Fig. 2, we provide two examples of our new model for the parameters ϕ
(k)
nt = 9, 130

ϕ
(k)
tr = 1, p

(k)
tr = 0.1, T

(k)
I = 8, I

(k)
0 = R

(k)
0 = 2, N

(k)
0 = 10000, t

(k)
tr = 0.9 and ρ(t) = 0.05 131

(left) and ρ(t) = 0.1 (right). In the new model, even if the total number of contacts 132

stays the same, the contact structure changes from an average of ϕ to a bimodal contact 133

distribution. We see that, both, the mobility-first and mobility-last approach end up 134

with roughly the same number of infections at the end of the day but with, of course, 135

slightly different numbers of susceptible and recovered individuals. We demonstrate the 136

application of the scaling procedure to real contact data in the section Mobility and 137

contact patterns 138

Mobility complemented metapopulation models through a multi-edge graph 139

In order to make use of the novel model from the previous section, assume n different 140

geographic units (here, denote regions) to be given. We now combine the mobility 141

model extension of a simple ODE model with the graph approach proposed in [17]. For 142

the paper to be self-contained, we visualize the previous approach in Fig. 3 (left). There, 143

each region is represented by the node of a graph while the (multi-)edge Eij between 144

nodes Ni and Nj represents the (outgoing) mobility and mobility-based exchange is 145

realized instantly twice a day (round trip). In practice, each combination of 146

sociodemographic group gl, l = 1, . . . , G and infection state zl, l = 1, . . . , Z can be 147

assigned a number of travelers such that the multi-edge consists of G× Z single edges. 148

Return trips are realized by a mapping on the same edge, as the vector of weights on Eij 149

represents the number of outgoing travelers. For the sake of a simple visualization 150

in Fig. 3 (left), each region was assigned an ODE-SIS model with only two 151

compartments (S and I) and two (sociodemographic) groups (e.g., age groups). 152
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Fig 2. Infection curves for simple (blue) and mobility-based infection model
(orange and green) approach. The orange curve shows the dynamics with mobility
first while the green curve shows the mobility last approach. The example’s parameters

are ϕ
(k)
nt = 9, ϕ

(k)
tr = 1, p

(k)
tr = 0.1, TI = 8, I

(k)
0 = R

(k)
0 = 2, N

(k)
0 = 10000, t

(k)
tr = 0.9 and

ρ(t) = 0.05 (left) and ρ(t) = 0.1 (right). In the legend of the plots, we abbreviate
nontraffic with NT and traffic with T.

Fig 3. Hybrid graph-ODE approach (left) and extension with mobility
models (right). For simplification, we visualized an SIS model with two
sociodemographic groups (e.g. age groups). In the old approach (left), no travel time
was used while the novel approach models (right) travel time through compartmental
mobility models.

This approach extends classic ODE-based models but simplifies the mobility pattern 153

by instantaneously transferring commuters to their intended destinations, omitting the 154

duration of transit. Upon reaching their destinations, individuals remain there for the 155

day’s remainder before they immediately return to their origin. In Fig. 4 (left), we 156

provide a schematic representation of the mobility distribution under this mobility 157

scheme. This assumption offers the advantage of facilitating the coordination and 158

incorporation of commuters into and out of various regions by standardizing the timing 159

of exchanges. It affords flexibility in selecting larger time steps for the applied numerical 160

integration scheme. However, it also abstracts away critical variables such as the travel 161

time. The instantaneous nature of exchanges precludes the possibility of transmission 162

events during transit, an aspect that can become significant in disease spread modeling. 163

Deviating from this approach, our novel approach introduces a refined segmentation 164

of the mobility activity schedule by delineating distinct mobility profiles based on local 165

travel and stay times; see Fig. 4 (right). The length of stay can be chosen differently for 166

each region. An even more refined selection, e.g., an individual selection for each edge 167

(i.e., a subpopulation of a predefined socioecomic group with a given infection state), 168

would make the scaling of the contacts considerably more complex. This granular 169
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approach not only enhances the precision of our method but also mirrors the complex, 170

real-world patterns of human movement more closely. However, including these details 171

means that mobility activities are much more spread out throughout the daily schedule. 172

Therefore, we have to choose substantially smaller time steps in the numerical 173

integration scheme in order to take into account outgoing or incoming commuters. 174

t0 + 0.5 t0 + 1

length of stay

t0

t0 + 1− t
(i,k)
tr − t

(k)
stay − t

(ki)
tr

t0 + 1− t
(i,k)
tr − t

(k)
stay

t0 + 1− t
(i,k)
tr

t0 + 1

length of staytraffic traffic

Fig 4. Timing of the mobility activities. The hybrid Graph-ODE approach
from [17] (left) synchronizes population exchanges at two common daily junctures. The
new approach (right) defines an individual structure of mobility activities for each
commuter group, which is considering the travel time and the length of stay in the
destination. Within this daily schedule, all commuters still return to their home
location at the same time, exactly at the end of the day.

