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Methods 

CNA overview 

Coincidence analysis (CNA) is a type of configurational comparative method (CCM) that uses 

R software packages to conduct cross-case comparisons of factor and outcome values. CNA is based 

on a bottom-up algorithm that identifies patterns of factor values (a.k.a., conditions) that are 

minimally sufficient for an outcome value to occur (Baumgartner & Ambuhl, 2023). Unlike most 

traditional analytic approaches, CCMs (such as CNA) do not rely on correlations between variables. 

Instead, CNA reveals patterns that occur regularly in calibrated data. Given that the underlying goal 

of CCMs is to gain a deeper understanding of the data, the analytic approach is iterative. As with 

qualitative analysis, data used for CNA are often re-coded as additional insights come to light; and it 

is common to refine the way in which data are calibrated. Below we describe details about how we 

calibrated and consolidated data, conducted CNA, and selected from among multiple models that 

were output by the software. 

 

Data consolidation and re-calibration process 

A data matrix of select factors had been previously consolidated and selected for use in CNA as 

described elsewhere (Salvati et al., 2023) and summarized in Supplemental Figure 1.  

  



Supplemental Figure 1. Data matrix heat map showing CFIR factors hypothesized to make a 

difference for the main outcome. 

 

 

However, further consolidation of factors and factor values was necessary to reduce data 

fragmentation. Data fragmentation is problematic in CNA because it can lead to false positive 

findings. Thus, to help reduce data fragmentation, further consolidation and re-calibration were 

completed through the following steps:  

• Dichotomizing three factors (implementation champion, maintenance champion, and 

cosmopolitanism or peer pressure) as clearly present and positive = 1 versus not clearly 

present and positive= 0. 

• Combining external networks together with peer pressure because they both are influences 

from outside the organization that may have a positive impact on UTS implementation. 

Specifically, cases with either of these factors present were assigned a value of 1 and all 

others were assigned a value of 0 for this newly combined factor. 



• Combining perceptions of UTS evidence and relative advantage with attitudes and 

knowledge such that all positive and no mixed or negative=4, positive evidence/advantage 

but mixed attitudes/knowledge=2, and mixed evidence/advantage or negative attitudes/lack 

of knowledge =1. 

• Assigning an inner setting value of 2 to the only case with a negative inner setting 

• Dichotomizing cost as the presence of at least some cost concerns = 1 versus no cost 

concerns= 0. 

• Redefining ‘planning and engaging’ to equate to the presence of ongoing planning and 

engaging among all key stakeholders as opposed to any evidence of stakeholder planning and 

engaging.  

Notably, redefining and then re-calibrating ‘planning and engaging’ was done, not only to reduce 

fragmentation, but also because the team believed that the ongoing nature and engagement of all 

stakeholders was more likely to contribute to UTS program optimization rather than planning/engaging 

that was either limited to when the program was first initiated or included only some key stakeholders 

(e.g., genetics was no longer engaged in ongoing planning). To ensure accuracy when re-defining this 

factor, all text from interview transcripts previously coded as either planning or stakeholder 

engagement was reviewed for all cases and the entirety of the original stakeholder transcripts were 

reviewed in cases that had previously been color-coded as non-salient/neutral. This resulted in three 

total values for the ‘planning and engaging’ factor (i.e., ongoing planning and engaging =4, limited 

planning and engaging = 2, and no planning and engaging = 1).  The final consolidated and calibrated 

data matrix is shown in Supplemental Figure 2. 

 
 
 
 
 
 



 
 
Supplemental Figure 2. Final consolidated and calibrated data matrix of factors and 
implementation outcomes.  
 

 Each row depicts a deidentified case (first column), showing the combination of CFIR factor values 
(i.e., conditional configuration) and respective implementation outcome values associated with that 
case. 

 

Conducting CNA and robustness testing 

 The calibrated data matrix along with the CNA and frscore packages in R statistical software 

were used to conduct multi-value coincidence analysis (mv-CNA) (Baumgartner and Ambuhl, 

2023). Factors were ordered based on theory (Figure 1) so that downstream outcomes are not 

allowed to cause the preceding (upstream) factors or hypothesized intermediate outcome values. 

However, ordering does not stipulate any relationships (Baumgartner and Epple, 2013), meaning that 

such relationships only show up in CNA models if they are substantiated by the underlying data. In 

the ordering statement the parameter “strict” was set to “FALSE” which meant that the CFIR 

constructs in Supplemental Figure 3 would not be modeled as causes of each other.  



Supplemental Figure 3. Hypothesized factors that may make a difference for implementation 

outcomes. 

