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Summary 14 

Background 15 

Age is the most important risk factor for the majority of human diseases. Addressing the impact of age-16 
related diseases has become a priority in healthcare practice, leading to the exploration of innovative 17 

approaches, including the development of predictors to estimate biological age (so-called “ageing 18 
clocks”). These predictors offer promising insights into the ageing process and age-related diseases. This 19 

study aims to showcase the significance of ageing clocks within a unique, deeply phenotyped 20 
longitudinal cohort. By utilising omics-based approaches alongside gold-standard clinical risk predictors, 21 

we elucidate the potential of these novel predictors in revolutionising personalised healthcare and 22 
better understanding the ageing process. 23 

Methods 24 

We analysed data from the IAM Frontier longitudinal study that collected extensive data from 30 25 

healthy individuals over the timespan of 13 months: DNA methylation data, clinical biochemistry, 26 
proteomics and metabolomics measurements as well as data from physical health examinations. For 27 

each individual, biological age (BA) and health traits predictions were computed from 29 epigenetic 28 
clocks, 4 clinical-biochemistry clocks, 2 proteomics clocks, and 3 metabolomics clocks. 29 

Findings 30 

Within the BA prediction framework, comprehensive analyses can discover deviations in biological 31 

ageing. Our study shows that the within-person BA predictions at different time points are more similar 32 
to each other than the between-person predictions at the same time point, indicating that the ageing 33 

process is different between individuals but relatively stable within individuals. Individual-based 34 
analyses show interesting findings for three study participants, including observed hematological 35 
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problems, that further supported and complemented by the current gold standard clinical laboratory 36 

profiles. 37 

Interpretation 38 

Our analyses indicate that BA predictions can serve as instruments for explaining many biological 39 

phenomena and should be considered crucial biomarkers that can complement routine medical tests. 40 
With omics becoming routinely measured in regular clinical settings, omics-based BA predictions can be 41 

added to the lab results to give a supplementary outlook assisting decision-making in doctors’ 42 
assessments. 43 
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Introduction 49 

Age is the most important shared risk factor for the majority of human diseases. Hence, there are strong 50 
efforts towards attenuating ageing-related disease risk via lifestyle, pharmacological, and clinical 51 

interventions to slow or reverse ageing. “Chronological age” (CA), defined by the time passed since an 52 
individual’s birth, falls short of reflecting interindividual and environmental differences acting upon a 53 

biological system during this period. A critical prerequisite in the endeavour to improve healthy ageing is 54 
to quantify an individual’s “wellness,” which covers not only the absence of sickness but also their 55 

resilience to future disease, general satisfaction with their health, and having sufficient energy levels for 56 
activities that enrich one’s life. While a variety of signals related to individual health and well-being can 57 

be collected, validating their contribution to clinically relevant outcomes remains an open issue. The 58 
hallmarks of ageing include genomic instability, telomere attrition, epigenetic alterations, loss of 59 

proteostasis, disabled macroautophagy, deregulated nutrient-sensing, mitochondrial dysfunction, 60 
cellular senescence, stem cell exhaustion, altered intercellular communication, chronic inflammation 61 

and dysbiosis1. Each hallmark contributes to the ageing process. The major challenge is to dissect the 62 
interconnectedness between these hallmarks and their relative contributions to ageing1.  63 

To achieve significant progress in the wellness and longevity area to improve human health span, we 64 

need to develop tools and methodologies for standard collection, harmonisation, analysis, integration, 65 
and interpretation of this information at the individual level. A variety of biological age predictors have 66 

been proposed. They share the common approach of using large cross-sectional “healthy” discovery 67 
population cohorts with age as a phenotype to construct a predictive model for an organism’s age and 68 

subsequently validate it in a separate cohort. Based on the type of molecular data employed, these 69 
predictors can be classified into six categories: Telomere length, epigenetic clocks, transcriptomic 70 

predictors, proteomic predictors, metabolomics-based predictors, and composite biomarker predictors. 71 
Among these, epigenetic clocks are considered to be the most accurate in predicting biological age and 72 

other health phenotypes2. 73 

Telomeres are repetitive DNA sequences capping chromosomes that shorten every time a cell divides; 74 
thus, telomere length (TL) is a conventional marker of biological ageing across various biological 75 

domains.3 TL has been associated with biological age, wellness, and mortality risk of an individual4–6. 76 
Furthermore, TL has been proposed for some specific types of cancer4 and cardiovascular mortality 77 

predictions.5,6 However, TL is hard to measure in clinical practice, and recent reports comparing TL with 78 
epigenetic clocks on non-symptomatic (or healthy) individuals found TL to be less informative2,7–9.  79 

Epigenetic clocks are molecular tools based on 5mC methylation changes to a person’s DNA over time. 80 
These modifications, which can be influenced by various factors, including environmental exposures and 81 

lifestyle choices, can change over time and, therefore, be used to predict a person’s age. 82 

