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Abstract 

Purpose:  

To improve the image quality of 3D radial free-running MRI data of the heart through a deliberate and 

stepwise extension of the XD-GRASP reconstruction.   

Methods:  

Ferumoxytol-enhanced cardiac free-running 3D-radial data were reconstructed using an XD-GRASP 

reconstruction improved by 4 new developments: motion-compensated temporal-Total-Variation (MC-

tTV) regularization for 3D images, a new coil-sensitivity, a new k-space density compensation and a 

revisited conjugate-gradient-descent (with exact line search) for solving the least-square sub-problem of 

ADMM. The resulting images were compared quantitatively and qualitatively to reconstructions lacking 

some of the newly implemented measures. Also, the measurement of ejection-fraction by a threshold-

based method on the new reconstruction was compared to a reference standard.  

Results:  

The new reconstruction significantly increased the sharpness of the right coronary artery (4% to 6%, p < 

0.05) and the left anterior descending coronary artery (4% to 5% p < 0.05). It also increased blood-

myocardium interface sharpness (between 20% and 25%, p < 0.05) and decreases spatial-Total-Variation 

in the blood-pool (13%, p < 0.05). The qualitative evaluation suggests better anatomical depiction of small 

structures using the new reconstruction. As compared to a reference standard method, ejection fraction 

could also be correctly evaluated.  

Conclusion:  

Compressed sensing image reconstruction for 3D-radial free-running cardiac acquisition was successfully 

improved by including MC-tTV regularization, a new density compensation, a new coil-sensitivity and a 

revisited conjugate-gradient-descent with exact line search. Quantitative and qualitative quality metrics 

demonstrated significant improvement in image quality when using the new reconstruction, while 

extracted dynamic information compared favorably with the gold standard.  

Keywords: Cardiac, 3D, CINE, radial, free-running, deformation-fields.  
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Introduction 

Free-running MRI techniques for three-dimensional (3D) time-resolved whole-heart magnetic resonance 

imaging (MRI) is an active area of research. Using such techniques and equipped with total self-navigation 

(1), time efficiency is high, and the paradigm changes from prospective scan planning and scan parameter 

adjustment to fully flexible and retrospective analysis of the acquired data. Operator dependency may be 

reduced, 3D CINE images with high temporal and isotropic spatial resolution can be obtained, and no 

breath-holding neither placement of ECG electrodes are required. Such a free-breathing approach is 

potentially advantageous for all patients, in particular very sick and dyspneic patients, and avoids in 

general potential disturbances of hemodynamics that can occur during breath-holding if the patient exerts 

mild Valsalva-maneuver (2). However, acquisition time constraints combined with binning of cardiac and 

respiratory phases result in a high degree of under-sampling in Fourier space for each 3D CINE image to 

reconstruct. As a result, the achievable resolution and scan time is inherently tied to advances in image 

reconstruction methods. In fact, compressed sensing techniques (CS) and its related precursors (3–32) 

have already played an important role in Cardiac CINE MRI reconstruction as demonstrated by the 

existence of an extensive literature. Taking advantage of the sparsity in some domain of the images to 

reconstruct, high degrees of undersampling beyond the Nyquist sampling limit can be accommodated 

using CS, which offers new opportunities for improved spatial resolution, temporal resolution, volumetric 

coverage, and ease of use. These techniques have been successfully applied to 2D-CINE cardiac 

reconstruction (6–12) as well as to 3D-CINE Cartesian (3–5) and radial reconstructions (15).  

Among some of these approaches to cardiac CINE reconstructions, a particularly fruitful strategy is to 

assume that the difference between temporally adjacent frames should be sparse (which means a high 

degree of redundancy between temporally adjacent frames) and this has led to the concept of 

temporal-total-variation (tTV) regularization in MRI reconstruction. CS reconstructions regularized with 

tTV, in particular  the XD-GRASP reconstruction (33), have shown promising results in the domain of cardiac 

CINE imaging (32). However, an important user-defined trade-off exists where a large regularization 

weight can introduce a loss of sharpness, a loss of structural information and a compression of motion, 

while a small regularization weight over-emphasizes the data-fidelity term and may not sufficiently 

account for under-sampling artifacts.  

Strategies against the adverse effects of motion in compressed sensing reconstructions for cardiac CINE 

MRI has been explored using different methods (13–30). In MASTER, a technique for reconstructing 2D-

CINE cardiac MRI (13), deformation fields are used in order to increase sparsity in the difference between 
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adjacent CINE frames providing inter-bin compensation of cardiac motion. The authors of MASTER define 

the motion-compensated residuals as the motion-compensated difference between temporally adjacent 

frames, the sum of which will be called “motion-compensated temporal-Total-Variation” (MC-tTV) in the 

present text. However, MASTER has been implemented for 2D cartesian data only and MC-tTV has never 

been incorporated to an XD-GRASP reconstruction for 3D-radial data.  

The XD-GRASP reconstruction suffers therefore of not being informed by deformation fields since it is 

regularized by tTV and not MC-tTV. But it is not the only drawback of that reconstruction: the algorithm 

used to solve the reconstruction problem is a non-linear conjugate gradient descent (CGD) with inexact 

line search (34), which is not suited for non-differentiable objective functions (the 1-norm is not 

differentiable). To our knowledge, this drawback has never been completely solved for cardiac MRI 

reconstructions. More advanced algorithm, such as alternating direction method of multipliers (ADMM), 

have been proposed for CS reconstructions. But ADMM contains a least-square sub-problem that needs 

to be solved with CGD, and while CGD has been published originally with exact line-search (35), the MRI 

literature only still reports inexact line-search (for example (36), (37) ) or a detailed account of the line 

search is not provided (for example (14) ). The lack of correct ADMM implementation, with exact line-

search for CGD, is possibly a limitation for the reconstruction time, the convergence speed and accuracy 

of images resulting from XD-GRASP.   

Beside the two above mentioned drawbacks of XD-GRASP, the density compensation for 3D-radial data 

has been poorly implemented until now since uniformity of the data lines over the sphere surface has 

always been assumed, as far as we know, although the binning operation leads to a significantly 

non-uniform covering of the sphere surface in k-space.  Finally, the coil-sensitivity estimation used for 3D-

radial cardiac imaging has produced very non-uniform image intensities has it can be seen on figures in 

the literature (1,13,33).   

The purpose of the present article is to address the four mentioned drawbacks of XD-GRASP for 3D-radial 

cardiac MRI (1,38,39) by four original combined developments. The first is the replacement of tTV in XD-

GRASP by MC-tTV. Inspired by MASTER that was demonstrated for cartesian 2D-CINE imaging, we 

integrated inter-bin compensation of cardiac motion into an XD-GRASP reconstruction for free-running 3D 

radial data providing a technique for 4D whole-heart imaging. The second development is an 

implementation of ADDM for XD-GRASP with a revisited implementation of CGD using exact line search. 

In particular, a mathematical formalism has been developed for that purpose. The third development is a 

new implementation of the density compensation for 3D-radial trajectories, which makes use of the 
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Voronoi algorithm for taking the non-uniform distribution of data line in k-space into account. The fourth 

development is a new coil-sensitivity estimation for recovering a spatially homogeneous image intensity 

in 3D cardiac imaging.   

We tested the hypothesis that our four proposed measures significantly improve the quality of images 

reconstructed from fully self-gated free-running 3D-radial data acquired on a cohort of patients with 

congenital heart disease after ferumoxytol injection.  

Methods 

To address the shortcomings related to the tTV regularization, the CGD algorithm with inexact line-search, 

the density compensation and the coil-sensitivity estimation for XD-GRASP reconstructions of 3D-radial 

data, the four following methods have been developed.  

(i) MC-tTV regularization for 4D cardiac imaging (3D+time) was implemented in an XD-GRASP 

reconstruction. A mathematical formalism was developed for that purpose and is presented 

in the supplementary material. Briefly, we call 𝒙(1), … , 𝒙(𝑛𝐹𝑟) the list of 3D frames to be 

reconstructed, where 𝑛𝐹𝑟 is the total number of frames and where each 𝒙(𝑖) is written as a 

column vector by column major order. We call 𝑫𝑭(𝑖) the deformation-field that deforms frame 

𝒙(𝑖) to match frame 𝒙(𝑖−1) and which was estimated with a third-part software (see sections 

below). We implemented a class to store sparse-matrix 𝑻(𝑖) (and its transpose matrix, for the 

need of the optimization algorithm) which encodes 𝑫𝑭(𝑖) and which realizes the 

corresponding deformation as 𝑻(𝑖)𝒙(𝑖) ≈ 𝒙(𝑖−1). A C++ function was also implemented in 

order to realize the sparse-matrix multiplication with openMP parallelization.  

(ii) The ADMM algorithm was implemented in order to solve the optimization problem of XD-

GRASP with MC-tTV regularization. The least-square sub-problem of ADMM was solved with 

conjugate-gradient-descent (CGD) using non-standard Euclidean products in order to take 

care of the density compensation (and other parameters) and to be able to perform exact line-

search as in the original publication of CGD (35). We refer to reader to the supplementary 

material and to an online available document (40) for more details.  

(iii) A new density compensation for radial trajectories was implemented in order to take care of 

the non-uniform distribution of data lines over the sphere in k-space and is described in details 

in the supplementary material. Briefly, the end point of each line (lying on a sphere) was 
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mapped to a plane in a similar (but different) way like stereographic projection. The 2D 

Voronoi algorithm was then performed for these points (on a plane) and each obtained 

volume element was mapped back to its corresponding point on the sphere and corrected 

according to the polar angle.   

(iv) A new coil-sensitivity estimation was implemented and is described in detail in the 

supplementary materiel. Briefly, the method is a variant of the one presented in (41). The main 

difference is that we solve a Laplace boundary value problem to estimate the coil-sensitivity 

in areas lacking signal, such as the air in the lungs and around the patient body.   

To evaluate the individual and combined, cumulative benefit of these four methods (i-iv), different 

reconstructions were performed on data acquired with a fully self-gated free-running 3D-radial sequence 

in a cohort of patients with congenital heart disease after ferumoxytol injection. Since combining the 

presence or absence of these four developments would result in 16 different reconstructions, and thus 

120 systematic comparisons, we restricted our study to four coil-sensitivities and three reconstructions. 

The three reconstruction are the following:  

- Our new reconstruction consisting of XD-GRASP with MC-tTV (i) and all three other developments 

(ii-iv). Since it is a 3D version of MASTER by nature, we called it “MASTER_3D+” (“MASTER” 

because it is regularized with MC-tTV (i) and “+” because it contains all other developments (ii-iv)). 

As a 3D version of MASTER, it is a 4D reconstruction (3D + time) and uses only a quarter of the 

free-running data (see section below).   

- Our XD-GRASP reconstruction without MC-tTV but with development (ii-iv) was called 

“XD-GRASP_4D+” (“+” because it contains developments (ii-iv)). It is a 4D reconstruction (3D + 

time) which uses only a quarter of the free-running data.   

- As a reference standard reconstruction for comparison, we used the 5D reconstruction developed 

in Lausanne which already served for several publications. We refer the reader to (1) for a 

complete definition. It is a 5D reconstruction (3D + cardiac time + respiratory time) and uses the 

totality of the free-running data.  We called it “XD-GRASP_5D_LAUS” in the present article.  

We organized the comparisons in two studies and we performed an analysis of the convergence of 

MASTER_3D+ as a third study.  We define our three studies as follows:  

- Study 1: Comparison of MASTER_3D+ versus XD-GRASP_5D_LAUS and versus XD-GRASP_4D+ by 

the mean of quantitative and qualitative end points. It was also verified in this study if the ejection-
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fraction (EF) measured with MASTER_3D+ by a threshold based method was in accordance with a 

gold-standard measurement.  

- Study 2 (supplementary material): Comparison of our new coil-sensitivity estimation to 3 other 

coil-sensitivity estimation using quantitative metrics, including the difference of measured EF as 

compared to a reference standard.  

- Study 3 (supplementary material): Convergence analysis of MASTER_3D+.   

Data acquisition 

The local ethics committee approved the study, and written informed consent was obtained from all 

individuals or their legal representatives. The acquisition was performed in 12 patients (additional details 

provided by Table 1) with congenital heart disease on a whole-body 1.5T clinical MR scanner (MAGNETOM 

Sola, software version VA20A, Siemens Healthineers, Erlangen, Germany). All data were acquired after 

injection of a 2-5mg/kg dose of ferumoxytol that served to increase the contrast between blood and 

myocardium (38). A free-running gradient-echo sequence with 3D-radial phyllotaxis sampling trajectory 

(42) was acquired after conventional 2D-CINE imaging. There acquisition was therefore not gated. Table 2 

presents all relevant sequence parameters.  

