
Supplementary Appendix

Supplementary methods

A. Long COVID QALDs calculation

Long COVID QALDs were computed as the complement of the sum of the relevant utility
weights for each participant, transformed by 365 days, which assumes symptoms persist for a
year:

𝐿𝑜𝑛𝑔 𝐶𝑂𝑉𝐼𝐷 𝑄𝐴𝐿𝐷𝑠
𝑖

= (1 −
𝑘=1

5

∑ 𝑄𝐴𝐿𝑌. 𝑤𝑒𝑖𝑔ℎ𝑡. 𝑝𝑜𝑠𝑡
𝑘𝑖

) * 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

Where i denotes subject, k denotes each of the five items of the EQ-5D-5L survey,
is the weight from the appropriate value set corresponding to the chosen𝑄𝐴𝐿𝑌. 𝑤𝑒𝑖𝑔ℎ𝑡. 𝑝𝑜𝑠𝑡
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response for item k for subject i, and is the assumed duration of long-term COVID𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
symptoms (1 year for all)

B. Variable preparation, missing data imputation, and post-stratification weighting

In the UK and the combined middle-income country (MIC) cohort, COVID-19 disease severity
was defined following the categorization in Reyes et al.1 That is, subjects who reported any of
the following outcomes (high-flow nasal cannula, ventilation, or the use of inotropes or
vasopressors) during their hospital admission were classified as having severe acute COVID-19
disease.1 Severity indicators were classified as unknown among subjects who had missing
entries for all five possible indicators. In Norway, there was little information available on any of
the aforementioned outcomes and another measure of acute COVID-19 severity, hospitalization
for acute COVID-19 infection (any or ICU admission), was very sparsely recorded. Therefore,
we excluded this variable among our factors under consideration in this cohort.

Vaccination data was obtained using a search for the following key terms within the field for
immunization against COVID-19: Moderna, Pfizer, AstraZeneca, and Janssen, as well as
“COVID vaccination”, “COVID-19 vaccination”, and “COVID-19 vaccine type”, which were the
general categories recorded when no specific brand was noted.

Antiviral and additional treatment data was obtained using a search for the following key terms
within the field for treatment: darunavir, remdesivir, acyclovir, valganciclovir, lopinavir/ritonavir,
metformin, as well as “Antiviral agent”, which was a general category recorded when no specific
type was noted. We selected these drugs as those explicitly listed as possible options in the
ISARIC follow-up surveys, as well as a diabetes drug that has been identified to be protective
against long COVID (metformin).2 Data on the two most currently supported therapies
nirmatrelvir and molnupiravir was not available in any cohort.



Missingness was reported for the following variables: Norway: educational attainment (17.6%),
race/ethnicity (2.3%), sex (1.2%), age (0.006%), vaccination status (0.90%), antiviral treatment
during illness (83.5%); UK: employment status (11.2%), race/ethnicity (1.6%), vaccination status
(66.5%), and antiviral treatment during illness (22.3%); and Combined Middle-income country
(MIC) cohort: employment status (3.3%), race/ethnicity (72.0%), age (0.006%), vaccination
status (76.5%), antiviral treatment during illness (77.0%) and acute COVID-19 severity (3.7%).

Missing variable imputation was performed via Multiple Imputation by Chained Equations
(MICE) using the mice package.3 For all cohorts, we specified 10 imputations and 10 iterations
following standard practice, where, for each iteration, missing variables were expressed as a
function of all other variables via polytomous regression (for categorical variables), logistic
regression (for binary variables), and predictive mean matching (for continuous variables).
Missing values were then assigned the majority imputation across runs for the corresponding
variable.

Post-stratification weights in the Norway and the UK cohorts were assigned to each subject
using the raking procedure (applying the R package anesrake4), which adjusts the distribution of
each of the sampled populations on the basis of sex to correspond to its distribution in the
overall population.5-7

C. Quantifying variable importance

For all analyses, comorbidities were filtered to only include conditions with at least ten subjects
reporting having them. All of our random forest regressions were trained on 80% of the dataset
using the caret package.8 For the individual RF and pre-grouped RF, variables were ranked
according to their associated % increase in mean squared error, averaged over 100 runs. To run
these RFs, we used the randomForest package9. While we averaged our results across 100
runs for the individual and pre-grouped analyses, we considered a fewer number of runs (50) for
the model-grouped analysis to avoid exorbitant model costs, due to the resource intensiveness
of each CoV-VSURF run, using the CoVVSURF package.10 For Norway, we used dummy
variables representing belong to each quintile of educational attainment compared to the
referent category of quintile 1 for RF #3, as CoV-VSURF does not accept ordered factors as
inputs. Finally, for the population adjustment sensitivity analysis, weights were incorporated in all
random forest implementations using the sample_weight parameter in the randomForest9 and
covsurf10 functions.

For our pre-grouped random forest regression implementation, we applied multiple factor
analysis to each cluster, which corresponds to a principal component analysis for numeric
variables and multiple correspondence analysis for categorical variables, considering the first
and second principal components of each. For binary variables, we replaced subjects’ values
with the loading obtained for that variable, with variable coordinates defined by the square root
of the component’s eigenvalue11,if present, and with 0, if absent. For categorical variables with
more than one level, we replaced subjects’ values with the loading obtained for the relevant



level of that variable. For numeric variables, we multiplied subjects’ values by the loading
obtained for that variable. For each cluster, we then summed the resulting weighted variables by
subject and by component, reducing the number of variables for each cluster.i from to𝑝

𝑐𝑙𝑢𝑠𝑡𝑒𝑟.𝑖

two. The resulting reduced number of covariates were then used as features for our random
forest model runs. We used the FactoMineR package12 to conduct this cluster summary
analysis.

