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Abstract 

Background: In mid-November 2021, the SARS-CoV-2 Omicron BA.1 variant was detected in 

Southern Africa, prompting international travel restrictions of unclear effectiveness that exacted a 

substantial economic toll.  

Methods: Amidst the BA.1 wave, we tested 13,294 COVID-19 patients in 24 African countries 5 

between mid-2021 to early 2022 for BA.1 and Delta variants using real-time reverse transcription-

PCR tests. The diagnostic precision of the assays was evaluated by high-throughput sequencing in 

four countries. The observed BA.1 spread was compared to mobility-based mathematical 

simulations. 

Findings: By November-December 2021, BA.1 had replaced the Delta variant in all African sub-10 

regions following a South-North gradient, with a median Rt of 2.4 up to 30 days before BA.1 

became predominant. PCR-based South-North spread was in agreement with phylogeographic 

reconstructions relying on 939 SARS-CoV-2 genomes from GISAID. PCR-based reconstructions 

of country-level BA.1 predominance correlated significantly in time with the emergence of BA.1 

genomic sequences on GISAID (p=0.0035, cor=0.70). First BA.1 detections in affluent settings 15 

beyond Africa were predicted adequately in time by mobility-based mathematical simulations 

(p<0.0001). BA.1-infected inbound travelers departing from five continents were identified in five 

Western countries and one Northern African country by late November/early December 2021, 

highlighting fast global BA.1 spread aided by international travel. 

Interpretation: Unilateral travel bans were poorly effective because by the time they came into 20 

effect, BA.1 was already widespread in Africa and beyond. PCR-based variant typing combined 

with mobility-based mathematical modelling can inform rapidly and cost-efficiently on Rt, spread 

to inform non-pharmaceutical interventions. 

Funding: Bill & Melinda Gates Foundation and others. 
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Introduction 

By December 2023, over 6.9 million people had died from coronavirus disease 2019 (COVID-19) 

(https://data.who.int/dashboards/covid19/cases). The true number of infections and deaths is 

probably underreported, particularly in Africa where the diagnostic capacities are low.1 In Africa, 

the World Health Organization (WHO) estimates that only 14% of all Severe acute respiratory 5 

syndrome coronavirus 2 (SARS-CoV-2) infections have been detected2 and regional post-mortem 

data suggest the real COVID-19 death toll may be underestimated.3 

SARS-CoV-2 has evolved rapidly throughout the COVID-19 pandemic. The most pronounced 

viral change was the emergence of the Omicron variant (BA.1), which was first reported on 

November 11, 2021, in a patient from South Africa. Within a few weeks, BA.1 was reported in 87 10 

countries,4 prevailing over Delta to become the predominant SARS-CoV-2 variant globally by the 

end of December 2021.5 BA.1 had more than 50 non-synonymous mutations compared to ancestral 

SARS-CoV-2 strains, mostly located in the gene encoding the viral spike protein 

(https://covariants.org/). These included mutations contributing to effective viral evasion of 

immune responses elicited by vaccination or prior infection6 and mutations favoring BA.1 entry 15 

via the receptor-independent endosomal pathway and entailing increased replication of BA.1 in 

epithelial cells from the upper respiratory tract.7 Efficient immune evasion and infection of the 

upper respiratory tract were likely key to the explosive global spread of BA.1.8 

In response to the emergence of BA.1, the United States of America, the European Union, the 

United Kingdom, and several other African and non-African countries restricted international 20 

travel by the end of November 2021 for four to six weeks from and to Southern and Eastern African 

countries, including Botswana, Lesotho, Mozambique, Namibia, South Africa, Swaziland, 

Zambia, and Zimbabwe.9,10 The direct economic loss in South Africa alone caused by these travel 

restrictions was estimated to be 600 million US dollars.11 Despite the unilaterally deployed travel 

bans, BA.1 spread rapidly to all continents12 putting their effectiveness into question. Here, we 25 

present the results of an epidemiological molecular study conducted during the BA.1 wave to 

elucidate the spatiotemporal spread of BA.1 across Africa.  
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Methods 

Study participation 

We invited 39 laboratories in 34 African countries to join the study. 27 laboratories agreed to 

participate and were supplied with diagnostic kits (Fig. 1A). All laboratories provided results from 

re-testing specimens from patients or inbound travelers undergoing mandatory PCR testing upon 5 

arrival, all of whom were positive for SARS-CoV-2 in routine diagnostic testing. 