In the novel approach, traveling is realized via mobility or traffic models; see Fig. 3 175

(right). Again, each region gets assigned a local compartmental model, now 176

complemented by a local compartment mobility model. 177

A key advantage of augmenting the framework with local compartment mobility 178

models lies in the creation of realistic travel chains. The idea is that commuters pass 179

through other regions during the trip and that the individuals spend time in the 180

mobility models of the region they are passing through. This temporary inclusion 181

enables potential interactions with other commuter groups that are simultaneously 182

represented in the same mobility model. 183

The trip chain T (j,k) between two arbitrary nodes Nj and Nk is defined as an
ordered tuple of regions,

T (j,k) = (Nj ,NR1
,NR2

, ...,Nk), Ri ∈ {1, . . . , n} \ {j, k}, (9)

where j is the index of the starting node, k is the index of the destination node. The 184

transit nodes NR1
,NR2

, . . . describing the way of travel between these regions. 185

The construction of these travel chains is achieved by calculating the centroids of 186

both the origin and destination regions, represented by (multi-)polygons. A line is then 187

drawn between these centroids; see Fig. 5. The sequence in which these regions are 188

encountered along the line is crucial, as it establishes the order of the travel itinerary. In 189

the final step, the overall travel duration is allocated proportionally across the regions 190

in the defined trip chain. 191
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Fig 5. Determination of the path chains. Given several regions, we draw a line
between the start and destination region (left). Afterwards we consider all regions that
are hit by this line and determine the path chain based on the order (right). Using
geodata “Verwaltungsgebiete 1:2 500 000, Stand 01.01. (VG2500)” from
https://gdz.bkg.bund.de, copyright; GeoBasis-DE / BKG 2021, license dl-de/by-2–0, see
https://www.govdata. de/dl-de/by-2-0.

Given that the visualized trip from Region Ni to Region Nk in Fig. 3 (right) is a 192

direct trip, a traveler spends half of the travel time in each of the corresponding two 193

mobility models. For a trip from Region Ni to Region Nj , dissected to a trip chain 194

T (i,j) = (Ni,Nk,Nj), a third of the trip is spent in the single mobility models. This 195

forms our extended hybrid graph-ODE model. The arrows in Fig. 3 (right) are 196

representing mobility between the different mobility models. 197

Finally, we need to determine who is commuting at all. We would like to note here
that different travel restrictions can be active for each region, but there should also be
the possibility of restrictions on individual edges, e.g., for the subpopulations of
detected or symptomatic individuals. We determine the number of commuters in
compartment z ∈ Z leaving region Nj for region Nk by

z(j,k)(t) =
z(j)(t)

N (j)(t)
d(j,k)z (t)ω(j)

z C(j,k), z ∈ Z, (10)

where Z represents the compound of all compartments of the considered local model. 198

Furthermore, d(j,k) denotes a local reduction factor in daily commuting activity which 199

can be defined for each edge, i.e., any combination of sociodemographic group and 200

infection state. Region-based restrictions, e.g., isolation of particular infection states or 201

general stay home restrictions, can be chosen with ω
(j)
z . For example, we can use ω

(j)
ISy,∗

202

to isolate symptomatic individuals and to restrict their commuting activities. Finally, 203

we have the total number of people moving between nodes Nj and Nk, denoted by 204

C(j,k). In summary, we break the total given number of people moving from one region 205

to another, into subpopulations of different infection states for which different 206

restrictions can be applied. These numbers are time dependent. 207

A important challenge of the approach is tracing the compartmental affiliation of the 208

traveling individuals. We address this issue by employing and extending the method 209

described in [17], where we perform an approximation step using a single-step 210

integration method. With this step, we solely advance the infection states of a focus 211

group of individuals (i.e., travelers) while considering all other persons within the same 212

model (travelers from other destinations and local population) as contact persons only. 213

This approach is independent of the model selected and offers some kind of 214

subpopulation-tracing in a population-level model. As the local travel time is generally 215

small, we also apply a single step method for traffic nodes where only one 216

subpopulation is present. Fig. 6 demonstrates the movement patterns of individual 217

groups and how interactions between different groups can lead to additional infections 218
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during a trip. Please note that visualization is based on individuals while in practice 219

only subpopulation shares are known. 220

Fig 6. Demonstration of the mobility across three nodes and four edges. The travel time between region i and k,

t
(i,k)
tr , is two times the travel time from region i to j, i.e., t

(i,k)
tr = 2t

(i,j)
tr . For simplification, there is no exchange between nodes

k and j. The images read from top left to bottom right and all subpictures visualize the developments between (and at the
end of) the considered time frame, i.e., t0 → t1 for top left. At time t0, for all graph nodes, travelers change from their local
infection model to their local traffic infection model. During the interval [t0, t1] (top left), state changes in traffic infection
models are approximated by a single step time integration method while any other (generally an adaptive high-precision
scheme like Cash Karp 5(4) [22]) method can be used in the local nodes. Subpopulations that come from or go to a different
location are only considered as contact populations; see [17]. This is the first part of the functionality implemented on the
graph’s (multi) edges. At t1, the exchange between nodes i and j happens. By t1 (top right), the exchange along the edge
between nodes i and j has already happened and three infected plus one recovered individual have moved from travel model of
node Nj to travel model of node Ni and vice versa. In [t1, t2), the individuals present in travel node Ni and subject to move
to k get in contact with the individuals arriving from node Nj . After another time step until t2, the travelers between node
Ni and node Nk are exchanged. From t2 to t3 (bottom left), we further advance the newly exchanged travelers to finally
arrive in the local models at t3, i.e., after they have completed their predefined travel time within the mobility model. For the
local models in nodes i and j, we must update the states of the arrived individuals using the introduced method, as both local
residents and travelers are present, and we will integrate new individuals to the region in the next step. By t3 + ε, ε > 0
(bottom right), all individuals have reached their destination regions, i.e. the travel models are empty, and local models can
be advanced in parallel.
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A multi-layer waning immunity model of SECIRS-type 221

