G2P CURATION RECORD VERSION 7.2

Version:	
Date created:	
Date modified:	

Gene symbol (HGNC)

Gene-disease name (dyadic naming system)

List of associated PMID and titles

Protein function as described by UniProt (copy and paste from DECIPHER Overview)

Gene currently in G2P https://www.ebi.ac.uk/gene2phenotype?

Yes □ If yes, what category and which panel(s)? No □ Please specify which panel(s)

Gene currently in GenCC <u>https://search.thegencc.org/</u>? Yes □ If yes, what category or categories? No □

_			
_			

Number of families and associated phenotype per PMID (include information on consanguinity, specific ethnicity, if relevant)

PMID	No. of families	Notes

Allelic requirement

Autosomal Dominant	monoallelic_autosomal	
Autosomal Recessive	biallelic_autosomal	
X-linked	monoallelic_X_heterozygous	
X-linked	monoallelic_X_hemizygous	
Y-linked	monoallelic_Y_hemizygous	
Mitochondrial	mitochondrial	
PAR dominant	monoallelic_PAR	
PAR recessive	biallelic_PAR	

Clinical Phenotype

Summary of the reported clinical phenotype (include information on variable penetrance)

Cross cutting modifier

Typically de novo	
Typically mosaic	
Typified by incomplete penetrance	
Imprinted region	
Potential secondary finding (including ACMG Secondary Findings and/or late onset conditions)	
Displays anticipation	
Restricted variant set	

Types of variants reported

Frameshift & nonsense variants	Comment on NMD triggering/escaping if necessary	De novo	Inherited	Unknown inheritance
frameshift_variant				
stop_gained				
Splice variants	Comment on NMD triggering/escaping if necessary	De novo	Inherited	Unknown inheritance
splice_region_variant				
splice_acceptor_variant				
splice_donor_variant				
Missense & inframe variants	Comment on domain/region	De novo	Inherited	Unknown inheritance
missense_variant				
inframe_insertion				
inframe_deletion				
Other variants		De novo	Inherited	Unknown inheritance
start_lost				
intergenic_variant				
intron_variant				
synonymous_variant				
Stop lost				
Whole/partial gene deletion				
Whole/partial gene duplication				
short_tandem_repeat_change				
ncRNA				
Variants in regulatory regions		De novo	Inherited	Unknown inheritance
5_prime_UTR_variant				
3_prime_UTR_variant				
regulatory_region_variant				

DECIPHER Protein View

(logged-out version)

Variant consequence per allele for relevant allelic requirement (from above) Hierarchy of SO disease-associated variant consequence terms (described in https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10104222/pdf/nihpp-2023.03.30.23287948v1.pdf)

Altered protein for protein-coding genes or altered RNA level for non-protein coding genes	Inferred	Evidence
Altered_gene_product_level SO:0002314		
 Decreased_gene_product_level SO:0002316 		
 Absent_gene_product SO:0002317 		
Increased_gene_product_level SO:0002315		
Altered_gene_product_structure SO:0002318		
Altered gene product function (eg. missense variants or frameshift and nonsense variants and		
in-frame indels escaping NMD, UTR variants changing start site)		
Uncertain		

Mechanism

	Description	Inferred	Evidence
Loss of function	Loss-of-function variants involve a loss of the normal biological function of a protein. Often these are nonsense or frameshift mutations that introduce premature stop codons. Due to nonsense-mediated decay of the resulting mRNAs, most premature stop codons will result in no protein being produced, rather than a truncated protein. However, there are also many examples of loss-of-function variants that change the amino acid sequence and result in non-functional protein products. These mutations can cause a complete loss of function (amorphic), analogous to a protein null mutation, or only a partial loss of function (hypomorphic). May also include variants in regulatory regions.		
Dominant negative	Dominant-negative variants involve the mutant protein directly or indirectly blocking the normal biological function of the wild- type protein (antimorphic). They can thus cause a disproportionate (>50%) loss of function, even though only half of the protein is mutated eg. heterozygous variants in COL1A1 that disrupt the triple collagen helix.		
Gain of function	Gain-of-function variants have their phenotypic effect because the mutant protein does something different than the wild-type protein. Often, these variants cause disease by increasing protein activity (hypermorphic) or introducing a completely new function (neomorphic), but the specific molecular mechanisms underlying gain-of-function mutations can be complex. May also include variants in regulatory regions.		
Undetermined non-loss-of- function	Very often it is difficult to distinguish between dominant negative and gain of function, but it is clearly a non-loss-of- function mechanism (e.g. from co-expression experiments showing a damaging effect from the mutant allele).		
Undetermined			