Image Reconstruction 

We refer the reader to the literature (1) for the definition of XD-GRASP_5D_LAUS. It is a 5D reconstruction 

that makes use of the totality of the free running data. The reconstructions XD-GRASP_4D+ and 

MASTER_3D+ were performed as follows.  

The coil-sensitivities of the surface coil-array elements (18 channels) were estimated following our new 

method (iv), by the use of low-resolution prescan images acquired with both the body coil of the scanner 

and surface receiver, as described in the supplementary material. A matrix size of 96x96x96 was used for 

that estimation. 𝑛𝐶ℎ will refer to the number of channels (or coils).  

The superior-inferior-projections (SI-projections) acquired as the first line of each interleaf (i.e. each shot) 

were used to extract cardiac and respiratory self-gating signals as described previously (1). These self-

gating signals were then used to sort the image data (and corresponding trajectory points) into cardiac 

and respiratory motion-resolved 5D data sets or bins. Respiratory motion was suppressed by selecting only 

end-expiratory data resulting in cardiac motion-resolved data sets. Therefore, all reconstructions were 

performed on end-expiratory cardiac motion-resolved 4D data that account for 25% of the acquired data. 

Each cardiac bin was selected in such a way that it covered a duration of 50 ms.  
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K-space data of the 𝑖th bin in the cardiac cycle will be written as 𝒚(𝑖), which corresponds to image frame 

𝒙(𝑖). The vertical concatenation 𝒚 = [𝒚(1);… ; 𝒚(𝑛𝐹𝑟)] represents the complex valued data. We note 𝑌 the 

vector space that contains 𝑦 and 𝑌(𝑖) the vector space containing 𝒚(𝑖).  

A gridded reconstruction for each frame was achieved by a non-uniform Fourier-inverse on each data bin 

followed by a coil combination (Moore-Penrose pseudo-inverse). To ensure that similar regularization 

weights can be used across different subjects, the average magnitude value was estimated in the 

ventricular blood pool of the first frame by manually drawing an ROI and all the data bins were then 

normalized to this value. This way, raw data were rescaled to obtain the ensuing reconstructions with a 

blood-pool value close to 1. The present gridded reconstruction was rescaled accordingly and was used as 

the initial image for the CS-reconstructions.  

The optimization problem for both XD-GRASP_4D+ and MASTER_3D+ is the generalized-LASSO problem 

𝒙# ∈  argmin
𝒙∈𝑋

  
1

2
 ∑ ‖𝑭(𝑖)𝑪(𝑖) 𝒙(𝑖) − 𝒚(𝑖)‖

𝑌(𝑖),2

2𝑛𝐹𝑟
𝑖=1 + 

𝜆

2
∑ ‖𝑻(𝑖)𝒙(𝑖) − 𝒙(𝑖−1)‖

𝑋(𝑖),1
𝑛𝐹𝑟
𝑖=1    [1] 

where ‖∙‖𝑌(𝑖),2 is the L2-norm on space 𝑌(𝑖) that contains the k-space data 𝒚(𝑖) of frame number 𝑖, ‖∙‖𝑋(𝑖),1 

is the L1-norm on the space 𝑋(𝑖) that contains frame 𝒙(𝑖), 𝑪(𝑖) is the coil-sensitivity map of frame number 

𝑖,  𝑭(𝑖) is the non-uniform Fourier transform from  𝑋(𝑖)𝑛𝐶ℎ
 to  𝑌(𝑖) and 𝜆 is a real regularization parameter. 

For XD-GRASP_4D+, each matrix  𝑻(𝑖) is simply the identity while for MASTER_3D+ each 𝑻(𝑖) is a linear map 

that performs a non-rigid deformation of 𝒙(𝑖) in order to align it with 𝒙(𝑖−1).  In the former sum, we use 

the convention that index 𝑖 = 0 is replaced by 𝑖 = 𝑛𝐹𝑟 in a circular manner.  

Of note, the different 𝑪(𝑖)’s are all copies of the same matrix in the current implementation. The coil 

sensitivities are therefore time-independent and identical for all frames. Nevertheless, discriminating 

them by different symbols allows for a more general mathematical description that may be of interest for 

future reconstructions.  

The above optimization problem [1] is an instance of the generalized-LASSO problem. It was solved with 

the ADMM algorithm (Alternating Direction Method of Multipliers) (43). Our new density compensation 

(iii) served as diagonal elements of the matrix defining the inner product on each 𝑌(𝑖) while the matrix 

defining the inner product on each 𝑋(𝑖) was set as the voxel size times the identity. Our new density 

compensation (iii) is thus part of the definition of each ‖∙‖𝑌(𝑖),2 and is also part of the adjoint operator 

involved in the conjugate-gradient-descent (CGD) for solving the least-square sub-problem of ADMM (see 
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supplementary material). The use of these non-standart inner products allows to perform exact line-search 

in the CGD, which is a key element to our new developpment (ii).  

The reconstruction XD-GRASP_4D+ was performed by solving [1] with 𝜆 =  0.1 and setting 𝑻(𝑖) = 𝑖𝑑𝑋(𝑖)  

(the identity on each frame-space 𝑋(𝑖)), resulting in a conventional tTV-regularization. The deformation 

field 𝑫𝑭(𝑖) (see supplementary method) between each frame 𝒙(𝑖) and its previous temporal neighbor 

𝒙(𝑖−1) (obtained from XD-GRASP_4D+) was then estimated using the NiftyReg registration software 

(44,45), considering that 𝒙(𝑛𝐹𝑟) precedes 𝒙(1) in circular manner. Each 𝑫𝑭(𝑖) was transformed into a 

sparse deformation matrix 𝑻(𝑖) being the gridding matrix on the new position given by 𝑫𝑭(𝑖). This means 

that, if the registration process and XD-GRASP_4D+ were perfect, it would hold that  𝑻(𝑖)𝒙(𝑖) = 𝒙(𝑖−1). 

MASTER_3D+ was finally performed as a second iterative reconstruction by choosing 𝜆 =  0.3 and setting 

𝑻(𝑖) to be the 𝑖th deformation matrix that deforms frame 𝒙(𝑖) in order to match frame 𝒙(𝑖−1). The use of 

deformation fields in MASTER_3D+ and the implementation of the code for that purpose is our new 

development (i).  

The ADMM parameter 𝜚 ((43) page 14) was chosen to be 10𝜆. The regularization parameters (𝜆 = 0.1, 𝜆 =

0.3 and 𝜌 = 10 𝜆) were chosen experimentally by repeating the reconstruction on one data set and by 

visually assessing image quality. The reconstruction matrix size was 384 x 384 x 384 and the reconstruction 

field of view was 440 mm isotropic leading to an isotropic voxel size of 1.15 mm.   

All reconstructions were run on a cluster computer equipped with a job-scheduling system (SLURM). No 

heavy parallelization was used (i.e., no work distribution between nodes). Each reconstruction was 

performed on one of the available nodes (2x AMD EPYC 7742 @ 2.25GHz with 64 cores = 128 CPUs, 2TB 

RAM, 2 nVidia RTX 3090 24GB GPU) which may have been a different one for different reconstructions. 

Depending on resource availability, 32 to 48 cores were selected. A maximum of 60 ADMM iterations 

containing each 3 conjugate-gradient-descent (CGD) iterations was used. The stopping criteria for the 

reconstruction was that the maximum number of iterations was reached, or that the maximum available 

computation time (48 hours) was reached. The reconstruction time was recorded for every reconstruction. 

The reconstruction was implemented in MATLAB (MathWorks, Natick, Massachusetts, USA) except for the 

gridding operations of the non-uniform Fourier transform 𝑭(𝑖) and of the image deformations 𝑻(𝒊), which 

were coded in C++ and compiled as MATLAB-executable-files (MEX-files) and for which CPU parallelization 

was implemented by means of OpenMP.  
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Study 1: Comparison of MASTER_3D+ versus XD-GRASP_4D+ and XD-GRASP_5D_LAUS 

The purpose of study 1 is to determine whether the four additional developments present in MASTER_3D+ 

leads to improved image quality relative to XD-GRASP_4D+ and XD-GRASP_5D_LAUS. Another purpose is 

to determine whether MASTER_3D+ leads to accurate assessment of ventricular function relative to 

reference standards. We performed the following analyses. 

Quantitative image comparison metrics 

We define in this subsection quantitative metrics (or endpoints) for images comparison. For 

measurements related to the heart, those quality metrics were extracted on end-diastolic images as 

determined by the cardiologist.  

Left anterior descending artery (LAD) and right coronary artery (RCA) vessel sharpness and traceable vessel 

length were measured with Soap-bubble (46). Note that coronary vessel sharpness is used as a surrogate 

end-point for image quality and quantitatively informs about the quality of motion suppression for a given 

approach. 

The interface sharpness between blood pool and myocardium (BMIS for “blood-muscle interface 

sharpness”) was measured with a Matlab tool (47). Given two reconstruction A and B, the relative 

sharpness gain (in %, positive or negative)  was calculated as 

BMIS gain =  
𝐵𝑀𝑆𝐼𝐴 − 𝐵𝑀𝑆𝐼𝐵

1

2
(𝐵𝑀𝑆𝐼𝐴 + 𝐵𝑀𝑆𝐼𝐵)

∗ 100     [2] 

To quantify a reduction (positive or negative) in noise-like errors (including a combination of noise, 

reconstruction error and artifacts) between two reconstruction A and B, a 2-dimensional region of interest 

(ROI) in a homogeneous region of the blood-pool (free of flow artifacts) was selected manually on a coronal 

plane (plane number 𝑘). Symbol 𝑥𝑖𝑗𝑘  will stand for the voxel value of row 𝑖, column 𝑗, and plane 𝑘 of a 3D 

image. The symbol “ 𝑥𝑖𝑗𝑘 ∈ 𝑅𝑂𝐼 ” will mean that the voxel of row 𝑖, column 𝑗, and plane 𝑘 is located inside 

the given 2D-ROI. The spatial (not temporal) total-variation (sTV) inside that 2D-ROI will be written 𝑠𝑇𝑉𝑅𝑂𝐼 

and was calculated as 

𝑠𝑇𝑉𝑅𝑂𝐼 = 
1

2
 ∑ |𝑥𝑖+1,𝑗,𝑘 − 𝑥𝑖,𝑗,𝑘| + |𝑥𝑖−1,𝑗,𝑘 − 𝑥𝑖,𝑗,𝑘| + |𝑥𝑖,𝑗+1 𝑗,𝑘 − 𝑥𝑖,𝑗,𝑘| + 

 

𝑥𝑖𝑗𝑘∈𝑅𝑂𝐼

 

|𝑥𝑖,𝑗−1,𝑘 − 𝑥𝑖,𝑗,𝑘| + |𝑥𝑖,𝑗,𝑘+1 − 𝑥𝑖,𝑗,𝑘| + |𝑥𝑖,𝑗,𝑘−1 − 𝑥𝑖,𝑗,𝑘|   [3] 
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The sTV reduction (in %) between reconstruction A and B was calculated as  

 sTV reduction =  
𝑠𝑇𝑉𝐴

𝑅𝑂𝐼 − 𝑠𝑇𝑉𝐵
𝑅𝑂𝐼

1

2
(𝑠𝑇𝑉𝐴

𝑅𝑂𝐼 + 𝑠𝑇𝑉𝐵
𝑅𝑂𝐼)

∗ 100     [4] 

Similarly, the ratio between the average blood signal and its standard deviation in the same ROI was 

computed and written as the symbol “[𝜇/𝜎]𝑅𝑂𝐼 ”. Because CS images do not exhibit a regular (Gaussian or 

Riccian) noise, we named this ratio “𝜇/𝜎-ratio” and not “signal-to-noise”. The relative 𝜇/𝜎 gain between 

any two reconstruction A and B (in %) was evaluated as 

𝜇

𝜎
 gain =  

[𝜇/𝜎]𝐴
𝑅𝑂𝐼− [𝜇/𝜎]𝐵

𝑅𝑂𝐼

1

2
 ( [𝜇/𝜎]𝐴

𝑅𝑂𝐼+ [𝜇/𝜎]𝐵
𝑅𝑂𝐼)

∗ 100     [5] 

The significance of an average (over patients) being different from 0, or an average difference being 

different from 0, was assessed by a two-tailed t-test for any quantitative end-point defined above.  

We define here the EF-bias of a given reconstruction as the average difference (over all patients) between 

the EF measured with that reconstruction and the EF measured with the reference standard method using 

2D-CINE imaging. The EF-bias (given as mean±SD) expresses thus the accuracy of EF of the various 

reconstructions. On the reference 2D-CINE images, EF was measured using commercial software by a 

reader blinded to the 3D-CINE results and with 5 years of CMR analysis experience (AM). On 3D-CINE 

reconstructions, EF was measured blinded as follows.  