Waning immunity is a paramount feature in epidemiological modeling if late-phase 222

epidemic or endemic scenarios are considered and immunity of individuals is not 223

everlasting. This, for instance, is the case for SARS-CoV-2 or influenza, where neither 224

infection nor vaccination promises lasting protection against (any) re-infection; see, 225

e.g., [23]. 226

In the following, we present a SECIRS-type model with waning immunity; see Fig. 7. 227

The motivation for the particular model is threefold and not only in waning immunity. 228

First, we use a differentiation in nonsymptomatic and symptomatic transmission to 229

separate their related contributions to the disease dynamics. Second, we use three 230

different layers of immunity or subpopulations with different protection factors against 231

mild and severe courses of the disease. Finally, we introduce the compartments of 232

temporary immunity to realize different paces of immune waning against mild and 233

severe infections, respectively. For instance, for SARS-CoV-2, this was observed in [2]. 234

In the consequence, our model realizes quickly waning protection effects against 235

transmission or any infection while it preserves longer-lasting immunity against severe 236

or critical infections. To account for age-specific transmission and infection parameters, 237

our model will also be stratified for age groups. Our open-source implementation in 238

MEmilio [24] allows for a variable number of age groups as well as for flexible 239

integration of other sociodemographic factors such as income. 240

Our model is based on the previously developed SECIR-type model in [14], which 241

allowed the integration of vaccinations and different immunity layers. However, the 242

introduction of the temporary immunity states changes the meaning of recovery. 243

Recovery always means to enter a temporary immunity compartment and then a 244

susceptible compartment with different protection layer. Furthermore, the states enable 245

the simulation of waning immunity with different paces to suitably model endemic or 246

late-phase epidemic scenarios. The basic infection process of our model follows an 247

susceptible (S), exposed (E), nonsymptomatic infectious (INS or C for carrier), and, 248

potentially, symptomatic infectious (ISy), infected severe (ISev), infected critical (ICr), 249

and Dead (D) structure. 250

We refer to the first subpopulation (shown in gray in Fig. 7) as the naive 251

subpopulation. Individuals of this group have either not seen vaccination or infection, 252

did not have a substantial immune reaction to these or immunity has waned completely, 253

with the last infection or vaccination event long ago. Individuals with partial immunity 254

(shown in purple) have an average protection, while individuals with improved immunity 255

(shown in blue) are best protected against the pathogen. The arrows in Fig. 7 show a 256

permeable model where individuals can change the subpopulation during simulation. 257

The different states of the model and their meanings, independent of the particular 258

immunity, are shown in Table 1. To further motivate our model development, we have 259

sketched out the idea of different protection layers and waning immunity paces on the 260

individual layer in Fig. 8. 261
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Table 1. Model compartments and meanings for disease transmission modeling.

Compartment Symbol Description

Susceptible S Currently not infected, susceptible to infection.

Exposed E Infected but not yet infectious.

Infected, no symptoms INS Infected and infectious but pre- or asymptomatic.

Infected, symptoms ISy Symptomatic, infected and infectious.

Infected, severe ISev Treated in hospital, isolated.

Infected, critical ICrit Treated in intensive care, isolated.

Dead D Died, removed from model.

Temporary immunity I Temporarily immune after completed vaccination or infection.

Fig 8. Motivation on different immunity layers and waning immunity waning paces on the individual layer.
Recent infections or vaccinations protect against transmission or any infection for a short time. Less-recent immune boosters
may not adequately protect against transmission but may result in good protection against a severe course of the disease.

In order to cover age group-specific characteristics of the viral dynamics, we stratify 262

the population by different groups i ∈ {1, . . . , G}, where G is the number of age groups. 263

For all parameters and variables, we add the subscript i to distinguish the different age 264

groups. 265

In order to introduce the model equations, we define N
(k),D⊥

i as people from age 266

group i ∈ {1, . . . , G} which are not in the dead compartment. Furthermore, denote by 267

z
(k)
j,i , the j-th disease state and by z

(k)
j+1,i the worsened disease state, e.g., z

(k)
j,i : Infectious, 268

No Symptoms, Naive (age group i) and z
(k)
j+1,i: Infectious, Symptoms, Naive (age group 269

i). We order the 18 disease states ZI as follows: Exposed Naive Not Infectious, ..., Dead 270

Naive, Exposed Partial Immunity Not Infectious, ..., Dead Improved Immunity. 271

Let µ
zj+1,i,(k)
zj,i be the probability of transition from disease compartment z

(k)
j,i to

z
(k)
j+1,i. For the sake of simplicity, we dropped the second superindex (k) on zj,l,

l ∈ {i, i+ 1} here. Then, 1− µ
zj+1,i,(k)
zj,i is the probability to recover from disease state

z
(k)
j,i . Let further T

(k)
zj,i be the time in days an individual stays in a compartment z

(k)
j,i .