The “epigenetic clock” premise is to link developmental and maintenance processes to biological ageing, 83 
giving rise to a unified theory of the life course of an organism10. Epigenetic clocks are used in ageing 84 

research to identify potential interventions that could delay or reverse age-related changes and to 85 
understand the biological processes underlying ageing. They are also employed to study the relationship 86 

between epigenetic changes and various age-related diseases and conditions, such as cancer and 87 
cardiovascular disease. Epigenetic clocks are not yet widely used in clinical practice but show promise as 88 

a way to measure biological ageing and identify interventions that may be able to improve health 89 
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outcomes. There is a rapidly growing number of epigenetic clock estimators built for distinct 90 

purposes11,12, and their application potential, together with the other omics clocks, has also been 91 
discussed13,14. Proteomics, metabolomics, and multiple clinical biomarker readouts are used to predict 92 

biological age, specific disease risks or phenotypes2.  93 

Many of those predictors of age and fitness have already been proposed to be used in healthcare 94 

practice, and several companies have started to offer direct-to-consumer products in this context15. 95 
Their product implementation in clinical practice requires rigorous validation and simple and clear 96 

recommendations for both the healthcare practitioner and the individual. Hence, despite the large 97 
consensus of their premise, there are significant challenges to overcome to transfer scientific health and 98 

wellness tools into clinical practice16. 99 

In this study, we aim to demonstrate the value of epigenetic clocks, proteomics, metabolomics, and 100 
multi-biomarker predictors in a unique longitudinal pilot cohort17 where all required data types (clinical 101 

parameters, epigenomics, proteomics, metabolomics, along with deep phenotyping and metadata) are 102 
available across multiple time points in a 13-month period.  103 

 104 

Methods 105 

Study design and participants 106 

The IAM Frontier study is a unique longitudinal cohort study that ran for 13 months in 30 healthy 107 
individuals, consisting of 15 male and 15 female participants. The 13 months study duration was chosen 108 

to cover the seasonal fluctuations that might occur over a one-year period. The study specifically 109 
targeted the employees of the research organisation VITO within the age range of 45-59. A major reason 110 

for the selection of this group of employees was that as they are part of a research organisation, they 111 
are expected to be more open to research-grade technologies and interventions. The age range was 112 

selected because the highest prevalence of onset of chronic diseases occurs from the age of 45-6518. 113 
Individuals were selected based on the following inclusion criteria: not suffering from a chronic disease, 114 

diagnosed and currently followed-up by a medical specialist: asthma, chronic bronchitis, chronic 115 
obstructive pulmonary disease, emphysema, myocardial infarction, coronary heart disease (angina 116 

pectoris), other serious heart diseases, stroke (cerebral haemorrhage, cerebral thrombosis), diabetes, 117 
cancer (malignant tumour, also including leukaemia and lymphoma). At monthly visits, a range of 118 

samples (whole blood, plasma, urine, stool) were collected and sent to accredited laboratories and 119 
comprehensive multi-omics and clinical biochemistry data were assessed. Self-administered 120 

questionnaires on, for example, health conditions and physical activity were also completed by the 121 
participants. In this article, we analysed data from the IAM Frontier study, which included DNA 122 

methylation data, clinical biochemistry, proteomics, metabolomics, and data from physical health 123 
examinations. 124 

 125 

Sample collection 126 

The sampling of the IAM Frontier study took place between March 2019 and March 2020 and included 127 

the collection of human biospecimen and digital data. During the 13 months of the study, the 128 
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participants donated blood, urine, and stool samples at monthly visits. These samples were collected 129 

after overnight fasting for at least eight hours. The urine and blood samples (in EDTA-, citrate-, and 130 
serum-vacutainers) were transported to the clinical laboratory at room temperature within 6 hours after 131 

collection. Peripheral blood mononuclear cells (PBMC) were isolated from EDTA-blood samples, and 132 
PBMC pellets were stored at -80°C till the DNA extraction. At monthly visits, clinical tests and health 133 

examinations such as blood pressure, body height, weight, and abdominal circumference measurements 134 
were performed by accredited labs and appointed doctors. At bi-monthly visits, plasma samples were 135 

taken, and omics (proteomics and metabolomics) measurements were assessed. At months one, six, and 136 
13, the PBMC samples were used to measure DNA methylation. At month 13, only 20 participants were 137 

able to donate samples due to the start of the COVID-19 pandemic. Table 1 presents an overview of the 138 
sample collection. All samples have been collected in accordance with the applicable Belgian regulations 139 

regarding the use of human body material for scientific research (Belgian Law on use of human body 140 
material, 2008) and the Belgian Royal Decree on biobanks (Het Koninklijk Besluit betreffende de 141 

biobanken. Belgisch Staatsblad 05.02.2018. Brussels (2018)). 142 

Table 1: Data collection of IAM Frontier study 143 

Data Measurement 

technique 

Timepoints – 

month 

Type of sample Total 

samples 

Remarks 

DNA 

methylation 

Illumina Infinium 

MethylationEPIC 

BeadChips 

2-8-13 PBMC 96 20 samples at 

month 13, 16 

technical 

replicates 

Clinical and 

physiological  

Clinical biochemistry, 

blood cell counts, health 

examination 

1-2-3-4-5-6-7-8-9-

10-11-12-13 
Whole blood, 

serum PB, 

fasting urine 

380 20 samples at 

month 13 

Metabolomics NMR - MS 1-3-5-7-9-11-13 Plasma 200 

Proteomics LC-MSMS -PEA 1-3-5-7-9-11-13 Plasma 200 

Microbiome  Illumina MiSeq 1-6-13 Stool 20 16 samples at 

month 13 

 144 

 145 

DNA methylation assay 146 

The DNA methylation assay was carried out using Diagenode Epigenomic Services (Vienna, Austria, Cat 147 
No. G02090000). PBMC samples were sent for DNA methylation profiling using the Illumina Infinium 148 