End-systolic and end-diastolic cine frames were identified by the cardiologist. Then, the three following 

masks were determined on both end-systolic and end-diastolic cine frames:   

- a manually drawn mask with boundaries lying inside the LV myocardium (inside the muscle),  

- one 3D half-space (the set of points lying on one side of a plane) separating the LV from the left 

atrium,  

- another 3D half-space separating the LV from the aortic valve. 

The intersection of these three masks resulted then in a “shell-mask” that contains the LV (mainly blood 

and some muscle) and excludes the rest of the image. To segment the blood inside the shell-mask, a 

threshold-mask was computed for the blood-pool signal. The intersection of this “threshold-mask” and 

the “shell-mask” resulted in the segmentation of the blood in the LV. The stroke volume was subsequently 

computed by subtracting the end-systolic from the end-diastolic blood volume. EF (in %) was calculated as 

the ratio between stroke volume and the end-diastolic volume and multiplied by 100%. The three masks 
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defined by the three bullet points above were determined from the MASTER_3D+ reconstruction showing 

the better BMIS and were reused for all other reconstructions to have a fair comparison with respect to 

segmentation, the goal of the present EF comparison being to compare the performance of signal-value-

thresholding for EF measurement. The definition of these three masks was blinded to the EF measurement 

with the reference 2D-CINE method.  

Blant-Altman-plot and correlation-plots between EF measured from MASTER_3D+ versus EF measured 

from the reference standard method were also performed.  

Qualitative image comparison methods 

A blinded qualitative comparison was performed by two experienced (> 10 years and 5 years) radiologist 

(DR and RT) between the reconstruction MASTER_3D+ versus XD-GRASP_5D_LAUS and also between the 

reconstruction MASTER_3D+ versus XD-GRASP_4D+ using the following 9 comparison criteria: visual 

sharpness of left main artery (LM), of the left anterior descending artery (LAD), of the circumflex artery 

(LCx), of the right coronary artery (RCA) and of the aortic arch branches interface, conspicuity of aortic 

valve leaflets, perceived noise, overall diagnostic confidence, and Likert scale (48). For each criterion, the 

following analysis was performed: for each patient, the radiologist recorded which of the two 

reconstructed images (MASTER_3D+ and one of the other) was better according to the given criteria. The 

number of patients for which one reconstruction was preferred over the other was reported. The result's 

significance was assessed with a two-sided binomial test. The analysis was repeated independently by two 

radiologists.  

Another qualitative analysis was conducted on so-called M-mode images. For each reconstruction was an 

M-mode image constructed as follows: From each frame of the reconstruction, one line of voxels (direction 

left-right w.r.t patient body) was chosen. Each line (one per frame) was plotted as a column and 

concatenated from left to right (i.e. in the time dimension) to obtain a 2D image called M-mode. For each 

patient, the three M-modes (one for each reconstruction) were displayed next to each other in a random 

order and the conspicuity of graphical features was compared visually by the author himself.   

Study 2: Comparison of different coil-sensitivity estimations  

Study 2 is defined in the supplementary material. It is a study about coil-sensitivities. We compare our new 

coil-sensitivity estimation to three other methods, in particular to the coil-sensitivity estimation used in 

XD-GRASP_5D_LAUS.  
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Study 3: Convergence analysis 

Study 3 is a convergence analysis of our new reconstruction MASTER_3D+. It is also defined in the 

supplementary material. In particular, we test our reconstruction on simulated data using the XCAT 

phantom (49–51).  

Additional reconstructions 

We also propose in the supplementary material some additional reconstructions in order to answer some 

legitimate critics about our methodology.  

Results 

Study 1: Comparison of XD-GRASP_4D_DF versus XD-GRASP_5D_LAUS and XD-GRASP_4D 

Table 3 summarizes all quantitative results of study 1 (excepted EF-bias). The RCA of patient 1 and the LM 

of patient 2 could not successfully be identified, consistent with a known coronary anomaly in those 

patients. These two arteries were therefore excluded from the analysis. This table shows a significant 

improvement of vessel sharpness of RCA and LAD in MASTER_3D+ as compared to the other 

reconstructions, as well as significant BMIS-gain and 𝜇/𝜎-gain.  

Figure 1 displays a reformatted image of the right coronary artery from patient 3 at two different time 

points where a lot of motion occurs (ventricular contraction and dilatation) and demonstrate that the use 

of deformation fields leads to better visibility of small anatomical structures.  

Figures 2 shows planes in the three orientations of the reconstructed image of patient 1. Both 

XD-GRASP_4D+ and XD-GRASP_5D_LAUS show a degradation of moving structures pointed out by red 

arrows, as compared to MASTER_3D+. One may notice the so-called “salt and pepper” noise on those 

images (typically in the blood pool).  

Figure 3 shows an example of a moving anatomy before and after deformation, as well as the 

corresponding deformation field in transverse plane. The registration residuals after deformation show 

how sparsity improve in motion-compensated residuals.  

Table 4 summarizes the blinded qualitative analysis of the radiologists. Note that the RCA of patient 1 and 

LM of patient 2 were excluded from the analysis. It shows that none of the evaluated features are better 

in XD-GRASP_4D+ nor in XD-GRASP_5D_LAUS. Moreover, 5 features were significantly preferred in 
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MASTER_3D+ as compared to XD-GRASP_4D, and 5 other features were significantly preferred in 

MASTER_3D+ as compared to XD-GRASP_5D_LAUS.  

Four patients were excluded from the EF measurements due to single ventricle anatomy, making the 

segmentation difficult. As shown in table 5, EF-bias relative to gold standard 2D CINE was 0.0% ± 1.9% 

for MASTER_3D+ and 0.12% ± 1.6% for XD-GRASP_4D+. But these two biases were not statistically 

different from 0, nor different between each other. The EF-bias was −3.0% ± 1.8% for 

XD-GRASP_5D_LAUS, which was significantly different from 0 (p < 0.01). Figure 5A displays EF measured 

with free-running acquisition and MASTER_3D+ versus EF measured conventionally on 2D-CINE images. 

Figure 5B shows EF measured conventionally on 2D-CINE images by an observer versus another observer, 

and figure 5C shows the Bland-Altman plot for the comparison of EF between MASTER_3D+ and the 

conventional 2D_CINE method.   

The second part of the qualitative analysis, residing in the inspection of M-mode images, revealed that 

sharper features in MASTER_3D+ could be found for every patient, as compared to the two non-motion 

informed reconstructions. The opposite never happened. Figure 4 shows M-mode images with an 

anatomical plane showing where the M-mode image originates from (yellow line). Top and bottom row 

correspond to two different patients. One can appreciate how the M-mode images from MASTER_3D+ (B 

and H) expresses sharper lines as for XD-GRASP_4D+ (D and J) and for XD-GRASP_5D_LAUS (F and L). Red 

arrows point to examples of such differences. The blur or loss of sharpness in M-mode images is a typical 

symptom of temporal regularization. Subfigure B and H experimentally demonstrates how this drawback 

can be corrected.  

The number of reconstructed cardiac frames was 20.3 ± 4.6 . The reconstruction time amounted to 

19.4 ± 4.9 hours for XD-GRASP_4D+ and 32.7 ± 9.2 hours for MASTER_3D+ (p<0.05) and the total 

number of 60 iterations was reached for all patients for those two reconstruction. The reconstruction time 

was 10.1 ± 2.2 for XD-GRASP_5D_LAUS, which performed 10 iterations for each patient with 4 CGD 

iterations in each.  

Study 2 

The results of study 2 can be found in table 5. We refer the reader to the supplementary material for the 

complete results of study 2. Briefly, our new coil-sensitivity estimation results in images which are spatially 

homogeneous and for which EF measurement is not biased as compared to the reference standard 

method (table 5 and supplementary figures S4 and S5). In contrast, the coil-sensitivity estimation used for 
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XD-GRASP_5D_LAUS leads to spatially non-homogenous images for which the measurement of EF is biased 

as compared to reference method.  

Study 3 

We refer the reader to the supplementary material for the results of study 3. Briefly, the convergence 

analysis shows that MASTER_3D+ is converging.   

Discussion 

The quantitative and qualitative comparison between MASTER_3D+ and XD-GRASP_5D_LAUS tested the 

hypothesis positive that the cumulative effect of motion-compensated temporal-total-variation (MC-tTV) 

regularization, a revisited conjugate-gradient-descent (CGD) with exact line-search, our new coil-

sensitivity estimation and our new density compensation, significantly improves the global quality of 

images reconstructed from fully self-gated free-running 3D-radial data acquired with ferumoxytol 

injection. In particular, the visibility of moving structures, signal-to-noise surrogates, and sharpness of 

coronary arteries were improved. Moreover, the potential problem of cardiac motion being frozen by 

temporal regularization, and potentially inducing a wrong measurement of ejection fraction, could be rule 

out. In fact, our EF measurements on MASTER_3D+ were consistent with the gold standard measurement 

(as shown in figure 5) and suggest that cardiac dynamics can be assessed reliably.  

Taken alone, the reduction of sTV in a homogeneous blood pool region, as well as the relative 𝜇/𝜎-gain, 

do not necessarily suggest improvement in image quality since the same result could have directly been 

obtained by spatial blurring (filtering) of these images. However, and together with the concomitant 

sharpness improvements (in RCA, LAD, blood-myocardium interface, M-mode images) without the 

blurring that typically originates from XD-GRASP_4D+, it may be deduced that the image quality is 

increasing for MASTER_3D+. Consistent with those quantitative findings, the blinded radiologist reader 

preferred MASTER_3D+ for most of the evaluated anatomical features. Among the end-points with non-

significant p-values, the sharpness of aortic arch branches interface is the least relevant since these vessels 

are not the main target when performing cardiac MR and likely because they are less subject to motion 

and may therefore not benefit as much from the motion field reconstructions. Furthermore, aortic valve 

leaflet conspicuity was not significantly better on MASTER_3D+, which may be linked to the intrinsically 

high contrast between the leaflets and the blood pool, possibly requiring larger sample sizes to document 

the effect on small anatomical structures.  
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Because too many comparisons would have been needed to decouple the effect of each of the four 

measures individually, we only tested how the image quality decreased when two of them (one at a time) 

are removed. Namely, we compared the image quality of MASTER_3D+ to the image quality obtained by 

removing MC-tTV, which results in XD-GRASP_4D+. And in study 2 (supplementary material), we compared 

the image quality of MASTER_3D+ to that obtained by removing our new coil-sensitivity estimation and 

replacing it with the one used in XD-GRASP_5D_LAUS (and also two others). The removing of MC-tTV, 

which consists in XD-GRASP_4D+, results in a significant decrease in image quality as indicated by the 

quantitative and qualitative analysis, but do not affect the EF measurement. Replacing our new coil-

sensitivity by the one used in XD-GRASP_5D_LAUS did not decreased sharpness (see supplementary 

results) but it changed the overall image homogeneity drastically and created a bias in EF measurement 

as compared to the gold standard, as shown in supplementary figure S5A. 

The effect of the revisited CGD with exact line-search and the new density compensation were not 

explored individually. We hypothesized in this study that they could be beneficial or, in the worst case, do 

not damage image quality nor reconstruction time. But for the moment, their individual contribution is 

confounded in the combination of the four developments (i-iv).  

In study 3 (supplementary material), the evolution of the monitor images, the data-fidelity term and the 

MC-tTV along the 60 iterations, demonstrate experimentally that our reconstruction converges even after 

a large number of iterations. The decay to zero of the error between reconstructed image and ground-

truth for the numerical phantom confirms the convergence of our reconstructions.  

Among the four novelties of our work, the most impactful is probably the introduction of 

motion-compensated residuals between adjacent frames for 3D-radial free-running dynamic MRI, the sum 

of those residuals being the MC-tTV. Our method is similar to MASTER (13), the main difference being that 

MASTER was implemented for 2D Cartesian trajectories only, and includes both forward and backward 

motion-compensated residuals. While we extended this idea to 3D, we implemented only backward 

residuals in the current implementation to reduce reconstruction time but adding forward residuals can 

be done straightforwardly. Apart from that difference, we can consider that our method is a 3D version of 

MASTER applicable to radial acquisitions. The method k-t-FOCUSS with motion correction (21) could be a 

candidate for comparison to our method. But this was also implemented for 2D Cartesian MRI only. A 

comparison with k-t-FOCUSS would need to extend it to 3D non-cartesian trajectories. This is however not 

straight forward because the entire code would have to be re-written to handle large size data and non-

cartesian gridding operations. This may be the subject of future studies. The same remark applies for 
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BLOSM (24) and k-t-SLR (52) which exploit block-wise low-rank sparsity, which is another interesting type 

of regularization.  

The reconstruction time of MASTER_3D+ is too high for clinical use, but it was in the intention of the 

present study to perform the maximum possible number of iterations to explore how fast images would 

converge. Different strategies could now be pursued to accelerate the reconstruction, including the 

exploration of a fewer number of iterations, a smaller reconstruction field of view, a multiresolution 

strategy, and the parallelization of the code among several computer nodes. We also note that the 

reconstruction time was different among patients since the number of reconstructed cardiac frames 

depends on individual heart rate, and on the different number of nodes of the HPC that were accessible 

for the different reconstructions, which may be another confounder.  