For zj referring to a disease state with partial or improved immunity, we introduce the

simplified factor κ as the counterpart of the relative reduction 1− κ between T
(k)

z
(k)
j,i

and

the corresponding time spent in the naive compartment, e.g., for nonsymptomatic
individuals

T
(k)
INS,II,i

= κT
(k)
INS,N,i

. (11)
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Fig 7. SECIRS-type model with high temporary immunity upon immunization and waning immunity over
time. The three different immunity layers are visualized by different colors. The waning is represented by orange arrows.
Vaccinations are visualized through dashed green arrows and reduce susceptibility for transmission for a certain (short) period
of time. Recovery happens from any kind of infection state to a temporary immunity state with normal black arrow. We have
highlighted the disease states responsible for transmission by red boxes. For the sake of simplification, we do not visualize the
age group model here.

Additionally, we define reduction factors p∗ for the extended protection against severe
courses in the partial and improved immunity layers. The basic functioning of these
parameters can be described by

µzj+1,M,i,(k)
zj,M,i

=
pzj+1,M,i

pzj,M,i

µzj+1,N,i,(k)
zj,N,i

, (12)

where i ∈ {1, . . . , G} again denotes to the age group and 272

zj,∗ ∈ {INS,∗, ISy,∗, ISev,∗, ICr,∗} refers to the disease states. Here, we added the index 273

M ∈ {PI, II} describing the affiliation to the immunity layer. Summarized, we use 274

reduction factors to reduce the probabilities, which we define for the naive immunity 275

layer, to use them with two other layers. For more details about the reduction factors, 276

we refer to [14]. Furthermore, we define T
(k)
WPI ,i

and T
(k)
WII ,i

as the time spent in 277
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susceptible compartment S
(k)
PI,i and S

(k)
II,i, respectively, if no infection event occurs, i.e., 278

these times define the denominator of the waning rates. The (local) vaccination rates of 279

the different immunity layers M ∈ {N,PI, II} are given by v
(k)
M,i, i ∈ {1, . . . , G}. 280

Eventually, we define by ξ
(k)
INS,i

and ξ
(k)
ISy,i

, i ∈ {1, . . . , G}, the share of (locally) 281

nonisolated nonsymptomatic and symptomatic infectious individuals. 282

In this section, we now provide the elementary model processes in a general
representation. For the full model equations, see S1 Appendix. SECIRS-type model
equations and initialization. As the susceptible compartments contain the transmission
processes to the exposed compartment as well as the waning immunity from the
temporary immunity compartments and to the susceptible compartment of the inferior
protection layer, we provide these equations first. For the three different groups of
susceptibles M ∈ {N,PI, II}, i ∈ {1, . . . , G}, these write

dS
(k)
M,i

dt
= −S

(k)
M,iρ

(k)
M,i

n∑
j=1

ϕ
(k)
i,j

ξ
(k)
INS ,j(I

(k)
NS,N,j + I

(k)
NS,PI,j + I

(k)
NS,II,j) + ξ

(k)
ISy,j

(ISy,N,j + I
(k)
Sy,PI,j + I

(k)
Sy,II,j)

N
D⊥,(k)
j

− v
(k)
M,iS

(k)
M,i −

1

T
(k)
WM ,i

S
(k)
M,i︸ ︷︷ ︸

=:0 for M=N

+
1

T
(k)
WM+1,i

S
(k)
M+1,i︸ ︷︷ ︸

=:0 for M=II

+
1

T
(k)
IM,i

I(k)
M,i︸ ︷︷ ︸

=:0 for M=N

,

(13)

Here, we used the simplified notation of M + 1 = PI if M = N and M + 1 = II if 283

M = PI and for the sake of a shorter presentation, we skipped the dependence on t. 284

Furthermore, except for the exposed and dead compartments, we can either recover
from a particular disease state to a temporary immunity state or move on to an
aggravated state of the disease. For any given disease state zj ∈ ZI excluding the
different exposed states, we can generically write

dz
(k)
j,i (t)

dt
=

µ
zj,i,

(k)

zj−1,i

T
(k)
zj−1,i

z
(k)
j−1,i(t)−

z
(k)
j,i (t)

T
(k)
zj,i

, (14)

where we assume that zj−1,i is the previous milder infection state. 285

In the full model equations, we also provide confirmed compartments. However, 286

there is no flow from undetected to detected compartments in the model equations. 287

Detection within a node is modeled implicitly via ξINS,i
and ξISy,i

. The detected 288

compartments are only used and filled via testing on traveling and commuting. For 289

more details, see [21]. However, this mechanism is not used in the underlying study. 290

An explanation of all parameters for defining the model in Eq (13) - (14) is provided 291

in Table 2. In order to solve the local models, we use an adaptive Runge-Kutta Cash 292