MethylationEPIC array BeadChip (850K) platform to analyse the methylation status of more than 149 
850,000 CpGs per sample. This microarray covers D96% of CpG Islands and 99% of annotated RefSeq 150 

genes. We performed the DNA methylation data pre-processing and the corresponding details can be 151 
found in Supplementary Document Section 1. 152 

 153 

Analysis of epigenetic clocks and predictors 154 

We applied 29 different epigenetic age and health trait predictors (see Figure 2). The Skin & Blood 155 

Clock19, Multi-tissue Clock20, HannumAge21, DNAmTL22, PhenoAge23, GrimAge24, GrimAge DNAmPACKYRS 156 
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and GrimAge protein levels (DNAmADM, B2M, CystatinC, GDF15, Leptin, PAI1, TIMP1) were obtained by 157 

Steve Horvath’s DNA Methylation Age Calculator available on http://dnamage.genetics.ucla.edu/. The 158 
MethylDetectR predictions (Age, Alcohol, BMI, HDL, BodyFat, Waist:Hip Ratio and Smoking)25 were 159 

calculated using the code available at https://zenodo.org/record/4646300. The methylation Pace of Age 160 
(mPoA)26 was estimated using the code available at https://github.com/danbelsky/DunedinPoAm38. The 161 

MetaClock27 code was received by e-mail from the author Morgan E Levine. EpiTOC scores were 162 
calculated using the code available in the corresponding publication.28 EpiTOC229 scores were calculated 163 

using the code available from https://doi.org/10.5281/zenodo.2632938, and MiAge30 scores were 164 
calculated using the code available from http://www.columbia.edu/~sw2206/softwares.htm. Alcohol 165 

predictions31 were generated using the dnamlci R package available from 166 
https://github.com/yousefi138/dnamalci. Elliot’s smoking score32, Zhang’s smoking score33 and 167 

EpiSmokEr’s smoking status34 were obtained using the R package EpiSmokEr available at 168 
https://github.com/sailalithabollepalli/EpiSmokEr. 169 

GrimAge, HannumAge, MethylDetectRAge, mPoA, as well as the smoking, alcohol and health trait 170 

predictors, were originally developed for whole blood measurements but have been shown to work well 171 
with PBMCs in our study and others35–38. Table 2 shows the list of clocks implemented in this study 172 

including clocks predicted from clinical, metabolomics, and proteomics data (see the next section). 173 

We also predicted blood counts using minfi39 and the Reinius reference dataset40 as well as IDOL using 174 

the Salas reference dataset41 with the code available from 175 
https://github.com/immunomethylomics/FlowSorted.Blood.EPIC. 176 

The correlation between predicted and chronological age was calculated using Pearson’s correlation. 177 

We excluded technical replicates from the calculation of correlation coefficients. 178 

For the longitudinal analyses of epigenetic predictions, we used the 16 technical replicates available 179 
from our study to estimate technical variation. Two technical replicates were generated within each of 180 

the three DNA methylation time points, and ten additional technical replicates of the two previous time 181 
points were generated at the third time point, providing detailed insight into technical variation 182 

influencing the predictions. We used the maximum absolute difference observed between technical 183 
replicates as a threshold to define potential biological differences across time points after also adding 184 

the chronological time that passed between time points. For example, the maximum absolute 185 
differences observed for the Skin & Blood Clock across technical replicates was 2.56 years (the reported 186 

median error in blood is 2.5 years19), and the threshold we used represents the maximum differences 187 
observed among technical replicates plus the chronological time that passed between the time points 188 

which are maximum 343 days (0.94 years). 189 

For the global analyses of our dataset and the identification of biological outliers of interest based on 190 
our cohort, we introduced a Mean Absolute Deviation (MAD) threshold of +/- 2*MAD and +/- 3*MAD 191 

across all biological replicates.  192 

 193 

 194 

 195 
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Table 2: List of applied clinical and omics ageing clocks. Rows with colours refers to clocks that are 196 

further investigated: yellow, red, and blue rows correspond to the clocks that were estimated using 197 
clinical, proteomics, and DNA methylation data, respectively. 198 

Clock Reference Remarks 

MLR-Levine
42

 Levine, ME. 2013. Gerontol A Biol Sci 

Med Sci. 

Predicts chronological/biological age 

PCA-Levine
42

 Predicts chronological/biological age 

KDM Klemera, P. and Doubal, S. 2006. Mech 

Ageing Dev. 

Levine, ME. 2013. Gerontol A Biol Sci 

Med Sci. 

Predicts chronological/biological age 

ProtAge-Tanaka
43

 Tanaka, T., et al. 2018. Aging Cell. Predicts chronological/biological age 

ProtAge-MD
44

 Macdonald-Dunlop, E., et al. 2022. 

Aging. 

Predicts chronological/biological age 

ClinAge-MD
44

 Macdonald-Dunlop, E., et al. 2022. 

Aging. 
Overestimated BA (median BA 750 years), 

not shown 

MetaboAge-MD
44

 Overestimated BA (median BA 600 years), 

not shown 

MetaboAge-vdA
45

 van den Akker, EB., et al. 2020. Circ 

Genom Precis Med. 

Underestimated BA (median BA –5000 

years), not shown 

Metabonomics
46

 Hertel, J., et.al. 2016. Journal of 

Proteome Research.  