Categorisation of mechanism

Refer to Backwell & Marsh, 2022 (PMID 35395171) for help and examples) If possible, categorise into:

	Inferred	Evidence
Destabilising LOF		
Interaction-disrupting LOF		
Loss of activity LOF (<i>e.g.</i> active site mutation)		
LOF due to protein mislocalisation		
Assembly-mediated dominant negative (<i>i.e.</i> poisoning via mutant subunit)		
Competitive dominant-negative		
Assembly-mediated GOF (e.g. channel activation via mutant subunit)		
Protein aggregation (usually toxic GOF)		
Local LOF (separation of function) leading to overall GOF (<i>e.g.</i> DNMT3A)		
Other GOF (<i>e.g.</i> strengthening or gain of interactions, change in specificity, gain of post-translational modifications)		

Provide details on altered variant consequence and mechanism classification, including references. Inferred consequence could also include predicted mechanism (e.g. Badonyi & Marsh, <u>https://doi.org/10.1101/2023.09.08.556798</u>), observations of mutation clustering

Functional analysis of the variants

Is there a MAVE or scalable functional assay for the gene? If so, what functional domains does it assay, how well does it replicate the mechanism of disease for the stated gene-disease pair, and what tissue/cell-line is it relevant to

Consider functional assays (in vitro, in vivo), animal models, patient cell lines

Additional comments

Consider previous publications, mutational landscape on DECIPHER and gnomAD

G2P CURATION RECORD VERSION 7.2

Discussion of current gene-disease name and additional information, if applicable

Synonyms:

OMIM number (gene)	MONDO number

Panel

Cancer	
DDG2P	
Eye	
Neonatal	
Obesity	
PNG2P	
Skeletal	
Skin	

Agreed confidence category

Definitive	
Strong	
Moderate	
Limited	
Disputed	
Refuted	

Changed from (if relevant)

Definitive	
Strong	
Moderate	
Limited	

Description of G2P confidence categories

Definitive: The role of this gene in this particular disease has been repeatedly demonstrated in both the research and clinical diagnostic settings, and has been upheld over time (at least 2 independent publication over 3 years' time). No convincing evidence has emerged that contradicts the role of the gene in the specified disease. (previously labelled as confirmed).

Strong: The role of this gene as a monogenic cause of disease has been repeatedly and independently demonstrated providing very strong convincing evidence in humans and no conflicting evidence for this gene's role in this disease. (previously labelled as probable)

Moderate: There is moderate evidence in humans to support a casual role for this gene in this disease with no contradictory evidence. The body of evidence is not large (e.g possibly only one key paper) but appears convincing enough that the gene-disease pair is likely to be validated with additional evidence in the near future.

Limited: Little human evidence exists to support a casual role for this gene in this disease, but not all evidence has been refuted. For example, there may be a collection of rare missense variants in humans but without convincing functional impact, segregration data that could either arise by chance (e.g across one or two meioses) or does not implicate a single gene, or functional data without direct recapitulation of the phenotype. Overall, the body of evidence does not meet contemporary criteria for claiming a valid association with disease. The majority are probably false associations. (previously labelled as possible).

Inheritance modifiers are described in detail by Roberts et al <u>https://doi.org/10.1016/j.gim.2023.101029</u>.