Our reconstruction with MC-tTV, revisited conjugate CGD with exact line-search, new coil-sensitivity and 

new density compensation, contributes to the improvement of free-running acquisitions in cardiac MRI, 

with multiple advantages as compared to the conventional 2D-CINE ECG-gated approach: no ECG and no 

prospective planning is needed, binning is retrospectively done and can be retrospectively adjusted until 

a satisfactory result is reached, the full 3D and temporal information becomes available, and finally, no 

breath-holds are needed. If the reconstruction time can be reduced, the proposed approach would be 

clinically advantageous for applications that needs a high 3D resolution. In fact, 3D anatomy and function 

could then be observed for any clinical purpose. As an example, the identification of supracardiac partial 

anomalous pulmonary vein return, which requires the identification of the connection between the 

superior vena cava and the right superior pulmonary vein. Another example is the identification of an atrial 

septal defect, which is often hard to depict properly. A third example is the visualization of the relationship 

between the coronary artery and the aorta, as well as between the coronary artery and the pulmonary 

walls when it has an interarterial course.  

We note however several limitations in our study. First, ferumoxytol was used as a contrast agent because 

this was part of the clinical protocol for the acquired data available to test our reconstruction. In principle, 

our reconstruction should also work with native contrast if the MRI sequence used for acquisition can 

generate a sufficient contrast (which is not the case for GRE without contrast agent). Yet, this still would 

have to be tested in practice. Second, our study suffers from an absence of ground truth for deformation-

fields and we have no way to estimate them accurately. We can therefore not identify how accurate is the 

estimation of deformation fields. Even with on simulated data, for which the image ground truth is known, 

the deformation-fields are difficult to estimate because those images are piece-wise constant, which 
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makes them difficult to register. Third, only a quarter of the data was used by selecting only one respiratory 

phase. This choice was made to simplify the reconstruction and to build an intermediary (in our opinion 

necessary) step before using all data for a 5D reconstruction. Fourth, the presented reconstruction 

technique was tested in patients with regular heart rhythm. How this reconstruction will perform in 

patients with extrasystoles or other arrhythmias needs further evaluation. Fifth, patients that undergo 

cardiac MRI often suffer from heart failure which results in irregular breathing patterns (e.g. Cheyne-

Stokes breathing). Further testing of the presented reconstruction in these patient populations is 

warranted. Another limitation is that we don’t have gold standard measurements for coronary imaging 

(i.e. cartesian gated, fully sampled, fat suppressed, T2 prepared, BSSFP sequence) because that was not 

part of the clinical protocol. Finally, we note that other temporal regularization strategies (such as 

temporal Fourier transform or wavelet transform) could have been used in order to reconstruct images 

prior to deformation-field estimation. These strategies could be explored in a next study.  

As a last point of discussion, we note the presence of some spatially isolated bright voxel in MASTER_3D+ 

(ex. on figure 2). We hypothesize that it is symptomatic of tTV-regularization and may be part of what is 

sometimes called “salt and paper noise”. Our interpretation is the following. If a voxel is dark like its spatial 

neighborhood, but that the same voxel location has bright signal on the temporal neighboring frames, it 

may sometimes happen that temporal regularization enforce a bright value for this voxel in order to mimic 

its temporal neighbors, without enforcing the same for its spatial neighbors because they have slightly 

different values and slightly different temporal neighbors. An example of such case can be flow artefacts 

where some voxels are dark on one frame because of high flow and are bright on the next frame because 

flow is smaller. Although we claim that flow artefact are candidates for such events, it is only an example 

and it could potentially happen everywhere on the image where a strong temporal variation of signal 

exists. In fact, we see these white dotes mostly on areas of movement and not in static tissues.  

Conclusion 

Using deformation fields, a revisited conjugate-gradient descent with exact line-search, a new density 

compensation and a new coil-sensitivity estimation, we have developed a new approach to compressed 

sensing image reconstruction for ferumoxytol-enhanced radial free-running cardiac image acquisitions. 

Indeed, objective and subjective image quality metrics suggest a potential for anatomical and functional 

image quality improvements on the one hand or hold promise for scan time abbreviations on the other. 
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Clinically relevant parameters associated with cardiac anatomy and function are consistent with those 

extracted from contemporary reference standard methods.  
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Tables 
 

Table 1 

Patient 
number 

Age 
(years) 

Gender Diagnosis Heart Rate 

(bpm) 

Weight 

(kg) 

Height 

(cm) 

Body Surface Area 

(m2) 

1        

2        

3        

4        

5        

6        

7        

8        

9        

10        

11        

12        

Average 21.3 100% male - 60.3 67.4 175 1.8 

 

 

Table 1: Table of participants. The entries of this table have been masked in order to discard identifying 

information as required for the pre-print version of the article. 
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Table 2 

 Free-running Sequence 2D CINE Sequence 

Sequence Type GRE BSSFP 

Dimensionality 3D 2D 

TR 2.84 ms 3.06 ms 

TE 1.64 ms 1.25 ms 

Matrix size 192 frequency encoding 208 frequency-enc., 166 phase-enc. 

Flip Angle 15 deg 80 deg 

Field of View 220x220x220 mm3 isotropic 300 x 240 mm2 

Excitation Type Slab-selective Slice-selective 

Pixel Bandwidth 1002 Hz/Pix 925 Hz/Pix 

Number of Lines per 

Segment 

22 15 

Number of Interleaves 5749 11 

Spatial Resolution 1.15 x 1.15 x 1.15 mm3 1.4 x 1.4 x 5.0 mm2 

Scan Time 6 min 6 min 

 

Table 2: Acquisition parameters of the MRI sequences.  
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Table 3 

 MASTER_3D+ vs  

XD-GRASP_4D+ 

MASTER_3D+ vs  

XD-GRASP_5D_LAUS 

Improvement in vessel sharpness 

for RCA (Soapbubble) 

𝟔. 𝟎 ± 𝟓. 𝟐 % (p < 0.05) 𝟒. 𝟐 ± 𝟑. 𝟗 % (p < 0.01) 

Improvement in vessel sharpness 

for LAD (Soapbubble) 

𝟑. 𝟖 ± 𝟑. 𝟖 % (p < 0.05) 𝟒. 𝟖 ± 𝟕. 𝟏 % (p < 0.05) 

Improvement in traceable vessel 

length for RCA (Soapbubble) 

p=NS p=NS 

Improvement in traceable vessel 

length for LAD (Soapbubble) 

p=NS 𝟏. 𝟓𝐜𝐦 ± 𝟏. 𝟗𝐜𝐦 (p < 0.05) 

BMIS gain 𝟐𝟒. 𝟓 ± 𝟐𝟑. 𝟖 % (p < 0.05) 𝟐𝟏. 𝟑 ± 𝟏𝟑. 𝟗 % (p < 0.01) 

sTV reduction 𝟏𝟐. 𝟔 % ±  𝟕. 𝟗 % (p < 0.01) p=NS 

𝜇

𝜎
 gain 𝟖. 𝟖 % ± 𝟒. 𝟖 % (p < 0.05) 𝟐𝟕. 𝟖 % ± 𝟐𝟗. 𝟐 % (p < 0.01) 

 

Table 3: Quantitative comparison of MASTER_3D+ vs XD-GRASP_4D+ and of XD-GRASP_5D_LAUS. NS 

means “non-significant”.  
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Table 4 

 

*p-value < 0.05 

**p-value < 0.01 

Table 4: Blinded qualitative analysis by two radiologists. The left column of top table describes the 

comparison criteria. The rest of top table displays how many times MASTER_3D+ was preferred against 

the compared reconstruction (XD-GRASP_4D_DF+ or XD-GRASP_5D_LAUS) according to the comparison 

criteria on the left. The bottom table displays the average Likert scale difference between MASTER_3D+ 

and XD-GRASP_4D+ (on the left) resp. XD-GRASP_5D_LAUS (on the right).  

  

Multiple criteria binary comparison performed by two radiologists 

 

Comparison criteria 

Number of patients for which  MASTER_3D+ was preferred 

vs XD-GRASP_4D+ vs XD-GRASP_5D_LAUS 

radiologist 1 radiologist 2 radiologist 1 radiologist 2 

Perceived Noise 12/12** 12/12** 10/12* 12/12** 

Sharpness of aortic arch branches interface 8/12 12/12** 10/12* 12/12** 

Sharpness of aortic valve leaflets 9/12 10/12* 8/12 7/12 

Sharpness of LM (left main artery) 11/11** 10/11* 10/11* 10/11* 

Sharpness of LAD (anterior descending artery) 12/12** 12/12** 7/12 8/12 

Sharpness of LCx (circumflex artery) 11/12** 12/12** 10/12* 12/12** 

Sharpness of RCA (right coronary artery) 9/11 11/11** 7/11 9/11 

Overall diagnostic confidence 12/12** 12/12** 12/12** 12/12** 

Likert scale difference between MASTER_3D+ 

vs XD-GRASP_4D+ vs XD-GRASP_5D_LAUS 

radiologist 1 radiologist 2 radiologist 1 radiologist 2 

1.1** 1.0** 1.1** 1.3** 
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Table 5 

Coil-Sensitivity A B C D 

EF-bias (%) 0.0%±1.9% -2.13%±2.23%* 1.50%±1.60%* 1.38%±1.30%* 

Std-periphery (arb. units) 0.48±0.06*(b) 0.74±0.11*(a, c, d) 0.44±0.06*(b) 0.48±0.07*(b) 

LLIS (arb. units) 2.72 ±0.61*(c, d) 2.77±0.41*(c, d) 1.96±0.45*(a, b) 1.93±0.56*(a, b) 

 

Table 5: All results in the present table are presented in the form “average ± standard-deviation”. The 

asterisk (*) in row “EF-bias” designates an average significantly different from 0. The asterisk (*) in rows 

“Std-periphery” and “LLIS” designates an average difference (with other column given inside parenthesis) 

significantly different from 0. The same results are presented graphically in supplementary figure S5.  
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Figures  

 

 

 

 

Figure 1: These images were reformatted with SoapBubble and red arrows depict the right 

coronary artery. The top row corresponds to diastole while the bottom row images originates 

from systole. MASTER_3D+ (left column) exhibits a better visibility of the right coronary artery as 

compared to XD-GRASP_4D+ (middle column) and XD-GRASP_5D_LAUS (right column).  
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Figure 2: Reconstructed images from data of patient 1. The first raw belongs to diastole while 

middle and bottom belong to systole. The superiority of MASTER_3D+ over both XD-GRASP_4D+ 

and XD-GRASP_5D_LAUS can visually be appreciated on details depicted by red arrows (first row, 

posterior wall of the ascending aorta; second row, left ventricular endocardium and 

trabeculations; third row, superior vena cava/ascending aorta interface).  
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Figure 3: Displayed is an example of moving anatomical image before and after deformation, as well as 

the corresponding deformation-field in transverse plane. The registration residuals after deformation 

shows how sparsity improves in the motion-compensated residuals. 
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Figure 4: First and second rows display two examples (from two different patients) of M-mode 

images together with an anatomical plane showing where the M-mode image originates from: 

the yellow line on the anatomical plane shows the left-right line of voxel chosen to evaluate the 

M-mode image. Left column (A, B, G, H) corresponds to MASTER_3D+, middle column (C, D, I, J) 

corresponds to XD-GRASP_4D+, and right column (E, F, K, L) corresponds to XD-GRASP_5D_LAUS.  

The M-mode images from MASTER_3D+ (B and H) shows sharper features than those from XD-

GRASP_4D+ (D, J) and XD-GRASP_5D_LAUS (F, L). Red arrows indicate superior vena 

cava/ascending aorta interface (upper row), and right coronary artery (lower row). 
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Figure 5: A: Ejection-fraction measured with free-running acquisition and MASTER_3D+ versus 

Ejection-fraction measured conventionally on 2D-CINE images. B: Ejection-fraction measured 

conventionally on 2D-CINE images by an observer versus another observer. C: Bland-Altman plot 

for the comparison of EF between MASTER_3D+ and the conventional 2D_CINE method.   
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Supplementary Material 

Supplementary Methods 

New density compensation 

The sampling trajectory of the free-running sequence used for all acquisitions in this study was a radial 

trajectory, where the sequence of radial lines follows a 3-dimensional (3D) phylotaxis pattern (42). In 

particular, each line crosses the center of the Fourier space, so that the trajectory covers a ball centered 

in 𝟎. Let us index the complete list of radial lines with indices 1,… , 𝑛𝐿𝑖𝑛𝑒_𝑡𝑜𝑡 where “𝑛𝐿𝑖𝑛𝑒” means 

“number of lines” and “𝑡𝑜𝑡” refers to the complete set of acquired lines of the free-running sequence. Let 

be 𝒑𝒊 the location in 𝑘-space of the starting point of radial line number 𝑖. Then is 

𝒆𝒊 ≔ 𝒑𝒊/‖𝒑𝒊‖𝟐 

the only unit vector pointing in the direction of 𝒑𝒊. We will admit the presence of a spatial laboratory frame 

with orthonormal basis vectors 𝒆𝒙, 𝒆𝒚, 𝒆𝒛. The unit sphere is intersected by the x-y-plane on a circle that 

we will call the “equator”, which disconnects two open unit half spheres: one containing points with 

positive z-coordinates (open upper half sphere) and another one containing points with negative 

z-coordinates (lower open half sphere). We will call “closed upper half sphere” the union of the equator 

and the open upper half sphere, which is in fact a closed set.  The closed lower half sphere is defined 

accordingly.  