 

Molecular testing 

A real-time RT-PCR test (Table S1) using hydrolysis probes for SARS-CoV-2 detection and 

genotyping of BA.1 and Delta variants was designed to target a BA.1-specific marker (spike 214 10 

EPE insertion) which is near-absent in other Omicron lineages, and a Delta-specific marker (spike 

deletion 157/158). The test achieved an in-silico specificity of 98.7% for BA.1 and 99.8% for 

Delta according to GISAID data available by January 18, 2022 (Table S2), when most samples 

analyzed in this study had been collected (Fig. 1B).  

 15 

Statistical analyses and data handling  

Data cleaning and all analyses were conducted in R version 4.2.1. Patient information included, 

beyond PCR results, age, sex, location and date of sample collection, laboratory code, and sample 

ID. Of 14,689 re-tested samples, 13,294 met inclusion criteria (Table 1, S3).  

 20 

Data cleaning for modelling of Rt and BA.1 takeover 

To reduce the impact of potential false-positive BA.1 PCR test results and of potential BA.1 

ancestors harboring the BA.1 marker but not genetically classifiable as BA.1, the dataset was 

filtered. The dates of first hypothetically expected true BA.1 cases were calculated backwards 

country-wise considering the date when BA.1 became dominant in our data, the doubling time (set 25 

to three days13), and population sizes (formula in Supplementary methods). The doubling time was 

Samples positive for the BA.1 marker that were collected before the estimated first case were 

removed.  
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Estimation of the BA.1 fraction among SARS-CoV-2 infections 

First, different generalized linear models (glms) were fitted to the country-stratified PCR data and 

compared with the moving average of the BA.1 fraction measured by PCR. The moving average 

was calculated with a window size of 21 days to reduce the impact of sampling gaps. The best 

model was selected based on the Akaike information criterion (AIC) and optical evaluation of the 5 

predicted values. The mean AIC (Table S4) and the predicted BA.1 fraction at the beginning of 

the studied timeframe (June 2021) (Fig. S1-2) supported to fit glms using the formula “y ~ x”. 

PCR data were grouped by African sub-regions according to the African Union scheme 

(https://au.int/en/member_states/countryprofiles2). Next, glms were fitted using the grouped and 

filtered data in R. BA.1 dominance was defined by >50% of tested samples being positive for 10 

BA.1. 

 

Estimation of the time between the first BA.1 case and BA.1 predominance  

Countries for which the date of BA.1 becoming the dominant variant was predicted before the first 

date of BA.1 detection in this study were excluded from calculating the time difference between 15 

the first BA.1 case and BA.1 predominance.  

 

Rt estimation 

To estimate Rt for BA.1, a glm was employed to estimate the relative fraction of BA.1 among all 

SARS-CoV-2 cases for each country represented in this study based on PCR results. Daily 20 

estimated BA.1 cases were calculated by multiplying the modelled BA.1 fraction with reported 

SARS-CoV-2 cases. Rt was calculated using the EpiEstim package in R. The serial interval was 

set to 3.3 days (standard deviation 2.4 days) based on epidemiological analyses of BA.1.8,13 

 

Estimation of daily BA.1 and Delta variant cases 25 

To estimate daily infections with the BA.1 and Delta variants, the estimated fraction of a specific 

variant among all SARS-CoV-2 cases in one country was multiplied with the country-specific 

smoothed new cases per million people as reported by WHO (accessed via Our World in Data by 

May 20, 2022). 

 30 
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Simulation of the BA.1 spread 

The global spread of BA.1 was simulated using a Global Epidemic and Mobility Model (GLEAM) 

in the GLEAMviz Simulator version 7.214. The simulator combines a SEIR (“Susceptible”, 

“Exposed”, “Infected” and “Recovered”) model (details in Fig. S3) with a metapopulation network 

approach assigning cells to closest airports. Roughly 3,300 subpopulations are interconnected by 5 

flight connections (retrieved from Official Airline Guide and International Air Transport 

Association, https://www.iata.org). Commuting data is included to simulate short distance spread. 