 

 

Consistency and coverage thresholds for CNA were initially set to .90. Consistency and 

coverage are used by the CNA software to build models and serve as key measures to consider when 

multiple models are output by the software. Consistency is analogous to positive predictive value and 

coverage is analogous to sensitivity. Although consistency and coverage scores of 1.0 indicate perfect 

model fit, it is possible for such models to be overfit, meaning that they may include additional factor 

values that are not truly difference makers. Consequently, it can be useful to review models that are 

output at different consistency and coverage thresholds and identify commonalities across models 

based on submodel/supermodel relationships used to assess relative fit robustness (Parkkinen & 

Baumgartner, 2020). The frscore package in R was used to run models at various consistency and 

coverage thresholds between .75 and 1.0 and identify models with the highest relative fit robustness 

scores. Other parameters were set as follows: ‘scoretype’ =‘full’, ‘score normalization’ = truemax, and 

‘maxsols’ = 600. The CNA code used is shown below.  

 
>  
>  
> library(frscore) 
>  
> frscored_cna(subsetFinal, type = "mv",  
+              n.init = 20, 
+              comp.method="is.submodel",  
+              fit.range = c(1, 0.75), granularity = 0.05, 
+              normalize = "truemax", maxsols=600,  
+              ordering = "PlanEngage < Optimize", 
+              strict = TRUE,  details=TRUE) 

 



 

Model Output  

There was substantial model ambiguity in both the initial modeling and fit robustness modeling 

as is often the case when there are multiple conditions and outcomes along with multiple values for 

each. Model ambiguity means that there is more than one model that fits the underlying data at various 

consistency and coverage thresholds.  

When there is model ambiguity the most robust models are often reviewed for commonalities. 

For example, all of these models explained all three values of the final outcome (OPTIMIZE). 

Additionally, all models include positive inner setting (INNERSET=4) as a difference-making 

condition for fully optimized programs (i.e., OPTIMIZE=2). There were, however, some differences 

across models; and only models #4 and #7 explained all three values for the hypothesized intermediate 

outcome of planning and engaging (PLANENGAGE).  

FR-scored reanalysis series with fit range 1 to 0.75 with granularity 0.05  
Score type: full || score normalization: truemax  
maxsols set to 600 -- 0 model types excluded from scoring  
 
  
 
-----  
  
Model types:  
  
                                                                   outcome 
1  OPTIMIZE=0,OPTIMIZE=1,OPTIMIZE=2,PLANENGAGE=1,PLANENGAGE=4              
2  OPTIMIZE=0,OPTIMIZE=1,OPTIMIZE=2,PLANENGAGE=4                           
3  OPTIMIZE=0,OPTIMIZE=1,OPTIMIZE=2,PLANENGAGE=1,PLANENGAGE=2              
4  OPTIMIZE=0,OPTIMIZE=1,OPTIMIZE=2,PLANENGAGE=1,PLANENGAGE=2,PLANENGAGE=4 
5  OPTIMIZE=0,OPTIMIZE=1,OPTIMIZE=2,PLANENGAGE=1,PLANENGAGE=2,PLANENGAGE=4 
6  OPTIMIZE=0,OPTIMIZE=1,OPTIMIZE=2,PLANENGAGE=2,PLANENGAGE=4              
7  OPTIMIZE=0,OPTIMIZE=1,OPTIMIZE=2,PLANENGAGE=1,PLANENGAGE=4              
8  OPTIMIZE=0,OPTIMIZE=1,OPTIMIZE=2,PLANENGAGE=1,PLANENGAGE=4              
9  OPTIMIZE=0,OPTIMIZE=1,OPTIMIZE=2,PLANENGAGE=1,PLANENGAGE=2    

 

Note each Boolean solution is followed by a graphical representation of that 

solution. In the graphs the dots symbolize a conjunction (meaning that more than 

one condition is necessary for an outcome value). 

 

 

 



 

1 (EVATT=1<->OPTIMIZE=0)*(PLANENGAGE=2<->OPTIMIZE=1)*(INNERSET=4<->OPTIMIZE=2)
*(EVATT=1<->PLANENGAGE=1)*(EVATT=4*MAINTCHAMP=4<->PLANENGAGE=4) 

 
 
 
 
 
 
 

2 (EVATT=1<->OPTIMIZE=0)*(PLANENGAGE=2<->OPTIMIZE=1)*(INNERSET=4*PLANENGAGE=4<
->OPTIMIZE=2)*(EVATT=4*MAINTCHAMP=4<->PLANENGAGE=4)  

 
 
 
 
 
 



 
3 (EVATT=1<->OPTIMIZE=0)*(PLANENGAGE=2<->OPTIMIZE=1)*(INNERSET=4<->OPTIMIZE=2)

*(EVATT=1<->PLANENGAGE=1)*(EVATT=2+EVATT=4*MAINTCHAMP=0<->PLANENGAGE=2) 

 
 
 
 
 
 
 

4 (EVATT=1<->OPTIMIZE=0)*(PLANENGAGE=2+EVATT=4*INNERSET=2<->OPTIMIZE=1)*(INNER
SET=4*MAINTCHAMP=4<->OPTIMIZE=2)*(EVATT=1<->PLANENGAGE=1)*(EVATT=2+IMPCHAMP=
4*MAINTCHAMP=0<->PLANENGAGE=2)*(EVATT=4*MAINTCHAMP=4<->PLANENGAGE=4) 