Missing variables (only 22% vars. are 

available), not shown 

Skin & blood clock
19

 Horvath, S., et al. 2018. Aging. Predicts chronological age 

MethylDetectR 

Age
25

 

Hillary, R. and Marioni, R. Predicts chronological age 

Multi-tissue clock
20

 Horvath, S. 2013. Genome Bioloy. Predicts chronological/biological age 

Hannum clock
21

 Hannum, G., et al. 2013. Molecular Cell.  Predicts chronological/biological age 

mPoA
26

 Belsky, D., et al. 2020. eLife. Predicts the pace of ageing 

PhenoAge
23

 Levine, M., et al. 2018. Aging. Predicts health- and lifespan 

GrimAge
24

 Lu, A., et al. 2019. Aging. Predicts health- and lifespan  

Metaclock
27

 Liu, Z., et al. 2020. Aging Cell. Predicts mortality 

EpiTOC
28

 Yang, Z., et al. 2016. Genome Biology. Predicts mitotic age 

EpiTOC2
29

 Teschendorff, A.E. 2020. Genome 

Medicine 

Predicts mitotic age 

MiAge
30

 Youn, A., and Wang, S. 2018. 

Epigenetics. 

Predicts mitotic age 

DNAmTL
22

 Lu, A., et al. 2019. Aging. Predicts telomere length 

  199 

 200 

 201 
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Analysis of Clinical, Metabolomics, and Proteomics Clocks 202 

The monthly clinical and bi-monthly metabolomics as well as proteomics data were used for predicting 203 
longitudinal biological age using several published calculators. We applied the multiple linear regression 204 

(MLR) model and principal component analysis (PCA) developed by Levine et al.42 –they will be referred 205 
to as MLR-Levine and PCA-Levine– to the clinical data that consist of samples from 12-13 time points per 206 

individual. The model prediction involves both clinical and physiological measurements, including total 207 
cholesterol level, glycated haemoglobin, C-reactive protein, systolic blood pressure, forced expiratory 208 

volume (FEV), and cytomegalovirus (CMV).  In the IAM Frontier data, FEV and CMV were not measured, 209 
but we imputed the values with the corresponding median from the original study47. The same clinical 210 

variables as in the PCA-Levine model were further used to predict the biological age using the Klemera 211 
and Doubal method (KDM).48  Unlike the MLR-Levine and the PCA-Levine, KDM also incorporates 212 

chronological age in their estimation procedure. Similarly, we also computed other biological age 213 

predictions based on similar clinical biochemistry variables developed by McDonald-Dunlop et al.44 214 

The proteomics and NMR metabolomics data consist of samples from six to seven time points per 215 

individual, where the samples were sent to the laboratory in four different batches. For the proteomics 216 
data, batch correction normalisation was done prior to the analysis to reduce the technical variation 217 

between batches/plates49. We performed PCA and multidimensional scaling (MDS) analyses for the 218 
metabolomics data, where we did not observe any batch effects, so the raw metabolite abundances 219 

were used. In both datasets, there are twenty subjects with technical replicates spread across different 220 
time points. We performed a procedure for selecting the samples (between the originals and the 221 

replicates) by computing cosine similarity coefficients for all samples. The samples with the closest 222 
similarity to the rest of the individuals’ measurements were selected. Further, we predicted the 223 

biological age using other published proteomics and metabolomics clocks: ProtAge-MD (from 224 
McDonald-Dunlop et al.16), MetaboAge-MD, ProtAge-Tanaka, MetaboAge-vdA, and Metabonomics43–46. 225 

Software tools and programming language 226 

The network (Figure 2) was created in Gephi version 0.9.550 and Cytoscape version 3.8.251. All data 227 

analyses were conducted in the R statistical environment version 3.5.1, 4.1.0 and 4.1.3. 228 

Results  229 

From March 2019 to March 2020, the IAM Frontier study collected monthly samples and data (via online 230 

questionnaires and wearable sensors) from 30 healthy (no diagnosed chronic diseases, no self-reported 231 
illnesses except hypertension) and highly motivated individuals.  An intake interview was performed to 232 

check whether the volunteers fit the inclusion and exclusion criteria (health, age, sex balance) and to 233 
assess their motivation to join and stay within the study, as the study required monthly site visits for 234 

sample collection, continuous wearing of sensors and weekly questionnaires. All individuals were 235 
followed up with study doctor visits to inform them about their health status (from the clinical grade 236 

biomarkers) as well as provided with genetic counselling with certified personnel when necessary. The 237 
study design is illustrated in Figure 1. 238 

In this study, we first explore the global pattern of the values resulting from a multitude of ageing clocks 239 

and examine their utility in predicting personal wellness, health, and biological age (BA). These clocks 240 
were computed for all the IAM Frontier individuals, utilising their clinical biochemistry and physiological 241 
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data (such as blood pressure, weight, and height), DNA methylation, metabolomics, and proteomics242 

measurements. Further, we investigate how these clocks predict outcomes across different time points,243 

leveraging the longitudinal nature of the IAM Frontier study. Individuals with interesting findings are244 

subjected to further investigation to demonstrate the importance and the relevance of the omics clocks245 

as personal health assistants, capable of monitoring and assisting the clinical examination and diagnosis.246 

 247 

 248 

Figure 1: Study design of the IAM Frontier. Longitudinal comprehensive data were collected over the249 

course of the study including monthly physiological and clinical biochemistry data (13 time points),250 

bimonthly proteomics and metabolomics data (7 time points), and six-monthly DNA methylation and251 

microbiome data (3 time points). The study participants consist of 15 males and 15 females, with a252 