For simplicity, and without limiting generality, we will admit that 𝒆𝟏, … , 𝒆𝒏𝑳𝒊𝒏𝒆_𝒕𝒐𝒕 are contained in the 

closed upper half sphere. The complete list 𝒆𝟏, … , 𝒆𝒏𝑳𝒊𝒏𝒆_𝒕𝒐𝒕 samples the closed upper half sphere quite 

uniformly in practice. However, the binning operation (described in the reconstruction section) selects a 

subset of lines for each data bin. Let us call 𝑛𝐿𝑖𝑛𝑒 the number of lines in a given bin and let be 

{𝑖1, … , 𝑖𝑛𝐿𝑖𝑛𝑒} ⊂ {1,… , 𝑛𝐿𝑖𝑛𝑒_𝑡𝑜𝑡} the index subset of lines included in that bin. Therefore, the list 

𝒆𝒊𝟏 , … , 𝒆𝒊𝒏𝑳𝒊𝒏𝒆
do not longer samples the previous half sphere uniformly. It follows that the trajectory points 

in that bin, although uniformly distributed radially, are not uniformly distributed spherically.  

The reconstruction requires an estimation of the finite volume elements for each point of the 𝑘-space 

trajectory, the inverse of which is known as “density compensation”. The more natural estimation of these 

volume elements is achieved by computing the volume of the Voronoi cell for each trajectory point. The 

number of points being in practice so large, it is unpractical to perform the Voronoi algorithm of a concrete 
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list of trajectory point in 3D space. Instead, we propose here to estimate those 3D volume elements from 

an estimate of the solid angles of the 2D spherical Voronoi cells of points 𝒆𝒊𝟏 , … , 𝒆𝒊𝒏𝑳𝒊𝒏𝒆
 on the unit sphere. 

(See supplementary figure S2) 

Given any list of points 𝒆𝒊𝟏 , … , 𝒆𝒊𝒏𝑳𝒊𝒏𝒆
 of the unit sphere, the 2D spherical Voronoi cell of point 𝒆𝒊𝒋 is by 

definition the set of points on the unit sphere that are closer to 𝒆𝒊𝒋 than to any other of the list. Of course, 

we consider that the distance between two points on the unit sphere is the length of the geodesic between 

them. Each such Voronoi cell is a 2D spherical surface elements which covers a solid angle. In order to 

estimate that solid angle with the 2D Voronoi algorithm, we perform a projection of  𝒆𝒊𝟏 , … , 𝒆𝒊𝒏𝑳𝒊𝒏𝒆
 to the 

plane parallel to x-y-plane with z-coordinate equal to 1 in a similar (but different) way to stereographic 

projection: we simply rescale each unit vector so that its z-component is equal to 1. The 2D Voronoi 

algorithm is then performed on these projected points (see supplementary figure S2). The surface of each 

2D flat Voronoi cell is assigned back to the corresponding point on the sphere by multiplying it with a 

correction factor that depends on the polar angle 𝜃 and which is given by cos3 (𝜃), and leading this way 

to an estimate of the solid angle of each 2D spherical Voronoi cell. That process is repeated for points on 

the closed lower half sphere by projecting points on a plane with z-coordinate equal to −1. The points 

close to the equator are however projected quite far away as compared to most of the other points and 

the error on their 2D spherical surface estimate is relatively large. Moreover, the Voronoi algorithm assigns 

a non-sense value to point located in the periphery of the set of points. For that reason, the Voronoi cells 

for points located close to the equator are estimated separately by repeating the entire process with 

different half-spheres: once with the two half-sphere disconnected by the x-z-plane, and once with the 

two half-spheres disconnected by the y-z-plane. The 2D Voronoi algorithm is thus ran six times in total in 

order to cover the entire sphere.  

Finally, the volume element of any point on the 3D radial trajectory is estimated as follows. Let be 𝒌 a 

trajectory point on a radial line. Let be Δ𝑟𝑛𝑒𝑥𝑡 the distance to its next neighbor on the same line, and let 

be Δ𝑟𝑝𝑟𝑒𝑣 the distance to its previous neighbor on the same line. We average them to obtain the distance 

Δ𝑟 . If 𝒌 has only a next neightboor we set Δ𝑟 =  Δ𝑟𝑛𝑒𝑥𝑡 and we set Δ𝑟 =  Δ𝑟𝑝𝑟𝑒𝑣 in the other case. Let be 

Δ𝑆 the solid angle assigned to the radial line supporting  𝒌. Then we set the volume element of 𝒌 equal to 

Δ𝑟 Δ𝑆 ‖𝒌‖2
2. There is an exception for the 𝑘-space center 𝒌 = 0. In that case we compute an average 

radius 𝑟 as the average half distance to all its immediate neighbors. We set the its volume elements equal 

to 
4

2
𝜋𝑟3.  
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New coil-sensitivity estimation 

The coil-sensitivity estimation presented here is a modification of the method presented in (53). The 

difference is that we don’t use polynomial fitting. In this subsection, we will call Ω the set of points in space 

(or voxels, or pixels) where protons are sufficiently abundant to generate a signal amplitude significantly 

larger than noise amplitude, while Ω𝑐 (the complement set of Ω) will be the set of space locations where 

only noise is observable on images, such that the air around the patient and some parts of the lungs. We 

will call 𝐶 the coil-sensitivity, which is a spatially dependent complex value.  

To estimate 𝐶 in Ω, we made use of the low-resolution “prescan” images acquired automatically as part 

of the sequence protocol. These images are acquired sequentially with the exact same parameters for 

both the array-coils (or surface coils) and with the two body-coils located around the tunnel of the scanner. 

A reference anatomical image was constructed as the root-mean-square image of the two body-coil 

images (discarding thus the phase information). Thresholding this image with a visually determined value 

allowed to build an image mask defining Ω and Ω𝑐. Some remaining unwanted voxels in Ω (especially in 

the corners of the image) could also be removed manually or by intersecting Ω with a box-shape mask 

excluding the borders of the image. The coil-image of each element of the coil-array was then point wise 

divided by the reference anatomical image, resulting in one complex-coil sensitivity estimation for each 

coil. The phase of that coil-sensitivity estimation was thus the ones of the coil-images. We omitted to 

subtract the phase of one of the body-coil image in order to avoid singularities in the final coil-sensitivity 

estimation. Until here, our method is the practically the same as presented in (53). But that former method 

uses polynomial fitting for two purposes: to reduce the noise in the coil-sensitivity estimation in Ω and to 

extrapolate the coil-sensitivity in Ω𝑐. In our method, the noise affecting 𝐶 in Ω was filtered out to some 

extent by averaging the value in each voxel with the neighboring voxel values, but only considering the 

neighbors lying inside Ω. The average was normalized according to the number of neighbors for each voxel 

and the averaging process was repeated iteratively until satisfactory result. In order to perform the 

extrapolation of 𝐶 in Ω𝑐, we solved the following Laplace boundary value problem in Ω𝑐 for the real part 

of 𝐶 that we will call 𝑟𝐶 :  

{
Δ 𝑟𝐶 = 0 in Ω𝑐

𝑟𝐶 is equals its estimate on Ω on the boundaries
} 

and we did exactly the same for the imaginary part 𝑖𝐶. Circular boundary condition where enforced on the 

border of the image and the boundary value problem was solved with the well known Jacobi algorithm for 
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Laplace equation. The complex coil-sensitivity estimate was then formed as 𝐶 = 𝑟𝐶 + 𝑗 𝑖𝐶 where 𝑗 =

 √−1.  

In the study 2, we compare the above described coil-sensitivity to three others, among which two make 

use of polynomial fitting (one for extrapolation and one for both noise reduction and extrapolation).  

New implementation of motion-compensated temporal-total-variation (MC-tTV) for 3D images 

While MC-tTV for 2D images have been implemented for the MASTER reconstruction, we have 

implemented it for 3D images for our reconstruction. The mathematical formalism to describe MC-tTV is 

in principle independent of the image dimensionality and can therefore already be found in the literature. 

The innovation of our work, concerning MC-tTV, resides therefore in our 3D implementation and not in 

the concepts. The reason why we give here our view of the mathematical formalism describing MC-tTV is 

for giving indication on our implementation.  

In the following, any MRI image 𝒙 will be represented as a vertical concatenation 𝒙 = [𝒙(1);  … ; 𝒙(𝑛𝐹𝑟)] of 

3D frames, the 3D frame 𝒙(𝑖) being the static 3D image written as a column vector by column-major order 

and 𝑛𝐹𝑟 being the total number of frames. The dynamic image 𝒙 is thus a vector consisting of the 

concatenation of 𝒙(1) to 𝒙(𝑛𝐹𝑟). 𝑋 and 𝑋(𝑖)  will be the vector spaces in which 𝒙  and 𝒙(𝑖)are lying.  

We define the temporal-total-variation (tTV) as 

tTV =  ∑‖copy(𝑖−1,𝑖) 𝑥(𝑖) − 𝑥(𝑖−1)‖
𝑋(𝑖−1),1

𝑛𝐹𝑟

𝑖=1

 

Here is copy(𝑖−1,𝑖) a mathematical formality. It is the map that transports 𝑥(𝑖) ∈ 𝑋(𝑖) onto its identical copy 

in 𝑋(𝑖−1) so that we can subtract 𝑥(𝑖−1) from it and evaluate on it the 1-norm defined on 𝑋(𝑖−1). The vector 

copy(𝑖,𝑖−1) 𝑥(𝑖) is component wise equal to vector 𝑥(𝑖) but interpreted as a vector lying in 𝑋(𝑖−1). We have 

thus  

copy(𝑖−1,𝑖) ∶ 𝑋(𝑖)  ⟶ 𝑋(𝑖−1) 

𝑥(𝑖) ⟼ copy(𝑖−1,𝑖)𝑥(𝑖) ∈ 𝑋(𝑖−1) 

If we admit that it is clear that 𝑥(𝑖) is meant to lie in 𝑋(𝑖−1) when written inside the 1-norm ‖⋅‖𝑋(𝑖−1),1 , 

we can simply write 
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tTV =  ∑‖𝑥(𝑖) − 𝑥(𝑖−1)‖
𝑋(𝑖−1),1

𝑛𝐹𝑟

𝑖=1

 

The one-norm ‖⋅‖𝑋(𝑖),1 of a frame 𝑤 ∈ 𝑋(𝑖) is defined as 

‖𝑤‖𝑋(𝑖),1 =  Δ𝑅 ∑|𝑟𝑤𝑘
 | + |𝑖𝑤𝑘

 |

𝑁

𝑘=1

 

where 𝑁 is the total number of voxels in the frame, Δ𝑅 is the voxel volume, 𝑟𝑤𝑘
  is the real part of the 

voxel value of voxel number 𝑘 in 𝑤, and 𝑖𝑤𝑘
  is the imaginary part of the voxel value of voxel number 𝑘 in 

𝑤  (here stands letter 𝑖 in 𝑖𝑤𝑘
  for “imaginary part”, it is not an index). We consider throughout the entire 

article that index 𝑖 = 0 is identified with 𝑖 = 𝑛𝐹𝑟 and 𝑖 = 1 is identified with 𝑖 = 𝑛𝐹𝑟 + 1, in a circular 

manner.  

As explained in the reconstruction section, a first reconstruction is performed with tTV regularization only, 

leading to a list of frames 𝑥(1), … , 𝑥(𝑛𝐹𝑟). For 𝑖 = 1,… , 𝑛𝐹𝑟, an image registration between moving image 

𝑥(𝑖) and reference image 𝑥(𝑖−1) was then performed in order to estimate the deformation-field 𝐷𝐹(𝑖) 

defined as the local spatial translation  

 𝑟 ⃗⃗  ⃗ ⟼  𝑟 ⃗⃗  ⃗ + 𝐷𝐹(𝑖)( 𝑟 ⃗⃗  ⃗) 

 being so that 𝑥(𝑖) is deformed to match 𝑥(𝑖−1) as  

𝑥(𝑖) ( 𝑟 ⃗⃗  ⃗ + 𝐷𝐹(𝑖)( 𝑟 ⃗⃗  ⃗))  ≃ 𝑥(𝑖−1)( 𝑟 ⃗⃗  ⃗) 

This registration was repeated independently for 𝑖 = 1,… , 𝑛𝐹𝑟 with the Niftyreg program (44,45) using 

default parameters (excepted maximum number of iterations): maximum number of iterations (1000), 

number of pyramidal levels (3), weight of bending penalty term (0.005), weight of L2-norm displacement 

penalty term (0.0), weight of linear elasticity penalty term ([0.0, 0.0]), final grid spacing (5 voxels), similarity 

measure (normalized mutual information with 64 bins), mask (no mask), type of deformation (spline).  