Multi-run simulations (ten simulations) were conducted for each model. Simulations were started 

on November 11, 2021, corresponding to the collection date of the first identified BA.1 cases in 

Botswana and simulated for 109 days until end of February, 2022, when BA.1 cases declined.15 10 

Active BA.1 cases at simulation start were defined for Cape Town, Durban, Johannesburg (South 

Africa), and Gaborone (Botswana) where first BA.1 cases were identified.16 The number of BA.1 

cases for the simulation were calculated by multiplying the PCR-based predicted BA.1 fraction for 

South Africa and Botswana with reported SARS-CoV-2 cases. As SARS-CoV-2 cases are likely 

underreported,2 11 additional simulations were calculated with 1.5-fold increasing BA.1 starting 15 

cases (Table S5). Each simulation was calculated with 13, 31, and 49% pre-existing immunity 

based on recent observations,17 resulting in 36 simulations.  

The GLEAMviz simulation of daily BA.1 cases fitting best the estimated daily BA.1 cases was 

identified by analyzing least sum of squares of data grouped by African regions. Correlation was 

analyzed by Pearson correlation coefficient. 20 

 

Phylogeographic analyses 

For phylogeographic analyses, all African GISAID entries classified as BA.1 available on 

February 26, 2023, with a collection date before December 2021 were retrieved and filtered for at 

least 95% of genome coverage. A discrete phylogeographic diffusion model was applied in 25 

BEAST using a tip-dated dataset and country-level midpoints to identify signs of geographical 

migration as previously described.18 SpreaD3 was applied to visualize the geographical association 

of phylogenetic lineages and geographical diffusion. In addition to posterior probabilities of 

geographic transitions, Bayes factors were calculated by dividing the likelihood of the alternative 

hypothesis (origin in South/Southern Africa) by the likelihood of the null hypothesis (origin not in 30 

South/Southern Africa).  
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High-throughput sequencing 

In Benin, SARS-CoV-2 samples were prepared for HTS-based sequencing using the EasySeq™ 

SARS-CoV-2 WGS Library Prep Kit (NimaGen). Sequencing was conducted using the MiSeq 

Reagent Kit v3 (Illumina). Up to 80 samples prepared using different adapters, were pooled in one 

sequencing run. HTS reads were analyzed using the CoVpipe pipeline 5 

(https://gitlab.com/RKIBioinformaticsPipelines/ncov_minipipe/-/tree/master/covpipe). In South 

Africa and Botswana, samples were sequenced using an Oxford Nanopore Technologies-based 

workflow as described previously.19 In Guinea, samples were sequenced using both Illumina 

NextSeq500 system and Oxford Nanopore Technologies. 

 10 

Results 

The clinical sensitivity and specificity of the provided genotyping PCR kits among 811 samples 

from this study were 92.4% and 100% for the Delta test and 99.6% and 97.6% for the BA.1 test in 

reference to HTS-based classification of SARS-CoV-2 sequences (Table S6). Eight samples 

wrongly reported as BA.1 by laboratories with available HTS data all lacked the spike 214 EPE 15 

insertion targeted by the test, suggesting false-positive results during reporting or BA.1 

contamination of samples which is supported by high Ct values (>35) in the BA.1 test for four 

samples where Ct values were available. The predicted high specificity of BA.1 detection 

according to genomic database entries was confirmed in vitro by the absence of the BA.1 marker 

in 545 SARS-CoV-2-positive respiratory samples from Benin, Western Africa, collected between 20 

January and April 2021.20 In total, 13,294 samples from laboratory-confirmed COVID-19 patients 

from 24 African countries and 225 municipalities (Fig. 1A) sampled during mid-2021 to early 

2022 were included in this study (Fig. 1B).  