Karp 5(4) integration scheme [22] to ensure a small discretization error. 293

Parameterization 294

We will showcase our novel model with a synthetic outbreak scenario and according to 295

the developments of SARS-CoV-2 in autumn 2022 in Germany. As reported case data is 296

divided into the six age groups: 0-4 years, 5-14 years, 15-34 years, 35-59 years, 60-79 297

years, and 80 years and older, we stratify our model accordingly. 298

Mobility and contact patterns 299

The dataset user for inter-county commuting in Germany is based on a macroscopic 300

transport model and a synthetic population for Germany. The transport model called 301
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DEMO [25] (short for DEutschlandMOdell, i.e., German Transport Model) is aimed to 302

forecast transport in Germany when changing external factors like political policies or 303

technological novelties. The model consists of multiple origin/destination (OD) matrices 304

for each transport mode containing trip counts, average travel distances and average 305

travel times for each origin/destination relation. Origins and destinations are described 306

as traffic analysis zones. In this case the study area (Germany) is divided in 6633 traffic 307

analysis zones which translates to matrices of size 6633x6633. The synthetic population 308

is generated from the micro census 2017 and is spatially allocated to the traffic analysis 309

zones. Additionally each synthetic person is binned into a behavioral homogeneous 310

person group considering attributes like age and gender. In order to generate trip 311

chains, e.g., home → work → leisure → shopping → home, daily routines including 312

schedules, average travel distances and times are extracted from the national household 313

survey Mobility in Germany 2017 [26]. Counts of each routine are transformed into 314

discrete probability distributions for each person group; for a more detailed description 315

on the process, see [27]. Further disaggregation iterates through each person where a 316

daily routine is picked out of the according distribution. Since routines start and end at 317

home, the start and end zone for the first respectively the last activity is known. For all 318

activities in between, possible destination zones are selected based on travel distance 319

from the starting zone and the trip count from the macroscopic model. The output is a 320

list of trips between zones for each person. Finally the data is aggregated again to an 321

origin/destination relation level with trip counts, transport mode and person group 322

distribution. The preliminary age-group related OD matrices have been published freely 323

in [28]. Note that in this study age group related traffic has been recomputed by (10). 324

For the underlying study with an aggregated mean-value model, we only allow one 325

travel per day and thus take workplace-related commuting from the described data set. 326

We assume that all trips are possible in the time line of one day each. For the given 327

data, we provide the ratio of internal and inbound commuters in Fig. 9 (left) for each 328

county in Germany, sorted in ascending order of the internal commuter ratios. 329

In Fig. 9 (right), we present the ratio of inbound commuters to the total local 330

population of the considered county. The figure shows, on the one hand, the influence of 331

inbound commuters on the number of total workers and that the share compared to the 332

total population is relevant, if not even substantial.

(a) Compared to local commuters (b) Compared to local population

Fig 9. Analysis of workplace commuting mobility in Germany. Ratio of
internal commuters to inbound commuters (left) and incoming commuters against the
respective local population (right). The counties are sorted in ascending order.

333
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Table 2. Parameters used to define our multi-layer waning immunity model of SECIRS-type; Eq (13) - (14).

Parameter Description

ϕi,j Daily contact rate between two age groups i and j.

ρi Transmission risk for people located in one of the susceptible compartments
depending on immunity layer (ρi, ρPI,i, ρII,i) and seasonality factor; see [17].

ND⊥
i People from age group i which have not died during simulation.

µz2
z1 Probability of transition from compartment z1 to z2.

Tz1 Time in days an individual stays in a compartment z1.

ξINS ,i Proportion of asymptomatic infectious people who are not isolated.

ξISy,i Proportion of symptomatic infectious people who are not isolated.

κ Reduction factor for time spans of asymptomatic and symptomatic infections
of individuals with partial or improved immunity.

pISy,PI Effectiveness of partial immunity protection against symptomatic infection.

pISev,PI Effectiveness of partial immunity protection against hospitalization.

pICr,PI Effectiveness of partial immunity protection against ICU treatment.

pDPI Effectiveness of partial immunity protection against death.

pISy,II Effectiveness of improved immunity protection against symptomatic infection.

pISev,II Effectiveness of improved immunity protection against hospitalization.

pICr,II Effectiveness of improved immunity protection against ICU treatment.

pDII Effectiveness of improved immunity protection against death.

TWPI Rate of waning immunity of susceptible who are located in the partial
immunity state.

TWII Rate of waning immunity of susceptible who are located in the improved
immunity state.

vN Vaccination rate of people with naive immunity.

vPI Vaccination rate of susceptible with partial immunity.

vII Vaccination rate of people with improved immunity.

Local contact patterns 334

In the previous sections, we have already explained how we model contact patterns in 335

mobility and nonmobility settings, given survey numbers of contact ϕtr and ϕnt. The 336

contact rate is an elementary part of the calculation of the transmission or infection rate 337

of the persons in the susceptible compartments. As in [17], we select contact locations 338

Home, Work, School, and Other and choose our baseline contact patterns based on [29] 339

and [30]. To explicitly model, the contacts in transportation, we additionally subdivide 340

the group of Other. This is done based on the contact surveys in [31], which numbers 341

have been provided with [32] in an accessible format. From this data we infer the 342

relative share of contacts in transportation (with respect to other), to apply these factors 343

element-wise to the contact matrix from [29]. Inter- and extrapolation of the aggregated 344

contact data to the given age groups is done with recent demographic data for Germany; 345

[17]. The final contact baseline is shown in Fig. 10. Local contact reduction through 346

NPIs is modeled as in [17] – selecting a zero minimum contact pattern. 347
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Fig 10. Age-resolved contact matrices for Germany. The images show the
average number of contacts in each of our five contact location. Values that are zero are
displayed in white.