Each deformation-field 𝐷𝐹(𝑖) was then encoded into a deformation (sparse) matrix 𝑇(𝑖) which is so that 

𝑥(𝑖) ( 𝑟 ⃗⃗  ⃗ +  𝐷𝐹(𝑖)( 𝑟 ⃗⃗  ⃗)) ≃ (𝑇(𝑖)𝑥(𝑖))( 𝑟 ⃗⃗  ⃗) ≃ 𝑥(𝑖−1)( 𝑟 ⃗⃗  ⃗) 

Or more concisely 
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𝑇(𝑖)𝑥(𝑖) ≃ 𝑥(𝑖−1) 

The map 𝑇(𝑖) is thus a linear map 

𝑇(𝑖) ∶ 𝑋(𝑖)  ⟶ 𝑋(𝑖−1) 

𝑥(𝑖) ⟼ 𝑇(𝑖)𝑥(𝑖) ∈ 𝑋(𝑖−1) 

We define the motion-compensated tTV (MC-tTV) as 

MC-tTV =  ∑ ‖𝑇(𝑖) 𝑥(𝑖) − 𝑥(𝑖−1)‖
𝑋(𝑖−1),1

𝑛𝐹𝑟
𝑖=1  

which is the sum of motion-compensated residuals between adjacent frames. The sparse matrix 𝑇(𝑖) was 

constructed as follows. Let be 𝑟  a voxel-center position and let be 

𝑟 ′ ≔ 𝑟 + 𝐷𝐹(𝑖)(𝑟 ) 

the new position given by the deformation-field in 𝑟 . Position 𝑟 ′ is not on the Cartesian grid in general. Let 

be 𝑟 1
𝑛𝑏 , … , 𝑟 𝑛𝑁𝑏

𝑛𝑏  the immediate Cartesian neighbors of 𝑟 ′ (i.e. the corners of the box containing 𝑟 ′) where 

“nb” stands for “neighbor” and “nNb” stands for “number of neighbors”. We define our (linear) 

interpolation of frame 𝑥(𝑖) at position 𝑟 ′ as the weighted sum 

𝑥(𝑖)(𝑟 ′) ∶=  ∑ 𝑥(𝑖)(𝑟 𝑗
𝑛𝑏)

𝑛𝑁𝑏

𝑗=1

⋅  𝑤𝑗 

where the interpolation weights 𝑤1, … , 𝑤𝑛𝑁𝑏 are normalized and given by 

𝑤𝑗 = 
𝑏𝑢𝑚𝑝(‖𝑟 ′ − 𝑟 𝑗

𝑛𝑏‖)

∑ 𝑏𝑢𝑚𝑝(‖𝑟 ′ − 𝑟 𝑘
𝑛𝑏‖)𝑛𝑁𝑏

𝑘=1

  

and where the bump-function is parametrized so, that it is non-zero if its argument is smaller than the 

voxel size and zeros else. In that way depends 𝑥(𝑖)(𝑟 ′) linearly on the immediate Cartesian neighbor of 𝑟 ′. 

In the case where 𝐷𝐹(𝑖)(𝑟 ) = 0 is 𝑟 ′ = 𝑟   on the cartesian grid and 𝑥(𝑖)(𝑟 ′) equals 𝑥(𝑖)(𝑟  ). The link 

between a deformed frame and the frame itself is thus linear and the matrix of that linear map is the 

matrix we called 𝑇(𝑖). Given a deformation-field, the interpolation weights were calculated for all voxels 

and stored as coefficients of the sparse matrix 𝑇(𝑖)  so that  

𝑥(𝑖) ( 𝑟 ⃗⃗  ⃗𝑘 + 𝐷𝐹(𝑖)( 𝑟 ⃗⃗  ⃗𝑘)) =  (𝑇(𝑖)𝑥(𝑖))
𝑘
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The transpose 𝑇(𝑖)𝑇 of sparse matrix 𝑇(𝑖), which is used during the iterative reconstruction, could then be 

evaluated using Matlab the build-in functions. A CSR sparse matrix format was developed in Matlab to 

store any sparse matrix (such as 𝑇(𝑖) and 𝑇(𝑖)𝑇)  and an efficient matrix-vector multiplication was coded in 

C++ and parallelized with openMP. That code was then compiled as a Matlab executable file (MEX file) to 

allow the function call from any Matlab code.  

Revisited Conjugate-Gradient-Descent (CGD) with exact line search 

We summarize here some elements presented in details in an online freely available document (54). We 

make use of the conjugate-gradient-descent (CGD) as described in the original article (35), which presents 

two version (and some variants) of the algorithm. We make use of the second version, which is suited for 

solving the normal equation 

𝐴†𝐴 𝑥 =  𝐴†𝑣 

who’s solution set is equal to the set of minimizer of the least-square problem 

𝑥# ∈ argmin
𝑥

‖𝐴𝑥 − 𝑣‖𝑉,2
2       [P1] 

Here is 𝐴 a linear map from vector space 𝑋 to vector space 𝑉:  

𝐴 ∶ 𝑋 ⟶ 𝑉 

𝑥 ⟼ 𝐴𝑥 

and 𝐴† is the adjoint of 𝐴. Vector 𝑥 ∈ 𝑋 is the MRI image and vector 𝑣 ∈ 𝑉 is some given (constant) vector. 

The 2-norm ‖⋅‖𝑉,2
  on space 𝑉 is induced by an Euclidean product as 

‖𝑣‖𝑉,2
2 ∶=  ⟨𝑣|𝑣⟩𝑉  

As explained in (54), this Euclidean product ⟨⋅ | ⋅⟩𝑉  is given by 

⟨𝑣1|𝑣2⟩𝑌 ≔ 𝑟𝑒𝑎𝑙{𝑣1
∗ 𝐻𝑉 𝑣2} 

where 𝐻𝑉 is a Hermitian positive definite matrix related to the list of volume elements (inverse density 

compensation) of the k-space trajectory points and also to the voxel volume (see next subsection for 

concrete definition).  

On vector space 𝑋 we use another 2-norm ‖⋅‖𝑋,2
  given by  
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‖𝑥‖𝑋,2
2 ∶=  ⟨𝑥|𝑥⟩𝑋 

where the Euclidean product ⟨⋅ | ⋅⟩𝑋 is given by 

⟨𝑥1|𝑥2⟩𝑋 ≔ 𝑟𝑒𝑎𝑙{𝑥1
∗ 𝐻𝑋 𝑥2} 

where 𝐻𝑋 is a Hermitian positive definite matrix equal to the voxel volume Δ𝑅 time the identity on 𝑋.  

The adjoint 𝐴† of homomorphism 𝐴 is the only one that verifies 

⟨𝐴𝑥|𝑣⟩𝑉 = ⟨𝑥|𝐴†𝑣⟩
𝑋

 

for any 𝑥 ∈ 𝑋 and any 𝑣 ∈ 𝑉 and is given in term of matrices by 

𝐴† = 𝐻𝑋
−1𝐴∗𝐻𝑌

  

where matrix 𝐴∗ is the conjugate transpose of matrix 𝐴.  

In order to perform the CGD algorithm to solve problem P1, one must perform the CGD algorithm as given 

in (35) but with the adjoint matrix  𝐴† instead of the conjugate transpose 𝐴∗ because our Euclidean 

products are not standard (i.e. the matrices defining the Euclidean products are different from the 

identity).  

In our reconstruction, the least square problem we solve with CGD is the lest-square sub-problem of 

ADMM given by 

𝑥# ∈ argmin
𝑥∈𝑋

1

2
‖𝑀 𝑥 − 𝑦‖𝑌,2

2 + 
𝜌

2
‖𝜙𝑥 − 𝑧‖𝑍,2

2      [P2] 

where 𝑀 = 𝐹𝐶 is the model, in our case the composition of the coil-sensitivity map and the (possibly non-

uniform) Fourier transform, and 𝜙 is the sparsifier transform. The variable 𝑧 is one of the other decision 

variable of ADMM algorithm described later. The data vector 𝑦 (which is the raw-data measured by the 

MRI machine) stands in a vector space 𝑌 which is endowed with ist own Euclidean product given by 

⟨𝑦1|𝑦2⟩𝑌 ≔ 𝑟𝑒𝑎𝑙{𝑦1
∗ 𝐻𝑌 𝑦2} 

where  𝐻𝑌 is a Hermitian positive-definite matrix defined concretely in the next sub-section. Vector 𝑧 

stands in another vector space 𝑍 which is also endowed with ist own Euclidean product given by 

⟨𝑧1|𝑧2⟩𝑍 ≔ 𝑟𝑒𝑎𝑙{𝑧1
∗ 𝐻𝑍 𝑧2} 
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where  𝐻𝑍 is also a Hermitian positive-definite matrix defined concretely in the next sub-section. The map 

𝑀 is from 𝑋 to 𝑌 while the map 𝜙 is from 𝑋 to 𝑍. The 2-norms on 𝑌 and 𝑍 are naturally given by 

‖𝑦‖𝑌,2
2 = ⟨𝑦 |𝑦 ⟩𝑌 

and 

‖𝑧‖𝑍,2
2 = ⟨𝑧 |𝑧 ⟩𝑍 

Finally, the real parameter 𝜚 is a positive parameter of the ADMM algorithm. In order to solve P2 with the 

CGD, it must be rewritten as a least square problem with one term. We do it as follows.  

We define the map 𝐴 by the matrix 

𝐴 = [
𝑀
𝜙

] 

which is a map from 𝑋 to 𝑉 ≔ 𝑌 × 𝑍. We define 

𝑣 =  [
𝑦
𝑧
] ∈ 𝑉 = 𝑌 × 𝑍 

On the vector space 𝑉 we define the Euclidean product 

⟨𝑣1|𝑣2⟩𝑉 ≔ 𝑟𝑒𝑎𝑙{𝑣1
∗ 𝐻𝑉  𝑣2} 

where 𝐻𝑉 is the block matrix 

[
𝐻𝑌 0
0 𝜌 𝐻𝑍

] 

One can check that given these definitions, it holds 

1

2
‖𝐴 𝑥 − 𝑣‖𝑉,2

2 = 
1

2
‖𝑀 𝑥 − 𝑦‖𝑌,2

2 + 
𝜌

2
‖𝜙𝑥 − 𝑧‖𝑍,2

2  

The lest-square sub-problem of ADMM algorithm can then be solved by solving the least-square problem  

𝑥# ∈ argmin
𝑥∈𝑋

1

2
‖𝐴 𝑥 − 𝑣‖𝑉,2

2        
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where 𝐴 is the linear map, 𝑣 is the constant data and 𝑥 is the decision variable, which is nothing else 

than problem P1. Solving this problem with CGD implies to make use of 𝐴†, the adjoint operator of 𝐴. It 

is a consequence of all definitions above that it holds 

𝐴† = [𝑀†, 𝜌𝜙†] 

We give in (54) a recipe to solve, with CGD, least-square problems such as problem (P1) and (P2).   

The original CGD algorithm presented in (35) makes use of standard Euclidean product on 𝑋 and 𝑉 and the 

adjoint of 𝐴 is in that case given by the complex-conjugate transpose matrix 𝐴∗. The use of non-standard 

Euclidean products ⟨⋅ | ⋅⟩𝑋 and ⟨⋅ | ⋅⟩𝑉 has the consequence that the adjoint 𝐴†has to be used instead of 

𝐴∗. This allows to perform the CGD algorithm in a proper way with exact line search. In fact, the line-search 

parameter 𝑎 can be evaluated properly as 

𝑎 =  ‖𝐴†𝑟𝑖‖𝑋,2

2
/‖𝐴 𝑝𝑖‖𝑉,2

2  

where 𝑟𝑖 is the current residual and  𝑝𝑖  is the current descent direction. We see in the previous equation 

that the adjoint 𝐴† is used (and not the conjugate-transpose 𝐴∗) and that the non-standard 2-norms ‖⋅‖𝑋,2
2  

and ‖⋅‖𝑉,2
2  play a role. The image can then be updated as 

𝑥𝑖+1 = 𝑥𝑖 + 𝑎 𝑝𝑖  

We refer the reader to (54) for detailed information.  