 

Across African countries, BA.1 replaced Delta as the predominant SARS-CoV-2 variant by 25 

December 2021 (Fig. 2A, Delta fraction and 2B, BA.1 fraction; Fig. S4). 33 samples collected 

before November 2021 in Benin, Ghana, Mali, Niger, and Uganda were tested positive for BA.1 

but could not be validated by full genome sequencing due to exhaustion of clinical materials and 

potential contamination during sample or library preparation prior to HTS.21 Although near-

parallel detection of BA.1 marker-positive samples in five African countries may hypothetically 30 

represent emergence of ancestral SARS-CoV-2 strains prior to BA.1 emergence, those samples 

were excluded from downstream analyses to minimize the impact of potentially false-positive 
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samples. Moreover, data were analyzed based on time points when BA.1 became dominant and 

modelled early cases backwards to further increase the robustness of downstream epidemiological 

analyses. Comparing continent-wide PCR data, BA.1 became the dominant variant (>50% 

detection) on November 8 (95% CI, -3/+3 days) in Southern Africa, December 1 (95% CI, -1/+1 

days) in Western Africa, December 10 (95% CI, -3/+3 days) in Central Africa, December 13 (95% 5 

CI, -3/+3 days) in continental Eastern Africa, and December 25 (95% CI, -1/+1 days) in Northern 

Africa (Fig. 2C; Fig. S4). These data suggest that BA.1 was widely spread in and beyond Southern 

Africa when travel restrictions were put into place within and beyond Africa (Fig. 2C). Not 

removing potentially false-positive BA.1 samples had a minimal effect on the predicted BA.1 

spread, changing the dates of BA.1 dominance for Central, Eastern, and Northern Africa by one 10 

day each, and for Western Africa by two days, highlighting the robustness of our approach (Table 

S7). The South-North gradient suggested by those data is consistent with the emergence of BA.1 

in Southern Africa and phylogeographic reconstructions based on available GISAID sequences 

collected between June 2021 and March 2022 (Fig. 3). Those phylogeographic reconstructions 

suggested transitions from South Africa to all African regions, while only one backwards transition 15 

was reconstructed at high posterior probability from Nigeria to South Africa in late December 

2021. A South African or Southern African origin of BA.1 was reconstructed at very strong (Bayes 

factor 44.5) and moderate (Bayes factor 4.4) support, respectively. Delayed BA.1 introduction into 

Northern Africa may be associated with reduced land connectivity imposed by the Sahara Desert22 

or by the lack of regional BA.1 cases when travel bans were implemented.10 Similarly, border 20 

closure in Madagascar until late 2021 delayed BA.1 introduction until January 2022 (Table S8). 

Across African countries, the median time between the first BA.1 detection and BA.1 

predominance was 19 days (95% CI, 10-99.0) (Fig. 4A; Fig. S4), which was comparable to BA.1 

spread in high-income countries.5,23 Combining all country-level PCR data from Africa, the BA.1 

effective reproduction number Rt was 2.4 during the 30 days until BA.1 became the dominant 25 

variant (Fig. 4B; Fig. S4; Table S9), which was lower than an overall R0 of 3.7 (95% CI, 3.3–4.1) 

reconstructed for SARS-CoV-2 variants in general in Africa24 and an average Rt of 3.4 for BA.1 

among countries in Africa, the Americas, Asia and Europe.25 The relatively low Rt may be a 

consequence of underreporting particularly in times of high case numbers which would also 

explain the observed decrease of Rt when cases increased, or by different serial interval estimations 30 

which vary between 3.0 and 5.5 in the literature.8,24 In the combined country-level PCR data, Rt 

dropped below one within 40 days after BA.1 became dominant, likely due to widespread 
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immunity following explosive BA.1 spread.26 This interpretation is in line with the steep increase 

of reported cases likely corresponding to short duration of the BA.1 wave in Africa (Fig. S5).12,26 

Retrospective analyses of >67,800 SARS-CoV-2 genomes available in GISAID by mid-2023 

revealed that within one week after the new BA.1 variant was first reported to the WHO on 

November 24, 2021, BA.1 had spread to all African regions except Northern Africa (Fig. 5A-E; 5 

blue color, BA.1 submission date; pink color, sample collection date; Fig. S6). Genomic sequence 

and PCR-based data from this study were thus consistent with the widespread early occurrence of 

BA.1 across African regions. 