Epidemiological parameters for SARS-CoV-2 Omicron variant BA.1/2 348

In the last part of materials and methods, we focus on the epidemiological parameters 349

specific to SARS-CoV-2 omicron variant BA.1/2, our demonstration case. The 350

introduced model is a highly detailed model. We have explained the required 351

parameters in Table 2. Depending on the available data, we provide stratified parameter 352

ranges. Parameters have been obtained from an extensive literature research and prior 353

findings with our previous models in [14,17,21]. For a summary see Table 3. For most 354

parameters, we provide a range from which we uniformly take parameter samples. By 355

making a large number of Monte Carlo runs, we obtain good estimate of the uncertainty 356

in the output. 357

To determine the initial states for the individual compartments of our model, we use 358

the German case numbers published by the Robert Koch-Institute [53]. The idea of 359

transforming the confirmed case data to initial states for each compartment was given 360

in [14]. We follow this approach while implementing the changed immunity layers in 361

this approach. For more details, we refer to S1 Appendix. SECIRS-type model 362

equations and initialization. 363

Results 364

In this section, we use the introduced SECIRS-type model with three different 365

immunity layers and two paces for waning immunity inside the novel travel-time aware 366

mobility model. 367

We will consider two different settings. First, we provide a retrospective analysis of 368

SARS-CoV-2 transmissions in the late phase of the pandemic. Second, we provide a 369

synthetic outbreak scenario with a infection hotspot in Cologne and show how infection 370

numbers spread differently with the newly introduced method. 371

Late-phase pandemic 372

We first consider the late-phase SARS-CoV-2 pandemic in Germany. We begin our 373

simulation on August 1st, 2022 and examine the official face mask obligation in public 374

transport, which was maintained until February 2023 and allowed both FFP2 and 375
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Table 3. Model parameters for the Omicron Variant BA.1/2. If parameters are stratified by age, vertical lines
separate the corresponding columns. Column Reference provides used references in addition to the findings in [14,17,21].

Age Group
Param. 0-4 5-14 15-34 35-59 60-79 80+ Reference

ρ
(0)
i [0.03, 0.06] [0.075, 0.105] [0.12, 0.15] [0.15, 0.225] [17] & Fitted

ξINS ,i sigmoidal curve from 0.5 to 1 on incidence 10 to 20 [33]

ξISy,i sigmoidal curve from [0.0, 0.2] to [0.4, 0.5] on incidence 10 to 150 [33]

TE 0.6024 [34], [35]

TINS 0.6944 [34]

TISy [6.58,7.16] [36]

TISev [1.8,2.3] [2.5,3.67] [3.5,5] [4.91,7.01] [37]

TICr [9.29, 10.57] [10.842,12.86] [11.15, 13.23] [11.07,13.25] [37]

TIPI
60 [38], [39]

TIII
60 [38], [39]

TWPI
365 [38], [39]

TWII
365 [38], [39]

µ
ISy

INS
[0.60,0.80] [0.7,8.3] [0.85,0.9] [40]

µ
ISev,N

ISy,N
[0.006,0.009] [0.0048,0.0072] [0.006,0.0092] [0.00147,0.0222] [0.0375,0.045] [0.07,0.0875] [41], [42], [43]

µ
ICr,N

ISev,N
[0.026,0.052] [0.026,0.052] [0.026,0.052] [0.052,0.104] [0.13, 0.182] [0.182,0.234] [44], [45], [46]

µDN

ICr,N
[0.00,0.039] [0.039,0.0702] [0.117,0.195] [0.195,0.273] [47], [48], [49]

κ 0.5 [50]

pISy,PI
[0.039, 0.254] [51]

pISev,PI
[0.18, 0.48] [52]

pICr,PI
see pHPI

pDPI
see pHPI

pISy,II
[0.656, 0.705] [51]

pISev,II
[0.81, 0.9] [52]

pICr,II
see pHV

pDII
see pHV

surgical masks [54]. Beginning October 1, 2022, nationwide enforcement of the use of 376

FFP2 masks on long-distance public transportation [54] was implemented. However, 377

there were differences in local public transportation between the German federal states. 378

In Lower Saxony [55] and Hamburg [56] the FFP2 mask obligations also existed in local 379

public transport but were dropped at the start of October 2022. 380

The newly introduced mobility scheme offers us a flexible approach to implement 381

actions within the mobility node, without necessitating changes to the underlying local 382

model. Within our model, compliance with the mask mandate can be represented by 383

altering the effective contact rate through a damping of the contacts. As shown in [57], 384