We do not pretend to publish a “new conjugate-gradient-descent” in the present article but the way we 

implemented it, taking into account the different inner product matrices 𝐻𝑋
  , 𝐻𝑌

  and 𝐻𝑍
 , is new for MRI 

reconstruction as far as the authors knows.  

The compressed sensing reconstruction with MC-tTV regularization 

We define 𝑖𝑑𝑋(𝑖)  to be the identity map on vector space 𝑋(𝑖). As defined above, 𝑇(𝑖) is the map that 

transform frame 𝑥(𝑖) into a frame in  𝑋(𝑖−1) that resembles frame 𝑥(𝑖−1). We define the linear map 𝜙 by 

its matrix as 
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𝜙 = 

[
 
 
 
 
 
 
 

𝑇(1) 0 ⋯ 0 −𝑖𝑑𝑋(𝑛𝐹𝑟)

−𝑖𝑑𝑋(1) 𝑇(2) ⋱ ⋮ 0

0  ⋱  ⋮
⋮ ⋱  0 ⋮
⋮ ⋱  𝑇(𝑛𝐹𝑟−1) ⋮
⋮  ⋱  0
0 ⋯ 0 −𝑖𝑑𝑋(𝑛𝐹𝑟−1) 𝑇(𝑛𝐹𝑟) ]

 
 
 
 
 
 
 

 

By the definition of the maps 𝑇(𝑖) and 𝑖𝑑𝑋(𝑖), the map 𝜙 is from vector space 

𝑋 = 𝑋(1) × …× 𝑋(𝑛𝐹𝑟) 

to another vector space that we will call 𝑍 and which is defined by 

𝑍 ≔ 𝑋(𝑛𝐹𝑟) × 𝑋(1) × …× 𝑋(𝑛𝐹𝑟−1) 

It holds then 

𝜙 ∶ 𝑋 ⟶ 𝑍 

𝑥 ⟼  𝜙𝑥 

Vector space 𝑍  is of course identical to vector space 𝑋 since every 𝑋(𝑖) is a copy of ℂ𝑁 with 𝑁 being the 

number of voxels in each frame. But the use of different labels allows to highlight in which order the frames 

are written, which is different in 𝑋 and 𝑍. One can check that multiplying the vector 

𝑥 =  [

𝑥(1)

𝑥(2)

⋮
𝑥(𝑛𝐹𝑟)

] ∈ 𝑋 

by matrix 𝜙 leads to 

𝜙𝑥 = [

𝑇(1)𝑥(1) − 𝑥(𝑛𝐹𝑟)

𝑇(2)𝑥(2) − 𝑥(1)

⋮
𝑇(𝑛𝐹𝑟)𝑥(𝑛𝐹𝑟) − 𝑥(𝑛𝐹𝑟−1)

]  ∈ 𝑍 

Given the 1-norm ‖⋅‖𝑋(𝑖),1 as defined in the subsection above, we define the 1-norm ‖⋅‖𝑍,1 on 𝑍 by 

‖𝑧‖𝑍,1 ≔ ‖𝑧 
(𝑛𝐹𝑟)‖

𝑋(𝑛𝐹𝑟),1
+ ‖𝑧 

(1)‖
𝑋(1),1

+ ⋯‖𝑧 
(𝑛𝐹𝑟−1)‖

𝑋(𝑛𝐹𝑟−1),1
 =  ∑‖𝑧 

(𝑖)‖
𝑋(𝑖),1

𝑛𝐹𝑟

𝑖=1
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It follows 

‖𝜙𝑥‖𝑍,1 = ∑‖𝑇(𝑖)𝑥(𝑖) − 𝑥(𝑖−1)‖
𝑋(𝑖−1),1

𝑛𝐹𝑟

𝑖=1

 

which is nothing else than MC-tTV. Of course, the index (𝑖 − 1) is to be interpreted in a circular manner in 

the previous sum.  

As defined above, 𝑀 = 𝐹𝐶 is the model that assigned a data vector 𝐹𝐶𝑥 to each image 𝑥. Vector 𝑦 is the 

vertical concatenation of the raw-data bins 𝑦(1), … , 𝑦(𝑛𝐹𝑟). Each vector 𝑦(𝑖) is a column vector lying in 

ℂ𝑛𝑃𝑡(𝑖)×𝑛𝐶ℎ where 𝑛𝑃𝑡(𝑖) is the number of trajectory points in bin number (𝑖) and 𝑛𝐶ℎ is the number of 

channels (or coils) used for the acquisition. We define 𝑌(𝑖) ≔ ℂ𝑛𝑃𝑡(𝑖)×𝑛𝐶ℎ to be the vector space that 

contains 𝑦(𝑖) and we define the data-space  

𝑌 ≔ 𝑌(1) × …× 𝑌(𝑛𝐹𝑟) 

which is the vector space that contains 𝑦. On vector space 𝑌(𝑖) we define the Euclidean product ⟨⋅ | ⋅⟩𝑌(𝑖)  

by 

⟨ 𝑦1
 

 
(𝑖)| 𝑦2

 
 
(𝑖)⟩

𝑌(𝑖) ≔ 𝑟𝑒𝑎𝑙{ 𝑦1
 

 
(𝑖)∗𝐻𝑌(𝑖)  𝑦2

 
 
(𝑖)} 

where the star symbol ⋅∗ stand for the complex conjugated transpose and 𝐻𝑌(𝑖)  is the diagonal matrix 

𝐻𝑌(𝑖) = [

Δ𝐾1
(𝑖)

⋯ 0

⋮ ⋱ ⋮

0 ⋯ Δ𝐾
𝑛𝑃𝑡(𝑖)
(𝑖)

] 

where  Δ𝐾𝑗
(𝑖)

 is the volume element in k-space (i.e. inverse density compensation) for point number 𝑗 in 

the trajectory of bin number 𝑖. This induce the Euclidean product ⟨⋅ | ⋅⟩𝑌 on 𝑌 given by 

⟨ 𝑦1
 

 
 | 𝑦2

 
 
 ⟩𝑌 =  𝑟𝑒𝑎𝑙{ 𝑦1

 
 
 ∗𝐻𝑌  𝑦2

 
 
 } =  ∑⟨ 𝑦1

 
 
(𝑖)| 𝑦2

 
 
(𝑖)⟩

𝑌(𝑖)

𝑛𝐹𝑟

𝑖=1

 

where 𝐻𝑌 is the diagonal block matrix 
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𝐻𝑌 = [

𝐻𝑌(1) ⋯ 0

⋮ ⋱ ⋮
0 ⋯ 𝐻𝑌(𝑛𝐹𝑟)

] 

This Euclidean product on 𝑌 induces the 2-norm ‖⋅‖𝑌,2
2  given by 

‖𝑦‖𝑌,2
2 = ⟨𝑦 

 |𝑦⟩𝑌  

On vector space 𝑍 we define the Euclidean product as on vector space 𝑋 :  

⟨𝑧1|𝑧2⟩𝑍 ≔ 𝑟𝑒𝑎𝑙{𝑧1
∗ 𝐻𝑍 𝑧2} 

where 𝐻𝑍 is a Hermitian positive definite matrix equal to the voxel volume Δ𝑅 time the identity on 𝑍. 

The definitions are so that both 𝐻𝑋 and 𝐻𝑍 can be replaced by the scalar Δ𝑅. The 2-norm on 𝑍 is then 

given by  

‖𝑧‖𝑍,2
2 = ⟨𝑧|𝑧⟩𝑍 

and one can easily check that  

‖𝑧‖𝑍,2
2 ≔ ‖𝑧 

(𝑛𝐹𝑟)‖
𝑋(𝑛𝐹𝑟),2

2
+ ‖𝑧 

(1)‖
𝑋(1),2

2
+ ⋯+ ‖𝑧 

(𝑛𝐹𝑟−1)‖
𝑋(𝑛𝐹𝑟−1),2

2
 =  ∑‖𝑧 

(𝑖)‖
𝑋(𝑖),2

2
𝑛𝐹𝑟

𝑖=1

 

We have so far define the 2-norms on 𝑋, 𝑌 and 𝑍 as well as the 1-norm on 𝑍 and we are now ready to 

formulate the optimization problem of the reconstruction as a least-square problem regularized by MC-

tTV:  

𝑥# ∈ argmin
𝑥∈𝑋

1

2
‖𝑀𝑥 − 𝑦‖𝑌,2

2 + 
𝜆

2
‖𝜙𝑥‖𝑍,1     [P3] 

Problem (P3) is a generalized-LASSO problem and can be solved with the ADMM algorithm. The constant 

𝜆 is a regularization constant. The ADMM algorithm for solving (P3) can be found in (43). We formulate 

the algorithm for our present need as follows (54):   

INITIALIZATION 

a) Chose a real positive constant 𝜌.  

b) Initialize the variables 𝑥𝑐𝑢𝑟𝑟 , 𝑧𝑐𝑢𝑟𝑟 and 𝑢𝑐𝑢𝑟𝑟 

DO  
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c) Solve  𝑥𝑛𝑒𝑥𝑡 ∈ argmin
𝑥∈𝑋

1

2
‖𝑀 𝑥 − 𝑦‖𝑌,2

2 + 
𝜌

2
‖𝜙𝑥 − (𝑧𝑐𝑢𝑟𝑟 − 𝑢𝑐𝑢𝑟𝑟)‖𝑍,2

2  

d) 𝑧𝑛𝑒𝑥𝑡 = 𝑝𝑟𝑜𝑥𝜆/𝜚∙‖∙‖𝑍,1
(𝜙 𝑥𝑛𝑒𝑥𝑡 + 𝑢𝑐𝑢𝑟𝑟) 

e) 𝑢𝑛𝑒𝑥𝑡 =  𝜙 𝑥𝑛𝑒𝑥𝑡 + 𝑢𝑐𝑢𝑟𝑟 − 𝑧𝑛𝑒𝑥𝑡 

f) Update  (𝑥𝑐𝑢𝑟𝑟 , 𝑧𝑐𝑢𝑟𝑟 , 𝑢𝑐𝑢𝑟𝑟) ⟵ (𝑥𝑛𝑒𝑥𝑡, 𝑧𝑛𝑒𝑥𝑡, 𝑢𝑛𝑒𝑥𝑡) 

UNTIL some stopping-criterion is satisfied  

Step (d) is straight forward and step (e) consists in applying the proximal operator associated to the norm 

‖∙‖𝑍,1 (see (54) for details) which is also straight forward. Step (c), in contrast, involves the solving of a 

least-square problem with two terms. To solve it with the CGD algorithm, it must be reformulated as a 

least-square problem with one single term as described above. Just set 

𝑧 =  𝑧𝑐𝑢𝑟𝑟 − 𝑢𝑐𝑢𝑟𝑟 

to recover P2. Again, we invite the reader to consult (54) for details.  

Ferumoxytol 

The ferumoxytol contrast agent specifications are: Feraheme, polyglucose sorbitol carboxymethylether 

iron oxide, distributed by AMAG Pharmaceuticals, Inc., Waltham, MA02451.  

Study 2: Comparison of different coil-sensitivities using MASTER_3D+ 

All reconstructions in the present study 2 were performed using MASTER_3D+. Only the coil-sensitivity 

estimation was varied. 

We name “coil-sensitivity A” the one explained above i.e., our new coil-sensitivity estimation presented in 

the section above.  

We named “coil-sensitivity B” the coil-sensitivity obtained by using the Matlab function “adapt array 2d” 

(Ricardo Otazo, NYU) and implemented following (55) and (56). This method estimates the coil-sensitivity 

without use of the body-coil prescan images. It is the coil-sensitivity estimation used in 

XD-GRASP-5D_LAUS.  

We named “coil-sensitivity C” the coil-sensitivity obtained by a method like method A, with the difference 

that a polynomial fit of degree 3 is used (for real an imaginary part independently) in order to extrapolate 

the coil-sensitivities in the volume without signal (such as the air part in the lungs).  
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We named “coil-sensitivity D” the coil-sensitivity obtain by the method presented in the master thesis 

(57). This method could be applied to estimate the coil-sensitivity thanks to the MATLAB code present in 

the thesis itself. This method uses polynomial fitting for both reducing the noise of the coil-sensitivity 

estimate and for extrapolation in areas where coil-sensitivity cannot be measured.  

We used three quantitative markers to compare the reconstruction performed with the four 

coil-sensitivity methods listed above. The first maker was the EF-bias as defined in study 1.  