(chronological) age range of 45 – 59 years old. 253 

 254 

Figure 2 shows the overview of ageing clocks that can be estimated from various omics measurements255 

We categorise these clocks according to their utility in predicting 1) BA, 2) blood counts, 3) health traits256 

such as smoking status, alcohol consumption and body mass index (BMI), and 4) plasma protein levels257 

By using DNA methylation data, 13 clocks aim to predict age, one clock to predict blood counts, 11258 

clocks to predict health traits, and seven clocks to predict plasma protein levels. In addition, three259 

clinical biochemistry clocks, three metabolomics, and two proteomics clocks can also be used for260 

predicting BA from clinical biochemistry data, NMR metabolomics, and Olink proteomics measurements261 

In this study, we focus on investigating the ageing clocks that are particularly useful in predicting BA. 262 
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263 

Figure 2: The overview of published clinical and omics ageing clocks and predictors discussed in this264 

article. The predictors are grouped based on their purpose on predicting age, blood counts, health traits,265 

and protein levels. Each node represents one predictor connected to another. In the left-hand panel, the266 

edges represent the ratio of shared parameters, e.g., there are 26 shared parameters between the267 

MetaboAge-vdA clock and the MetaboAge-MD clock, hence the thickest edge. The size of each node268 

represents the total number of parameters used in each clock. The right-hand panel shows all DNA269 

methylation predictors used in this study. Edges indicate the parameters used for each predictor. Due to270 

the high numbers of DNA methylation sites used by the predictors, nodes and edges are shown in271 

standard sizes, with no relation to the number of features used or shared. 272 

 273 

In general, in each data type, different ageing clocks use a different set of features. The features used in274 

ageing clocks will further be referred to as variables. Figure 2 shows that there are some variables that275 

are shared and utilised in more than one clock, as demonstrated by the edges between clocks (see MLR-276 

Levine and KDM). It is also possible that these variables are shared across different data types, for277 

example between the MLR-Levine and the Metabo-MD where albumin is utilised in both clocks. Albumin278 

and several other variables are present in the clinical biochemistry and metabolomics data; they refer to279 

the same clinical compounds but are measured by different technologies. Since our study focuses on280 

ageing clocks that aim to predict BA, it is also worth noting that there are several omics ageing clocks281 

that include chronological age (CA) in their algorithm, for example, GrimAge and KDM. GrimAge also282 

includes sex and plasma protein levels predicted from the DNA methylation data in its calculation.  283 

Epigenomic, metabolomic and proteomic data are high dimensional. The IAM Frontier study collected284 

the DNA methylation measurements of more than 850,000 sites per sample using Illumina’s Infinium285 

MethylationEPIC BeadChips as well as 1,068 proteins and 249 metabolites were measured in the286 

metabolomics and proteomics data of IAM Frontier, respectively. Large numbers of variables are used in287 
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ageing clocks working with these data types. Although several epigenetic age clocks based on only a few 288 

loci have been proposed26,52, they tend to be less accurate. The most widely used epigenetic clocks and 289 
predictors incorporate between 7121 and 1030 CpGs24. In comparison, ageing clocks based on clinical 290 

biochemistry data or other omics data (metabolomics, proteomics) require nine to 203 parameters42,44.  291 

The clocks we implemented are presented in Table 2. Some of the clocks were not further investigated 292 

due to showing unrealistic predictions, unavailable model coefficients (e.g., the model intercept 293 
coefficients are not published in the MetaboAge-MD clock), or unavailable variables (e.g., due to 294 

differences in the omics technology, around 80% of the required metabolites used in the Metabonomics 295 
clock were not measured in the IAM Frontier dataset)22,26–30,44–46. Different sets of variables with 296 

different sizes are involved in each clock. The included algorithms do not constitute an exhaustive list 297 
but were selected in their applicability to the IAM Frontier study with high confidence due to data 298 

availability and matching underlying assumptions.  299 

Although the study’s main objective is focused on BA prediction, CA is still incorporated in some 300 
analyses. While CA may not provide the most robust description of human ageing, it offers the most 301 

convenient way to calculate age and is perceived as a standard measure of ageing. Stratification by CA 302 
group is also often done, for example in clinical reference intervals53,54. For this reason, we believe it is 303 

valid to compare the predictions of BA with the subjects’ CA; see the Pearson correlation coefficients in 304 
Table 3. All the clocks shown in Table 3 are significantly correlated with CA; MethylDetectR and the Skin 305 

& Blood clock give the highest correlation coefficients, �=0.90 and �=0.87, respectively. This is not 306 
unexpected, as both clocks were developed to predict CA. The kernel densities of the predicted BA as 307 

well as CA are shown in Figure 3.  The predicted Skin & Blood clock age gives a similar kernel density as 308 
the CA, both in the position as well as the shape.  From this perspective, we may suggest this clock as 309 

the best tool to measure individuals’ chronological ageing. However, the correlation between 310 
chronological age and predicted age among all measured biological clocks is the highest for 311 

MethylDetectRAge, another chronological age predictor (Pearson’s �=0.91), although its predictions 312 
appear to be slightly shifted towards older ages in our dataset.  GrimAge, with �=0.85, gives a position 313 

of the kernel similar to the chronological age, but with a different shape. GrimAge aims to predict 314 
lifespan and healthspan, and as a remark, it also incorporates chronological age in its calculation, unlike 315 

the other clocks which are solely based on DNA methylation markers, other omics, or clinical 316 

measurements. The same remark also applies to KDM-Levine clock, with �=0.76 and an identical 317 
position of the kernel density as compared to the chronological age.   318 