March 1, 2024 18/29

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted March 2, 2024. ; https://doi.org/10.1101/2024.03.01.24303602doi: medRxiv preprint 

https://doi.org/10.1101/2024.03.01.24303602


the proper usage of FFP2 masks is crucial. For both individuals correctly wearing FFP2 385

masks, the risk of infection during a 20-minute encounter with an infected person was 386

estimated to be as small as 0.1 %. Notably, [57] also demonstrates that without any 387

form of mask-wearing, the probability of infection approaches 100 %. Therefore, we 388

implement the effect of FFP2 masks by a reduction factor of 0.1 % to the effective 389

contact. 390

Throughout much of the pandemic, the German national testing strategy was 391

predominantly focused on testing individuals displaying symptoms [58]. Therefore, we 392

assume that the number of confirmed cases corresponds directly to the daily growth of 393

symptomatic individuals if the detection ratio stays constant. This is also in line with 394

the overall decreasing accuracy in positive-testing asymptomatic cases with regard to 395

the Omicron variant [59]. As official reporting was suspected to have large 396

underdetection factors, we based our comparisons not only on the official reported case 397

numbers but also on the self-reported cases in the DigiHero [60] study. We extrapolated 398

the reported infections from 33730 participants in autumn 2022 to the total population 399

of Germany. In Fig. 11 (left), we provide the results of two different ensemble runs with 400

500 individual runs each where either no face masks (blue) or FFP2 (green) masks in 401

transportation have been simulated. We visualize shaded areas for the regions between 402

the p25 and p75 percentiles of the 500 runs and solid lines for the median results. 403

Until beginning of October, Fig. 11 (left) shows substantially larger numbers of 404

infected for the scenario without face masks. The quick decline in numbers in this 405

scenario is due to the very large number of infected before and the temporal immunity 406

saturation obtained. We see that face masks in transportation alone cannot prevent 407

peaking of case numbers. However, the overall peak is considerably smaller (around 408

20 %). Face masks in transportation can thus contribute in ensuring functionality of 409

critical infrastructure and preventing hospital bed shortages. Compared to reported 410

data, we still see a nonnegligible difference. However, we also assume important 411

underdetection, as test-positive rates range between 30 and 50 %; see [61]. In all curves, 412

we similarly see a first stagnation in numbers and decline of infections towards end of 413

the considered time frame. 414

An important advantage of our approach lies in its ability to quantify infections 415

occurring during participation in traffic, achieved through the utilization of the traffic 416

models. This offers a fundamental advantage over conventional structures. The 417

significantly different probabilities of infection due to the implementation of a mask 418

obligation in the transport models are clearly reflected in the daily number of 419

transmissions in the traffic models obtained by our simulation; see Fig. 11(right). 420
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(a) Daily symptomatic infections.
(Linear-scaled y-axis)

(b) Daily Transmissions in mobility.
(Log-scaled y-axis)

Fig 11. Daily number of symptomatic infections and transmissions in the
mobility model. The simulations provide results using correctly worn FFP2 masks
(green) and no face masks (blue) in the mobility models. The number of daily
symptomatic infections (left) is compared to data provided by the DigiHero study (red)
where the number of participants is extrapolated to the population in Germany and the
official reported numbers (yellow). The colored areas between the dotted lines represent
the p25 and p75 percentiles of the particular ensemble runs. The mean values are
indicated by the solid lines. In the right plot, we visualize the daily transmission in the
mobility models during the course of the simulation on a logarithmic scale.

Finally, we want to illustrate the spread of the disease on a geographical basis. 421

In Fig. 12, we provide the (median) daily new numbers of symptomatic infected 422

individuals on county level. This clearly emphasizes once again that the masks, as used 423

only in the mobility models, have a significant influence on the spread of infection. The 424

far higher peak in the case where no face masks are worn is clearly recognizable around 425

day 50. Again, due to a temporal immunity seturation, we find a decline from day 70 to 426

day 90 in the nonrestricted scenario while the face mask scenario numbers decline slower. 427
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Day 10 Day 30 Day 50 Day 70 Day 90

No face masks

FFP2 masks

Fig 12. Daily new number of symptomatic infected individudals on county level. This figure illustrates the change
in the daily number of symptomatic infected German counties over the course of 90 days beginning with the 1st August 2022.
Each subfigure displays a different day with the two different modes (No masks or FFP2 masks). Using geodata
“Verwaltungsgebiete 1:2 500 000, Stand 01.01. (VG2500)” from https://gdz.bkg.bund.de, copyright; GeoBasis-DE / BKG
2021, license dl-de/by-2–0, see https://www.govdata.de/dl-de/by-2-0.

Outbreak scenario 428

In this section, we want to show the impact of the mobility on the evolution of the 429

disease using a fictional outbreak scenario. Therefore, we assume that in the initial 430

stage to only have a single county which has a high amount of exposed people. In this 431

context, we assume 5 % of Cologne’s population to be exposed to the virus. Although is 432

number is ridiculously large, it was chosen by intention to directly visualize the 433

qualitative propagation of new cases to connected counties. 434

To emphasize the influence of mobility, we compared our results with the mobility 435

scheme presented in [17] (here denoted Existing method, both times using our 436

multi-layer waning immunity model. The advantage of the novel mobility approach 437

accounting for travel and transmission during commuting, contrasting the immediate 438

transfer of travelers in [17]. 439

In the maps of Fig. 13, we illustrate the progression of the total number of currently 440

infected individuals using both approaches over 90 days (excluding Cologne to restrict 441

the colorbar). In particular in the left-most part of the figure, we see that the virus 442

attains counties which have not or almost not been affected with the existing method. 443