  

The fast spread of SARS-CoV-2 is known to be facilitated by human mobility, including both 10 

short- and long-distance travel.27 The importance of long-distance travel for the spread of BA.1 

was consistent with the detection of BA.1 among inbound travelers in our study. Considering ten 

countries for which information on the testing of travelers was available, inbound travelers 

departing from Burkina Faso, Nigeria, and Mauritania were tested positive for BA.1 in Senegal 

and Togo by November 24, 2021, when the new variant first was reported to WHO. Two weeks 15 

later, inbound travelers were tested positive for BA.1 in another four countries (Algeria, Niger, 

Senegal, Togo) (Table S10). Travelers tested BA.1 positive before December 8, 2021, departed 

from diverse locations in five continents (Table S10), highlighting fast global spread of BA.1 and 

suggesting a BA.1 emergence several weeks before its first detection. This interpretation was in 

line with GISAID data, retrospective analyses of BA.1 genomes from England15, and early 20 

phylogenetic analyses reconstructing the most recent common ancestor of BA.1 to early October 

2021.4 

 

To evaluate the predictability of the BA.1 spread using a ready-to-use user interface based 

simulation tool, a SEIR global epidemic and mobility model was simulated using the GLEAMviz 25 

online tool, which has been used to study the global dispersion of SARS-CoV-2.27 The simulation 

was calculated with PCR-informed starting cases and 1.5-fold increasing starting cases to consider 

potential underreporting.2 Pre-existing immunity was set in a range of 13-49% according to the 

observed cross-protection from BA.1 infection by a previous SARS-CoV-2 infection (Table S5).17  

The overall best accordance between simulated BA.1 infections and PCR-based estimated BA.1 30 

cases was observed in the simulation assuming 86.5-fold increased starting cases and pre-existing 

immunity of 13% compared to the original PCR-informed model (Fig. 6). In this SEIR simulation, 
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one BA.1 case in 100,000 inhabitants was first simulated in Southern Africa (by November 29, 

2021), 17 days later in Eastern Africa, 23 days later in Central Africa, and roughly one month later 

in Western and Northern Africa (Table S11). The modeled South-North gradient concurred with 

our continent-wide PCR data (Fig. 2C). Conversely, the simulation deviated from PCR-based data 

and GISAID data regarding the emergence of BA.1 in Eastern Africa (later in PCR and GISAID 5 

than in model data) and Western Africa (earlier in PCR and GISAID than in model data) (Fig. 7A-

B; Table S8). These discrepancies may be a consequence of mobility restrictions affecting more 

Eastern than Western Africa and early introduction of BA.1 into West Africa by long-distance 

travel as suggested by our PCR and phylogeographic data (Fig. 3; Fig. S7). Overall, the simulated 

BA.1 spread was clearly slower than the spread according to case data. Relatively slower simulated 10 

spread may be due to an underestimation of the BA.1 cases at the simulation start, which is in line 

with early BA.1 detection outside of Southern Africa in both our molecular data and GISAID 

entries. This simulation was significantly correlated with both PCR-based estimated cases (p = 

0.0414, cor = 0.53) and with GISAID entries (p < 0.0001, cor = 0.58) (Fig. 7C-D). Moreover, the 

simulated BA.1 introduction date in non-African countries was significantly earlier in countries 15 

which reported BA.1 cases by mid-December 2021 when first estimates of global BA.1 spread had 

become available (https://www.ecdc.europa.eu/en/news-events/epidemiological-update-omicron-

data-29-november-2021) than in countries that did not report early BA.1 cases (Kruskal-Wallis 

test, p < 0.0001) (Figure S8). The correlation of simulated and observed BA.1 introductions thus 

supported the overall usefulness of mobility-based simulations to predict global spread of an 20 

emerging SARS-CoV-2 variant, particularly to identify countries of highest importation risk. 