We performed different data exploration approaches to compare the BA predictions of each individual 319 
who participated in the IAM Frontier study. At each BA predictor, we observed smaller within-person 320 

predictions at different time points (focusing on inter-individual variability) than the between-person 321 
predictions at the same time point (focusing on intra-individual variability). The small inter-individual 322 

variabilities essentially show that the predictions within individuals are closer to each other than 323 
between the peers; this observation is similar to the characteristics of common clinical biomarkers when 324 

they are measured longitudinally. Therefore, it is reasonable to analyse the results by looking at the 325 
differences between individuals, and further explore the fluctuation of the predictions within each 326 

individual separately. In Figure 4A, for example, age accelerations which correspond to the difference 327 
between predicted BA and CA are shown at time points two, eight, and 13; the time points that are 328 

shared between all omics and clinical data. Fairly distinct predictions are observed for each clock, and 329 

fluctuations are also seen between time points. Within the same clock, we observe that the between-330 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 29, 2024. ; https://doi.org/10.1101/2024.02.28.24303427doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.28.24303427
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

12 
 

individual fluctuations are larger than the within-individuals’. The age acceleration predictions of 331 

GrimAge, the Skin & Blood clock, KDM-Levine, PCA-Levine, and ProtAge-Tanaka are close to zero, i.e. 332 
their predicted BA values are close to the corresponding CAs. Referring to the estimated kernel density 333 

in Figure 3, the predicted values of these clocks are similar to the CA with reference to the location. The 334 
predictions observed in the clinical and proteomics data for all time points are shown in Figure 4B. 335 

Table 3: Correlation between predicted age and chronological age. Significant correlations are 336 
displayed in bold (at p<0.05). *GrimAge and KDM incorporate chronological age in their calculation. 337 

Predictor Corr. coefficent p-value 
MethylDetectRAge 0.90 2.0E-30 
Skin & blood clock 0.87 3.5E-26 
GrimAge 0.85 1.1E-23 
Multi-tissue clock 0.81 1.6E-19 
KDM 0.76 2.2E-16 
ProtAge-MD 0.67 2.2E-16 
PhenoAge 0.66 3.8E-11 
Hannum clock 0.65 4.8E-11 
ProtAge-Tanaka 0.60 2.2E-16 
MetaClock 0.56 8.7E-08 
PCA-Levine 0.48 2.2E-16 
MLR-Levine 0.40 1.4E-15 
ClinAge-MD 0.37 1.2E-13 
EpiTOC 0.25 2.4E-02 
MiAge 0.20 7.6E-02 
MetaboAge-vdA 0.18 8.6E-03 
mPoA 0.18 1.1E-01 
MetaboAge-MD 0.08 2.6E-01 
EpiTOC2 0.04 7.4E-01 

 338 

We continue the analyses by investigating the BA and health traits predictions in all IAM Frontier 339 
participants. Due to the small sample nature of the IAM Frontier study, we are able to examine the 340 

individual predictions resulting from all clocks.  Figure 5A shows the ordered heatmaps of the predicted 341 
BAs as well as the health trait predictions in all individuals at time points two, eight, and 13. These were 342 

selected because the results of all clocks are available at these time points, see Table 1. In Figure 5B, the 343 
MAD thresholds were computed and were used to give the colour annotations. Therefore, only 344 

deviating predictions appear coloured in the figure. We can observe distinct patterns for ID06, ID08 and 345 
ID27, detailed below. In Figure 6B, we show the clinical laboratory profiles of these individuals. 346 

ID06 shows very high smoking predictions. ID06 is a current smoker, indeed, and hence has a higher risk 347 
of developing cardiovascular diseases (CVD) and diabetes (Supplementary Figure 3 of CVD and diabetes 348 

disease risk scores). From the individual plots in Figure 6A, we also observe that the BA predictions of 349 

ID06 increase over time for some of the ageing clocks, such as in the Skin & Blood clock and PhenoAge. 350 
This individual was also biologically older at all time points according to the KDM and ProtAge-Tanaka 351 

clocks. However, the clinical laboratory profiles of ID06 show an increasing trend of the lipid 352 
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measurements, in line with this individual’s increased risk of CVD and diabetes. Interestingly, ID06’s B-353 

cell percentages are higher than the normal range, and the CD4 T-cell and lymphocyte counts are low354 

This could show that this individual might also have problems with antibodies and the immune system355 

In the questionnaires, ID06 did not report major health burdens except that this individual felt having356 

low energy, tense muscles, and constant fatigue, with the latter two commonly reported among the357 

study participants. 358 

 359 

 360 

Figure 3: Kernel density plots of BA predictions from several ageing clocks and their correlations with361 

the chronological age (CA). 362 

 363 

ID08 appears as the only individual with predicted shortened telomeres across both measured time364 

points based on the DNAmTL clock, as seen in Figure 5B. This result may indicate premature ageing. In365 

addition, in almost all the applied epigenetic clocks, this individual was also predicted to be366 

epigenetically older at the second time point compared to the first (see Figure 6A). The lipid367 