 
 
 
 
 
 
 
 



5 (PLANENGAGE=1<->OPTIMIZE=0)*(PLANENGAGE=2+EVATT=4*INNERSET=2<->OPTIMIZE=1)*(
INNERSET=4*MAINTCHAMP=4<->OPTIMIZE=2)*(EVATT=1<->PLANENGAGE=1)*(EVATT=2+IMPC
HAMP=4*MAINTCHAMP=0<->PLANENGAGE=2)*(EVATT=4*MAINTCHAMP=4<->PLANENGAGE=4) 

 
 
 
 
 
 
 
 
 
 
 
 
6                                                                   (EVATT=1<->OPT
IMIZE=0)*(PLANENGAGE=2<->OPTIMIZE=1)*(INNERSET=4<->OPTIMIZE=2)*(EVATT=2+EVATT=4*MA
INTCHAMP=0<->PLANENGAGE=2)*(EVATT=4*MAINTCHAMP=4<->PLANENGAGE=4) 
 

 
 
 
 
 



7                                                                                   
(PLANENGAGE=1<->OPTIMIZE=0)*(PLANENGAGE=2<->OPTIMIZE=1)*(INNERSET=4<->OPTIMIZE=2)*
(EVATT=1<->PLANENGAGE=1)*(EVATT=4*MAINTCHAMP=4<->PLANENGAGE=4) 
 

 
 
 
 
 
 
 
 
 
 
8                                                                         (EVATT=1
<->OPTIMIZE=0)*(PLANENGAGE=2<->OPTIMIZE=1)*(INNERSET=4*MAINTCHAMP=4<->OPTIMIZE=2)*
(EVATT=1<->PLANENGAGE=1)*(EVATT=4*MAINTCHAMP=4<->PLANENGAGE=4)  
 
 

 
 



9                                                                           (PLANE
NGAGE=1<->OPTIMIZE=0)*(PLANENGAGE=2<->OPTIMIZE=1)*(INNERSET=4<->OPTIMIZE=2)*(EVATT
=1<->PLANENGAGE=1)*(EVATT=2+EVATT=4*MAINTCHAMP=0<->PLANENGAGE=2) 
 

 
 

 

 

   consistency coverage complexity inus exhaustiveness faithfulness coherence  
redundant cyclic score tokens norm.score 
1         0.80      0.8          6 TRUE      0.8333333    0.7142857 0.8333333     
FALSE  FALSE   182      3  1.0000000 
2         1.00      0.8          6 TRUE      0.5454545    0.8571429 0.8888889     
FALSE  FALSE   170     12  0.9340659 
3         0.80      0.8          7 TRUE      0.8333333    0.7142857 0.8333333     
FALSE  FALSE   168      3  0.9230769 
4         1.00      1.0         12 TRUE      0.5000000    1.0000000 1.0000000     
FALSE  FALSE   141     16  0.7747253 
5         1.00      1.0         12 TRUE      0.5000000    1.0000000 1.0000000     
FALSE  FALSE   126     16  0.6923077 
6         0.80      0.8          8 TRUE      0.8333333    0.7142857 0.8333333     
FALSE  FALSE   120      3  0.6593407 
7         0.80      0.8          6 TRUE      0.8333333    0.7142857 0.8333333     
FALSE  FALSE   118      3  0.6483516 
8         1.00      0.8          7 TRUE      0.6666667    0.8571429 0.8888889     
FALSE  FALSE   105     12  0.5769231 
9         0.80      0.8          7 TRUE      0.8333333    0.7142857 0.8333333     
FALSE  FALSE   101      3  0.5549451 

 

Model Selection Process 

The top 9 models were illustrated graphically and a key team member reviewed the qualitative 

data to identify quotes to support the various different models. The models were shared with the larger 

research team to determine which one made the most sense. Model (#5) was selected unanimously as 

the preferred model. This preferred model has perfect consistency and coverage and substantiated two 



causal chains with limited planning and engaging and no planning and engaging as intermediate 

outcomes along the paths to non-optimization and no program, respectively. Six of the 9 most robust 

models identified one or more causal chains in which one or more planning & engaging values are an 

intermediate outcome. However, common cause models were also identified in which the same 

condition directly and independently impacted a value for both ‘planning & engaging’ and 

‘implementation or optimization’ (rather than as part of a causal chain).  

The preferred model was more complex and may be overfit, but it was important to identify all 

key factors that make a difference for implementation and optimization so that these can be addressed 

in the toolkit and future interventions. Notably, model 4 was almost the same as the preferred model #5, 

but showed the common cause whereby negative attitudes/lack of knowledge or mixed advantage led to 

both a lack of planning and engaging as well as no program implementation.  

Ultimately there was a lot of overlap across all models, lending credibility to our findings. 

Nevertheless, there were a few quotes that could support a couple of other models (such as Model #2 

which had a causal chain leading to program optimization). However, the quotes primarily supported 

the selected model (#5), which created the most coherent story and support for planning and engaging 

as an intermediate outcome. 
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