The second marker is a quantification of how spatially homogenous the reconstructed image was. This 

marker was so defined that a high spatial inhomogeneity of the image (typically a very bright signal close 

to the coils and a dark area far from the coils) resulted in a high value for the marker. This marker measures 

the standard-deviation of image values in the periphery of the thorax and was called “std-periphery” for 

that reason. It was constructed as follows. For each patient, an axial plane through the thorax in the 

reconstructed image was chosen. A mask was drawn manually around the periphery of the thorax on that 

transverse plane. We will call this mask 𝑀𝑝𝑒𝑟𝑖𝑝ℎ. Images reconstructed with coil-sensitivity A, B, C and D 

were then masked by 𝑀𝑝𝑒𝑟𝑖𝑝ℎ. The masked values were normalized by their average, separately for each 

coil-sensitivities. The standard deviation of the obtained list of values were then reported for each coil-

sensitivity and each patient for statistical analysis. A list of standard deviation (running over patients) was 

thus obtained for each coil sensitivity. This was considered as a quantitative measure of the homogeneity 

of the image in the periphery of the thorax.  

As a third quantitative marker of image-quality, the lung-liver interface sharpness (LLIS) was used. This was 

evaluated using the same method as the blood-muscle interface-sharpness used in study 1. For each 

patient, 6 points where manually chosen on the lung-liver interface on a coronal plane and the lung-liver 

interface–sharpness was evaluated on these points as described in (47). This sharpness was evaluated on 

the same coronal plane and the same 6 points for all four coil-sensitivities.  

The significance of the average difference between any two lists of values was assessed with a paired 

student t-test. The difference was considered as significant for a p-vale smaller that 0.05.   

Study 3: Convergence analysis 

To monitor the convergence of our new reconstruction (MASTER_3D+), the value of the data-fidelity term, 

of the MC-tTV and of the objective function were was saved at every iteration, together with 3 orthogonal 

image planes (transverse, coronal, and sagittal) of the first frame, which were called “monitor-images”. 
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The monitor images were visually assessed to confirm the convergence of the reconstruction, while the 

data-fidelity, MC-tTV, as well as the objective function were plotted graphically in order to confirm as good 

as possible a plausibly convergent scenario.  

In absence of ground truth for in-vivo data, it was impossible to evaluate if the reconstructed images were 

fact converging to the ground-truth along the iterations. This was therefore assessed with simulated data 

obtained by sampling the k-space of synthetic images provided by the XCAT phantom (49–51). The same 

plots and monitor images were then displayed as for in-vivo data, and in addition, the sum-of-square error 

between ground-truth and reconstructed image along the iterations could also be observed.  

Additional reconstructions 

Three additional reconstructions were performed on the data of patient 1 in order to give some elements 

of answers to some question about the registration strategies. We tested the reconstruction  

𝒙# ∈  argmin
𝒙∈𝑋

  
1

2
 ∑ ‖𝑭(𝑖)𝑪(𝑖)𝑻(𝑖)𝒙 − 𝒚(𝑖)‖

𝑌(𝑖),2

2𝑛𝐹𝑟
𝑖=1       

where a single static-frame 𝒙 is reconstructed, and the deformation-field are part of the model: each 𝑻(𝒊) 

deforms the static frame 𝒙 on the frame 𝒙(𝒊) corresponding to bin 𝒚(𝒊). We named that reconstruction 

“SENSE_with_motion_correction”. 

We also tested the reconstruction 

𝒙# ∈  argmin
𝒙∈𝑋

  
1

2
 ∑ ‖𝑭(𝑖)𝑪(𝑖) 𝒙(𝑖) − 𝒚(𝑖)‖

𝑌(𝑖),2

2𝑛𝐹𝑟
𝑖=1 + 

𝜆

2
∑ ‖𝑻(𝑖)𝒙(𝑖) − 𝒙(1)‖

𝑋(1),1
𝑛𝐹𝑟
𝑖=2     

which is very similar to MASTER_3D+ but where the regularization term includes deformations from all 

frames to the first frame (all-to-one registration): each 𝑻(𝒊) deforms the frame 𝒙(𝒊) to match frame 𝒙(𝟏). 

We named that reconstruction “MASTER_3D+_all_to_first”. 

As another additional reconstruction, we re-estimated the deformation field on the result of 

MASTER_3D+, and we ran MASTER_3D+ again with these new deformation fields. We called the result 

MASTER_3D+_bis.  
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Supplementary Results 

Result of Study 2: Comparison of different coil-sensitivities using MASTER_3D+ 

Table 5 displays all the results of study 2 and supplementary figure S5 does the same graphically. For the 

same reasons as in study 1, four patients were excluded from the EF measurements. The EF-bias was 

0.0% ± 1.9% for coil-sensitivity A (as given in study 1), it was −2.1% ± 2.2% (p < 0.05) for coil-sensitivity 

B, it was 1.5 ± 1.6 % (p < 0.05) for coil-sensitivity C and it was 1.4% ± 1.3% (p < 0.05) for coil-sensitivity 

D. The EF-bias for coil-sensitivity A was not statistically different from 0, but the EF-bias for coil-sensitivity 

B, C and D was. EF measured with coil-sensitivities B, C and D were therefore significantly different from 

the reference 2D-CINE method. The marker “std-periphery” was significantly higher (more 

inhomogeneous spatially) for coil-sensitivity B than for any other method and there was no significant 

difference between other coil-sensitivity methods. The lung-liver interface-sharpness (LLIS) was 

significantly better for coil-sensitivities A and B than for coil-sensitivities C and D.  

Supplementary figure S2 displays an axial plane of all coil-sensitivities (real part in top row and imaginary 

part in bottom row) that were used for patient 1. Supplementary figure S3 displays reconstructions of the 

same plane as supplementary figure S2 with the four different coil-sensitivities. Supplementary figure S4 

display the same figure as supplementary figure S3 but masked with the mask that served to measure 

“std-periphery”.  

Result of Study 3: Convergence analysis 

The monitor images showed a good convergence for all patient and no improvement was observed beyond 

50 iterations, as far as visual inspection is concerned. Supplementary figure S6 shows an example of four 

selected monitor images in axial view. They were selected from MASTER_3D+ of patient 1 at iteration 

numbers 1, 10, 30, and 60. These images ensure that no major problem happened during the 

reconstruction and document that visual sharpness increases with iterations. Supplementary figure S7 

shows the evolution of the data-fidelity, MC-tTV and objective-function as a function of the 60 iterations 

for MASTER_3D+ in patient 1. It provides an additional marker of convergence. Note that the decrease of 

the data-fidelity term is not monotonic, but there is no theoretical reason to be so.  

Supplementary figure S8 displays the monitor images in axial plane of the reconstruction of the XCAT 

phantom data at iteration number 1, 10, 30 and 60. Sub-figure E displays the ground truth. Supplementary 

figure S9 displays the difference between the sub-images of supplementary figure S8 and the ground-

truth. It demonstrates that the reconstructed image converges to the ground-truth almost everywhere. 
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Some error remains at the interface of different regions. Supplementary figure S10 displays the data-

fidelity, the MC-tTV and the objective-function value along the 60 iterations of the reconstruction of the 

XCAT phantom data. Sub-figure D displays the evolution of the error (in term of L2-norm) between the 

reconstructed image and the ground-truth. All four graphs indicate convergence, especially sub-figure D 

which show that the error tends to zero.  

Results of additional reconstructions 

Supplementary figure S11 shows, in coronal plane, the results on patient 1 of MASTER_3D+ (S11A) 

together with the additional reconstructions SENSE_with_motion_correction (S11C) and 

MASTER_3D+_all_to_first (S11D). Those two former reconstructions make use of “all-to-one" 

registrations, but supplementary figure S11 shows obviously that MASTER_3D+ (with adjacent frames 

registration) is superior. Moreover, supplementary figure S12 shows the registration residual (in one 

transverse plane) between adjacent frames (top row) and the corresponding registration residuals 

between the same frames and the first frame of the list (bottom row). Visual inspection shows that the 

first are sparser than the second, suggesting that the motion compensated residuals between adjacent 

frame is better for compressed sensing. Supplementary figure S11B shows, in coronal plane, the result of 

MASTER_3D+_bis, which is not superior to MASTER_3D+ as far as visual inspection can tell.  

Supplementary Discussion 

The work presented in (29,58) for Cartesian acquisitions and in (16,59) for radial acquisitions is closely 

related to ours. These reconstructions have been achieved using deformation-fields to compensate for 

motion. But these techniques estimated the deformation between each frame and a single reference 

configuration (which was either a reference frame or a virtual configuration that do not appear among the 

frames). These all-to-one registration procedures did not take advantage of the small deformation 

amplitude between adjacent frames, which could potentially be a disadvantage compared to the 

registration between adjacent frames only. More comparison are of course needed in order to decide 

which registration strategy is better because the group-wise registration used in (58,59) had the advantage 

of being informed by all frames simultaneously. However, our preliminary experiments with 

SENSE_with_motion_correction and MASTER_3D+_all_to_first already suggest registrating temporally 

adjacent frames may be superior.  

One major limitation of our reconstruction is that the deformation fields are not updated at every iteration 

of the reconstruction. We recognize that future developments should go into that direction. This could 
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potentially accelerate the reconstruction because a second reconstruction informed by deformation fields 

would no longer be needed. But it is not certain that image quality would improve. The preliminary 

experiment with MASTER_3D+_bis did not show any significant improvement, as far as visual inspection 

can tell.  
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  Supplementary Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary figure S1: This picture describes de implementation of the spherical surface elements 

estimation by mean of the Voronoi algorithm performed on a 2-dimensional plane.  

 

 

 

 

  



51 
 

 

 

 

 

 

 

Supplementary figure S2: The sub-figures display the real-part (top row) of imaginary-part (bottom row) 

of the coil-sensitivity estimation performed with method A (left), method B (middle-left), method C 

(middle-right) and method D (right). “rA” stands for “real-part of coil-sensitivity method A”, “iA” stands for 

“imaginary-part of coil-sensitivity method A” and so on. Method A is our new coil-sensitivity estimation, 

while method B is the one used in XD-GRASP-5D_LAUS.  
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Supplementary figure S3: Each sub-figure displays the same plane for the same patient of the same 

reconstruction (MASTER_3D+) but using different coil-sensitivities. Sub-figures A displays the images 

reconstructed with coil-sensitivity A, and so on for coil-sensitivities B, C, and D. Method A is our new coil-

sensitivity estimation, while method B is the one used in XD-GRASP-5D_LAUS. 
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Supplementary figure S4: The same sub-figures as supplementary figure S3 are displayed but masked by 

the mask used for the measurement of the standard-deviation of peripheric values.  
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Supplementary figure S5: The results of supplementary table 5 are presented graphically in the present 

figure. The asterisc (*) in subfigure A designates an average significantly different from 0. The asteriscs (*) 

in sub-figures B and C designate an average difference significantly different from 0.  
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Supplementary figure S6: Selection of axial monitor-images of MASTER_3D+ of patient 1. The 

images were captured at iteration number 1 (A), 10 (B), 30 (C), and 60 (D) respectively. 
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Supplementary figure S7: Example of the evolution of the data-fidelity term (A), motion-

compensated temporal-Total-Variation (MC-tTV) (B) and objective function (C) along the 60 

iterations for MASTER_3D+.  
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Supplementary figure S8: Selection of axial monitor-images of MASTER_3D+ for the XCAT numerical 

phantom. The images were captured at iteration number 1 (A), 10 (B), 30 (C), and 60 (D) 

respectively. Sub-figure E displays the ground-truth.  
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Supplementary figure S9: Difference between the MASTER_3D+ reconstruction of the XCAT 

phantom data and the ground-truth, at different iteration of the reconstruction: iteration number 

1 (A), 10 (B), 30 (C), and 60 (D). 
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Supplementary figure S10: Evolution of the data-fidelity term (A), MC-tTV (B) and objective function 

(C) along the 60 iterations for MASTER_3D+ reconstruction of the XCAT phantom data. In contrast 

to reconstructions performed on patients, we can also plot here the error between the 

reconstructed image and the ground-truth at every iteration (D).   
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Supplementary figure S11: Sub-figure A displays MASTER_3D+ on patient 1. The deformation-fields 

were re-estimated on the result of MASTER_3D+ and the reconstruction was run again. The result 

is displayed in sub-figure B and is practically identical to the reconstruction displayed in sub-figure 

A. We called it “MASTER_3D+_bis”. Sub-figure C displays the reconstruction 

“SENSE_with_motion_correction” in which the deformations are incorporated inside the data-

fidelity term and there is no regularization term. Sub-figure D displays the reconstruction 

“MASTER_3D+_all_to_first” where all frames are deformed to match the first frame in the 

regularization term.   
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Supplementary figure S12: All subfigures are in transverse plane and display some registration residuals 

(difference between a moving and a reference image) of registrations performed on the same XD-

GRASP_4D+ reconstruction. The top row displays the residuals of registrations performed between a 

frame and its previous neighbor like in MASTER_3D+. The bottom row displays the residuals of 

registrations performed between the same frame as in the top row but with the first frame as reference 

image (“all-to-one” registration). Visual inspection shows that the registration residuals between 

neighboring frames is sparser than the registration residuals between the same frames and the first frame.  
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