(cholesterol) profiles of ID08 (see Figure 6B) show an alarming status; the measurements are out-of-368 

normal range at almost all time points. Other clinical parameters are still within the normal limits,369 

although the percentages of CD8 T-cell and lymphocyte are high compared to the peers. Based on the370 

weekly questionnaires, during the course of this study, this individual experienced constant fatigue,371 

diarrhoea, numbness, indigestion, sleeping problems, stuffy nose, and blurry vision, see Supplementary372 

Figure 5. Although ID08 does not appear to report all of these health burdens at a significantly higher373 

level than the other study participants, together with the rapid epigenetic ageing and high lipid profiles374 
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observed, they might provide additional support to the premature ageing condition predicted by the375 

DNAmTL clock. 376 

ID27 appears to be different in our analyses in many ways, although most of the epigenetic, proteomic377 

and clinical ageing clocks predict this individual to be in a healthy state – healthier and biologically378 

younger than the peers. However, ID27 shows very strong outlier BA predictions corresponding to the379 

Hannum clock as well as very different smoking and health trait predictions. It is the only subject with a380 

completely distinct Hannum age acceleration compared to the peers at all time points, epigenetically381 

younger at the second time point as compared to the first across all clocks, and with conflicting smoking382 

predictions (this individual was not a current smoker). The BA predictions of the clinical and proteomics383 

clocks also show a general decreasing trend over time, where ID27 was biologically younger than384 

chronologically, according to some of those clocks. In addition, from the DNA methylation and385 

proteomics analyses, this subject is discovered to be far outside the main cluster in the corresponding386 

PCA plots (Supplementary Figure 4a and 4b). When looking at DNA methylation predicted blood cel387 

composition, we observe a strongly increased proportion of B cell (Supplementary Figure 6). The finding388 

is confirmed by actual blood counts showing the same abnormalities, clearly indicating a hematologica389 

problem. This explains why ID27’s age predictions appear as extreme outliers according to Hannum’s390 

clock, as it is sensitive to blood composition changes, and may also explain the conflicting and391 

unexpected outlier predictions obtained for several health traits such as smoking and alcohol intake,392 

among others. Throughout the study period, ID27 reported constant medium backpain, a slight393 

headache and blurry vision. 394 

395 

Figure 4: Age acceleration of all IAM Frontier participants in different clocks. (A) Age acceleration based396 

on the Multi-tissue clock (pink), Skin & Blood clock (yellow), PhenoAge (green), GrimAge (orange),397 

MethylDetectR (light blue), and Hannum clock (black). (B) Age acceleration based on MLR-Levine clock398 
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(brown), PCA-Levine clock (light pink), and KDM clock (blue). (C) Age acceleration based on ProtAge-399 

Tanaka (grey) and ProtAge-MD (tosca). 400 

As the final analysis, we present an unsupervised heatmap and clustering of all predictions and actual 401 

measurements of our study in Figure 7. This analysis shows potential patterns arising when all clocks 402 
and measurements are included and how they may be related to each other.  For example, predictions 403 

from epigenetic clocks with high Pearson correlation coefficients with CA (MethylDetectRAge, Skin & 404 
blood clock, GrimAge) are indeed clustered together with CA, showing a strong linear relationship and 405 

possibly similar predictive mechanism. However, clinical, proteomics, and metabolomics-based clocks 406 
stand apart from this cluster, suggesting their predictive mechanisms may be distinct despite their 407 

significant correlations with CA.   408 

Also in Figure 7, ID06 and ID27 are clearly seen to be different in several indicators, especially in the 409 
blood cells prediction. Our results for ID06, ID08, and ID27 as described above illustrate that the 410 

deviation of human biological ageing can be discovered when a comprehensive analysis within the 411 
biological age prediction framework is done. The IAM Frontier study followed a communication strategy 412 

to discuss these findings, or so-called incidental findings (IF) including genetic alterations back to the 413 
IAM Frontier participants55. Different clocks can show various results, and additional analyses on further 414 

assessment types, such as clinical laboratory tests and reports on personal health problems, can 415 
complement and enhance the acquired insight. 416 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 29, 2024. ; https://doi.org/10.1101/2024.02.28.24303427doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.28.24303427
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

16 
 

 417 

Figure 5: a) Ordered heatmap. ID06 has higher predicted smoking scores and ID27 is an outlier in several 418 
predictions. A slight sex effect is also visible. b) Reduced ordered heatmap based on MAD thresholds. 419 
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 420 

Figure 6: a) Age acceleration of ID06, ID08, and ID27. Prediction values that are significantly different 421 

from the rest of the cohort are marked with full circles. b) Clinical and blood cell profiles of ID06, ID08, 422 
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and ID27. Measurements that are outside the cohort reference intervals are marked with full circles. The423 

blood cell counts are shown in percentages.  424 

425 
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Figure 7: Unsupervised heatmap of the estimates of all clocks and predictors together with the actual 426 

measurements. All participants in three DNA methylation time points are included. The clustering based 427 
on the Manhattan-Ward D distances is also showed, annotated by participants’ age and sex. 428 

Discussion and conclusion 429 

Age stands as the principal risk determinant for ailments, impairments and diseases. The pursuit of 430 

mitigating age-related illnesses and extending the healthful years of life has led to the innovative idea of 431 

directly targeting the ageing process to restore physiological functionality. Realising this ambitious goal 432 
necessitates the precise assessment of biological age and the pace of ageing at the molecular level. 433 