 

Surveillance of SARS-CoV-2 variants is commonly done by HTS-based full genome generation 

of selected samples. However, this approach is relatively costly and time-consuming. Considering 

standard procedures and products, typing a single sample was roughly six times more expensive 25 

and three times more time-consuming by HTS which also requires bioinformatics (USD 49.86, 5.6 

minutes) compared to PCR-based typing which only requires laboratory personnel (USD 7.82, 1.9 

minutes) (Table S12). Moreover, HTS-based sequencing requires access to technical 

infrastructure which is often limited, resulting in delays between sample collection and availability 

of sequencing results.28 A time-based analysis of 67,821 GISAID entries showed that the median 30 

time between sample collection and sequence submission to GISAID ranged between 38 and 132 

days for the African regions, irrespective of whether BA.1 or non-BA.1 entries were deposited 
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(Fig. 8). Additional to technical reasons, the comparative time-stamped analysis highlighted that 

neither African countries, nor supranational organizations reported BA.1 sequences with delay, 

which may hypothetically have been observed in consequence of fear of unilateral travel 

restrictions.  

 5 

Discussion 

Our study provides strong evidence that BA.1 spread rapidly across Africa and beyond before 

travel restrictions were implemented for South and East African countries. Our continent-wide 

data thus objectively demonstrate the ineffectiveness of travel bans in the context of insufficient 

surveillance. Upon the emergence of any new SARS-CoV-2 variant, understanding its 10 

pathogenicity, pace of transmission, its ability to evade pre-existing immunity, and its spatial 

distribution are crucial elements. For all four factors the ability to identify a new variant is pivotal. 

Sequencing 0.5% of all cases within 21 days after sample collection provides a good chance to 

detect new SARS-CoV-2 variants efficiently and early.28 However, establishing efficient genomic 

surveillance infrastructures is a major economical and organizational challenge. Despite globally 15 

increasing sequencing capacities, only 5% of low- and middle-income countries have reached this 

benchmark and some African countries still rely on external capacities for genome sequencing and 

submission.28 Moreover, SARS-CoV-2 infections are probably widely underreported in Africa,2 

causing sampling biases which may also affect genomic surveillance. To allow for efficient 

interventions29 strengthening and harmonizing surveillance systems on a supranational level, 20 

establishing strategic sampling frameworks, and supporting the sharing of surveillance data is 

hence critial.30 We demonstrate that specifically designed real-time RT-PCR tests have the 

potential to strengthen the surveillance of newly identified SARS-CoV-2 variants as a complement 

to sequencing before sequencing can be scaled up on a continent-wide scale. Importantly, 

molecular typing assays such as the one we used may be most valuable immediately after variant 25 

emergence because tested markers may emerge convergently in other than the target lineage.20  

 

Our findings make future preparedness in resource-limited settings conceivable at four levels. 

First, sequencing capacities including HTS- and PCR-based protocols should be upscaled to allow 

early detection of new variants. Second, upon the emergence of a new variant, real-time RT-PCR 30 

assays for variant typing need to be designed, validated, produced, and provided rapidly across the 

entire region. Third, based on the typing results, mobility-based simulations can be applied to 
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predict countries of highest importation risk by land or air travel. The identification of these 

countries is essential to reduce the risk of dispersion from secondary hubs. Global spread of BA.1 

occurred predominantly from affluent settings outside of Africa with intense flight connectivity, 

such as the United States of America.31 Importantly, such mobility-based simulations are 

dependent on regularly updated mobility information and may require continuous funding by 5 

supranational actors such as WHO. Finally, the typing and simulation results can serve as basis to 

implement non-pharmaceutical interventions including travel restrictions or border closures based 

on evidence.27,32 

 

Our study is limited by heterogeneous sampling in time and space and by lack of SARS-CoV-2 10 

genomic data from all BA.1 PCR-positive patients. However, the PCR test was exhaustively 

validated in four countries and geographically widespread testing substantiates robustness of our 

findings.  

 

In conclusion, our results highlight that unilaterally implemented travel restrictions failed to 15 

contain BA.1. We demonstrate how PCR-based variant typing allowed us to assess the 

spatiotemporal spread of a new SARS-CoV-2 variant rapidly and economically on a continent-

wide scale, contributing to the design of containment strategies for future SARS-CoV-2 variants 

and other emerging pathogens.  

 20 
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Phylogenetic analyses of African BA.1 sequences (Fig. S6) and phylogeographic analyses (Fig. 3, 

Fig. S7) are based on 942 sequences available on GISAID, via 10.55876/gis8.230818aq. 