We see that the novel approach is leading to a different propagation pattern also easily 444

attaining indirect or loosely coupled regions. The very large number of exposed in 445
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Cologne leads to the rapid increase in the upper right part. The second and higher peak 446

in October is due to the waning against any transmission and our seasonality factor in 447

the transmission processes. If we look at the number of infections in all counties except 448

Cologne, a comparison of the median values of the two methods shows that far more 449

individuals will get infected using the novel approach. This is in accordance with the 450

exponential increase in case number in so far virus-free regions. Similar process had 451

been observed for the beginning of the pandemic when only a small number of regions 452

was affected at all. The corresponding process is also reflected in the plots of the maps, 453

where we already see a much more divided infection pattern on the first day. 454

Day 1 Day 30 Day 60 Day 90

Existing method

Novel Method

Fig 13. Propagation of infections with exiting [17] and novel model for an outbreak scenario. Median
propagation of infections in German counties (except Cologne) over 90 days with the existing method (top row maps) and the
novel method (bottom row maps). In the plots of the right hand side, we provide the evolution of case numbers in Cologne
and the rest of Germany. The shaded area visualizes the p25 and p75 percentile results of the 500 ensemble runs. The median
value is given as solid line. Using geodata “Verwaltungsgebiete 1:2 500 000, Stand 01.01. (VG2500)” from
https://gdz.bkg.bund.de, copyright; GeoBasis-DE / BKG 2021, license dl-de/by-2–0, see
https://www.govdata.de/dl-de/by-2-0.

Discussion 455

The results presented in this study are based on a mean-value model, a multitude of 456

assumptions and different parameters. Although based on an extensive literature review 457

and previous findings in [14, 17, 21], there is still uncertainty about many (virus-specific) 458

parameters. However, mathematical models can help to explore the mechanisms in 459

infectious disease spread and reasonable assumptions are necessary, even for models up 460

to digital twins. We have waived a lot of unrealistic assumptions such as homogeneous 461

mixture in space and in demography. Our model has been resolved for meaningful 462
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regions and demography has been taken into account to model different vulnerabilities 463

for different age groups. 464

A critical factor in infectious disease modeling is mobility. As the ground truth for 465

daily mobility is difficult to grasp, again, assumptions have to be used. We have used 466

the output of a state-of-the-art macroscopic mobility model to be used in our 467

simulations. Different mobility patterns clearly lead to different virus distribution 468

patterns. 469

A precise quantification of waning immunity against different courses of the disease 470

given particular immunization histories is still an open research question. We have used 471

measured patient values from recent literature and our models could correctly predict 472

stagnation and decline after an initial phase of increased case numbers. The effect of 473

waning immunity to SARS-CoV-2 over years, the interplay with new variants or 474

vaccinations is still an open research question our model cannot answer yet. 475

In order to get meaningful predictions for future developements, our model needs to 476

initialized with reasonable values of the population’s immunity. As the reporting of 477

vaccinations is not conducted on personal level and as the dark figure of unreported 478

transmission numbers increased with the end of the pandemic, the current status of the 479

population is difficult to obtain. Serological studies may be needed to provide 480

approximative starting values for future predictions. These limitations in data and 481

assumptions should be kept in mind when interpreting the results of this work. 482

Conclusion 483

In this paper, we have presented a novel travel-time aware metapopulation model 484

combined with a novel multi-layer waning immunity model based on ordinary differential 485

equations. Both models advance already existing models for infectious disease dynamics 486

by taking into account yet neglected but essential properties for virus propagation. 487

The travel-time aware metapopulation model advances existing metapopulation or 488

hybrid graph-ODE approaches by considering travel time as well as transmissions 489

during transport. As unconstrainted mobility clearly is a driver for infectious disease 490

dynamics, more realistic mobility modeling increases the reliability of model outcomes. 491

The travel-time aware metapopulation model can directly be combined with any kind of 492

ODE-based transmission model and thus enhances global predictions by correctly 493

resolving heterogeneously different spreading dynamics. 494

The novel multi-layer waning immunity model copes with the problem of 495

heterogeneous and hybrid immunity in a population in mid- or late-phase pandemics as 496

well as in endemic scenarios. The novel model does not only provide three different 497

populations with different protection factors but also two different paces of waning 498

immunity, i.e., against any transmission and against a severe course of the disease – a 499

property that has been observed for SARS-CoV-2. Given reparametrization, it can also 500

be used for other human-to-human transmittable diseases that show similar 501

developments. 502

With the combination of both models, we could correctly assess developments in the 503

late phase of the pandemic in Germany in 2022. Although vaccination could already 504

mitigate the number of severe courses of the diseases, large numbers of mild cases can 505

also have a desastrous impact on economy and critical infrastructure. Our model serves 506

as a good basis for future waves SARS-CoV-2 in upcoming autumn or winter seasons 507

and adaptation to other viruses is possible. The suggested mobility model can be of 508

great help when particular interventions in public transportations are envisaged and 509

expected transmissions can be assessed beforehand. As it can be combined with any 510

kind of ODE-based model, it can also be used for other diseases such as Influenza or 511

RSV. 512
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Data Curation: Henrik Zunker, Martin Kühn, Alain Schengen, Sophie Diexer 531

Formal Analysis: Henrik Zunker, Martin Kühn, David Kerkmann 532
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