Propelled by the latest breakthroughs in high-throughput omics technologies, a novel suite of tools has 434 
emerged for the quantitative analysis of biological ageing. By leveraging data from various domains such 435 

as epigenomics, proteomics, and metabolomics, and employing machine learning techniques, “biological 436 
ageing clocks” have been constructed. These clocks have proven their ability to pinpoint potential 437 

biomarkers of biological ageing, offering unprecedented insights into the ageing process. 438 

A recent review paints today’s landscape of biological age (BA) prediction algorithms using omics 439 

technologies56. These methods were claimed to better represent the biological state of an organism 440 
than the chronological age (CA). Ageing clocks for BA are also starting to appear as commercial products, 441 

serving as a window into the personal health status. In this manuscript, we use a unique deep-442 
phenotyping dataset that allows us to perform and analyse multiple BA predictors using different data 443 

types side by side. The longitudinal nature of the data enables us to study the individuals’ fluctuations 444 

between time points, exploring their changes in BA predictions over time.  We optimise our analyses 445 
using the extensive set of technical replicates (see Table 1) generated to estimate technical variation in 446 

our dataset and design our analyses correspondingly (see Methods and Supplementary Material Section 447 
1). 448 

The BA analyses in the IAM Frontier data shows that BA predictions can fluctuate over time; both an 449 
increase and a decrease might happen depending on the biological conditions rather than monotonically 450 

increase by time, as in CA. Repeated measurements over time are highly valuable, as outliers can also be 451 
caused by normal biological fluctuations. In our study, most BA predictions seem to be “stable”, that is, 452 

within the expected range of variability across the available time points. However, there are individuals 453 
whose predictions do change more than expected over time, and where this is the case, they are often 454 

consistent across multiple BA predictors and time points. A comprehensive exploration of the BA 455 
prediction differences between individuals of our study leads to three individuals with distinct BA 456 

predictions as compared to their peers.  457 

The BA predictions of ID06, ID08 and ID27, give a good example where information from different data 458 
types can not only support the results of standard laboratory tests but also provide additional insight. 459 

For example, the lipid laboratory test of ID08 shows a worrying result where almost all measurements 460 
fall outside the normal ranges. By applying different BA predictors, we discovered that this individual is 461 

also predicted to have significantly shortened telomeres across all time points, an indicator of 462 
potentially accelerated ageing. 463 

Another important finding is that despite not reporting major or more severe symptoms than the peers, 464 

ID27 shows strongly altered epigenetic predictions which are reflected in blood cell count abnormalities 465 
observed in all antibody-related blood cells. These strong alterations may be what impacted some of the 466 
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reported epigenetic health trait predictions. Of note, according to the developers of those health trait 467 

predictors, they should currently only be used at a population level and are not yet supposed to provide 468 
reliable predictions at the individual level. Training data from larger-scale cohorts, including diseased 469 

individuals, will be required to refine these additional health trait predictors and enable their clinical 470 
use25. Irrespectively, the clearly abnormal epigenetic measurements and predictions of ID27 would 471 

undoubtedly also have led to further clinical tests if detected in a wellness- or preventative healthcare 472 
setting, revealing the ongoing but previously undetected pathological process. 473 

Taken together, our findings demonstrate the value and potential of epigenetic predictors and biological 474 
age estimators, particularly for risk assessment and early detection. They can reveal unexpected 475 

deviations and inform about the probability of having or developing a disease, for example, as shown 476 
here with individual ID27. They can also contribute to known clinically relevant outcomes and serve as 477 

vital instruments for explaining many biological phenomena. Currently, the extensive and complex 478 
preprocessing procedures required to obtain high quality results from omics data are still hindering 479 

many of the corresponding predictors from developing their full clinical potential, in particular at the 480 

individual level. However, with the field growing and maturing, we argue that BA predictions should be 481 
considered as crucial biomarkers that can well-complement routine medical tests and CA.  482 

Indeed, omics data have already begun to enter clinical practice57, making omics-based BA predictions 483 
feasible. Added to standard laboratory results, they can give a valuable complementary outlook assisting 484 

the doctors’ decision-making. Once omics technologies have been fully incorporated into the medical 485 
routine, BA predictions will likely become standard measurements regularly discussed between patients 486 

and medical professionals. A novel personalised value to identify the “normal” BA for an individual could 487 
also be estimated, together with common clinical measures, to provide precise individual 488 

interpretations58,59. Further longitudinal studies with a more diverse population, including diseased 489 
patients, will undoubtedly give broader assurance and validation of the significance of BA predictions at 490 

the personal level. 491 

As the field of biological ageing advances, the construction of BA using ageing clocks employing diverse 492 
data sources such as epigenomics, proteomics, and metabolomics could be proven effective in 493 

uncovering novel biomarkers of biological ageing. The contemporary trend of profiling cohorts through 494 
multi-omics technologies is paving the way for a more comprehensive understanding of the molecular 495 

underpinnings of ageing. Future endeavours to weave multi-omics into ageing clocks are poised to not 496 
only broaden our grasp of the molecular signatures that characterise ageing but also enhance the 497 

predictive powers of these models. Furthermore, the successful incorporation of physiological and tissue 498 
function parameters into ageing clock models could open new avenues of exploration. The continued 499 

expansion of this integrative approach is anticipated to provide more discernible and actionable insights, 500 
solidifying the role of ageing clocks as indispensable tools in the evolving landscape of personalised 501 

medicine and ageing research. 502 
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