 

The performance of the used real-time RT-PCR assays was validated in this study against SARS-

CoV-2 genomes generated by HTS (https://github.com/CarloFischer88/Analyse-the-BA.1-spread-5 

in-Africa.git). Those genomes that were submitted to GISAID (Botswana, Guinea, South Africa) 

are available via 10.55876/gis8.240201eb. Mapped genomic reads for SARS-CoV-2 genomes 

generated from Beninese samples are available via the European Nucleotide Archive (ENA) 

(Project accession number PRJEB64297). 
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Figures 

 

Figure 1: Study setup. (A) Geographic distribution of sampling sites and countries (alpha-3 

country codes) represented in the study. (B) Tested samples among countries by month. The 5 

number of tested samples varied between 64 and 1,670 samples per country depending on 

availability of stored samples and SARS-CoV-2 cases in the participating countries. The 

geographic presentation of study sites does not imply the expression of any opinion whatsoever 

concerning the legal status of any country, area, or territory or of its authorities, or concerning the 

delimitation of its borders. Country abbreviations are given according to alpha-3 ISO codes. 10 
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Figure 2: Epidemiology of Omicron/BA.1 in Africa. (A) Fraction of samples positive for the 

Delta marker. (B) Fraction positive for the BA.1 marker. (C) Modelled increase in BA.1 fraction 

of all SARS-CoV-2 infections per African region based on PCR testing. All analyses were repeated 

excluding travelers to confirm robustness (Fig. S2). Central and Eastern Africa curves for BA.1 5 

fraction increase overlap. Not-removing early BA.1 cases had minimal effects changing the date 

of BA.1 dominance for Central, Eastern, and Northern Africa by one day each, and for Western 

Africa by two days. The date of BA.1 dominance for Southern Africa was not affected. 
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Figure 3: Phylogeographic analyses SARS-CoV-2 Omicron/BA.1 spread in Africa. African 

BA.1 sequences available on GISAID were filtered by at least 95% genome coverage and 

sequences with potentially false collection date (to early) were removed resulting in 939 analyzed 

genomes. Transitions and reward counts are shown for three timepoints. Only completed 5 

transitions are shown. Bayes factors above 3 supported transitions between South Africa and 

Botswana, Ghana, Kenya, Mozambique, Nigeria (Fig. S6).  

 

 
Figure 4: Speed of Omicron/BA.1 spread. (A) Days until BA.1 became the dominant SARS-10 

CoV-2 variant after its first detection by PCR. (B) Smoothed Rt and the incidence among countries 

represented in this study. All analyses were repeated excluding travelers to confirm robustness 

(Fig. S4). 
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Figure 5: SARS-CoV-2 sequencing and genome submissions. BA.1 and non-BA.1 sequences 

submitted to GISAID by collection and submission date from (A) Central Africa, (B) Eastern 

Africa, (C) Northern Africa, (D) Western Africa, (E) Southern Africa.  5 
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Figure 6: Simulation of Omicron/BA.1 cases.  

Comparison of estimated and simulated BA.1 cases for Central Africa (A), Eastern Africa (B), 

Northern Africa (C), Southern Africa (D), and Western Africa (E). (F) Average fit of simulated 

BA.1 cases with BA.1 cases estimated from PCR results and reported SARS-CoV-2 cases. 5 

Concordance of estimated BA.1 cases and simulated cases was determined by least sum of squares 

over all African regions. 
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Figure 7: Simulated global spread of BA.1 and correlation with molecular testing. Simulated 

BA.1 infections by the end of February 2022 on municipality (B) and country level (B). Defined 

initial cases are shown by black dots. See Fig. S1 for simulation setups. (C) Correlation of days 

following November 11, 2021, when BA.1 became the dominant SARS-CoV-2 variant in models 5 

based on our PCR testing and when one BA.1 infection was simulated in 100,000 inhabitants using 

GLEAMviz. Only countries in which the increase of the predicted BA.1 fraction from 2 to 64% (5 

doubling intervals) took between 7.5 (half of expected time considering 3 days doubling time) and 

90 days (6-times expected days) were considered in C and D to reduce the effect of non-

representative data. Madagascar was excluded from the analyses due to strict border closures 10 

delaying BA.1 introduction. All values in C-E are on country level. All correlations in C-E were 

calculated by Pearson correlation. (D) Correlation of days following November 11, 2021, when 

BA.1 became the dominant SARS-CoV-2 variant in models based on our PCR testing and when 

at least 10 BA.1 sequences were deposited in GISAID (collection date). (E) Correlation of days 

following November 11, 2021, when 1 BA.1 infection was simulated in 1,000 inhabitants using 15 

GLEAMviz and when at least 10 BA.1 sequences were deposited in GISAID (collection date). 
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Figure 8: Difference between collection and submission date for SARS-CoV-2 entries from 

African countries in GISAID. In total, 67,821 GISAID entries were analyzed including 23,076 5 

BA.1 entries. 
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Tables 

Table 1. 
Country Total 

samples 

Delta BA.1 Other 

variant 

Negative Unclear Samples 

included 

Collection date 

range (dd-mm-yy) 

Reported 

cases 

Percentage of 

reported cases 

tested 

Algeria 901 733 166 2 0 0 901 18-08-21 – 30-01-22 62,111 1.5 

Angola 671 57 471 80 63 0 608 24-08-21 – 31-03-22 53,093 1.1 

Benin 1,762 269 1,234 167 91 1 1,670 02-08-21 – 27-01-22 18,056 9.2 

Botswana 231 38 169 24 0 0 231 12-06-21 – 16-01-22 178,198 0.1 

Burkina Faso 197 40 146 11 0 0 197 21-08-21 – 28-01-22 6,916 2.8 

Cameroon 708 335 220 153 0 0 708 01-09-21 – 25-03-22 36,119 2 

Ethiopia 158 54 12 68 24 0 134 01-06-21 – 07-03-22 197,466 0.1 

Gabon 298 189 0 109 0 0 298 01-10-21 – 20-10-21 5,370 5.5 

Gambia 187 7 174 6 0 0 187 01-09-21 – 22-02-22 2,226 8.4 

Ghana 542 60 145 73 54 210 278 12-06-21 – 22-01-22 60,447 0.5 

Guinea 357 157 188 12 0 0 357 06-07-21 – 17-02-22 12,483 2.9 

Kenya 238 27 15 22 101 73 64 02-06-21 – 25-03-22 152,266 <0.1 

Madagascar 1,091 680 130 26 255 0 836 22-11-21 – 11-04-22 20,417 4.1 

Mali 1,137 187 648 103 198 1 938 02-08-21 – 02-03-22 15,804 5.9 

Morocco 994 551 440 3 0 0 994 01-09-21 – 22-02-22 298,636 0.3 

Mozambique 210 64 68 45 30 3 177 08-07-21 – 11-12-21 70,292 0.3 

Namibia 486 31 288 75 92 0 394 30-08-21 – 23-02-22 32,344 1.2 

Niger 733 46 366 321 0 0 733 27-06-21 – 17-03-22 3,310 22.1 

Republic of 

the Congo 

95 7 37 51 0 0 95 02-06-21 – 12-01-22 10,760 0.9 

Senegal 1,348 410 826 39 72 1 1,275 19-07-21 – 31-12-21 22,959 5.6 

South Africa 412 162 239 11 0 0 412 01-07-21 – 08-02-22 1,633,456 <0.1 

Togo 1,014 480 533 0 0 1 1,013 01-08-21 – 22-02-22 20,957 4.8 

Uganda 823 408 189 115 10 101 712 09-07-21 – 14-04-22 78,454 0.9 

Zimbabwe 96 0 80 2 13 1 82 24-11-21 – 13-12-21 33,466 0.2 

Tested samples, typing results and collection period of included samples. Samples with negative 

or unclear SARS-CoV-2 test, missing collection date or that were sampled before June 2021 or 

after April 2022 were excluded. Percentage of all reported cases included in this study is shown 5 

for the covered collection date range. Samples with missing data on age or sex were included in 

analyses as both variables were not considered essential. Samples with missing information on 

collection date, samples that were negative for SARS-CoV-2 on re-testing, samples with unclear 

results for Delta and BA.1, and samples without unique sample IDs were excluded, as were 

samples collected before June 2021 as BA.1 was most likely not circulating at that time. 10 
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