D. Estimating NDEs, NIEs, and proportions non-mediated

Estimating the NDE, NIE, and proportion mediated through targeted maximum likelihood
estimation requires two key steps.13,14 First, the data is divided into k cross-validation folds (k=10
in the case of the combined cohort), to which we train and test our algorithms of choice, where
the response measure is the expected mean of long COVID QALDs dependent on each of our
binary SES proxies or female sex, the confounders, and mediators.13,14 The algorithms we
consider are simple intercept models and generalized additive models (GAMs)15, the latter
equipped to accommodate non-linear forms for continuous covariates, in addition to gradient
boosted regression trees16, using the lightgbm package17 and feed-forward neural networks18

using the nnet package19, both of which can better capture underlying nonlinear trends
nonparametrically. The super learner ensemble modeling procedure20 (via the sl3 package21)
then pinpoints the combination of weights to assign to each algorithm that minimizes the
(cross-validated) mean risk across all folds in a theoretically optimal manner, through the
non-negative least squares metalearner, via the nnls package.22 The expected means of long
COVID QALDs dependent on each of our binary SES proxies or female sex, the confounders,
and mediators under the two levels of the exposure are then estimated using the weighted sum
of each algorithm’s fit to the original data.13,14 The difference in these fitted means of long COVID
QALDs dependent on each of our binary SES proxies or female sex, the confounders, and
mediators for each level of the exposure, alongside the conditional probability of each of our
binary SES proxies or female sex, dependent on confounders and the conditional probability of
each of our binary SES proxies or female sex, dependent on confounders and mediators are
subsequently used to estimate the NDE and NIE.13,14 For the country-specific analyses, due to
sample size constraints, our cross-validated ensemble learner specification consisted of the
intercept and GAM models for South Africa and Brazil and the intercept and GAM models plus
boosted regression trees for India.

In all analyses, 95% confidence intervals (CIs) were provided for our measures of interest
estimated in medoutcon23, i.e., the NDE, NIE, and proportion mediated. Proportions
non-mediated are calculated as the complement of estimated proportions mediated. For CIs of
the proportion mediated with upper bounds falling below 0 (i.e. upper bound of the CI of the
proportion non-mediated exceeding 1), we reported CIs bounded by 1. For the population
adjustment sensitivity analysis, weights were incorporated using the survey_weight parameter in
medoutcon.23 Finally, for the combined MIC cohort, we did not implement a full-time employment
versus unemployment comparison given the notable gap in sample sizes between the two
groups (830 vs 115, respectively).



Directed acyclic graphs (DAGs) were drawn using the dagitty24 and ggdag25 packages.

E. Additional analyses

All correlation plots were produced by computing Phi coefficients for binary variable
comparisons and Point-Biserial Correlation coefficients for binary versus continuous variable
comparisons.

To compute the crude association between long COVID QALDs and sex, we conducted
Wilcoxon rank sum test to avoid imposing any assumptions about normality of long COVID
QALDs.

All analyses were run using the R statistical software (version 4.2.2).26

Supplementary results

Comparison of EQ-5D-5L responses by demographic groups

A. Combined MIC cohort

For anxiety/depression, subjects who reported being part-time employees skewed towards
higher values, compared to all other employment categories (Supplementary Figure S3A)). For
mobility, subjects who reported being retired skewed towards higher values, followed again by
all other categories (Supplementary Figure S3A). Pain/discomfort tended towards relatively
higher values for both these categories (Supplementary Figure S3A). Finally, the distribution of
responses for self-care and usual activities revealed similarly low values for all employment
categories (Supplementary Figure S3A).

The distribution of EQ-5D-5L responses was nearly equivalent for both sexes on every
dimension except pain/discomfort, where females skewed towards greater challenges
(Supplementary Figure S4A).

B. Norway

We found minimal differences across educational attainment quintiles in reported responses for
the dimensions anxiety/depression, pain/discomfort, self-care and mobility (Supplementary
Figure S3B). However, quintiles 4 and 5 skewed towards lower responses for usual activities,
indicating fewer challenges for that dimension (Supplementary Figure S3B). Males and females
reported similar distributions in responses for the EQ-5D-5L dimensions anxiety/depression,
mobility, pain/discomfort, and self-care (Supplementary Figure S4B). However, males skewed
towards lower values for usual activities (Supplementary Figure S4B).



C. UK

There was considerable heterogeneity across employment status categories in responses to
each of the five EQ-5D-5L dimensions (Supplementary Figure S3C).

Males and females reported similar distributions in responses for the EQ-5D-5L dimensions for
pain/discomfort (Supplementary Figure S4C). However, males skewed towards lower values for
anxiety/depression, self-care, and usual activities (Supplementary Figure S4C). Overall, males
reported perceptibly higher long COVID QALDs than females, by around 13.4%.

Tables

Supplementary Table S1. Selected studies for extracting utility weights

Cohort Study (Country)

Norway Sun et al., 202227 (Norway)

UK Devlin et al., 201828 (England)

Combined MIC cohort Jyani et al., 202229 (India)

Supplementary Table S2. Final employment status groupings

Group category Norway Combined MIC cohort

Retired “Medically retired”, “Retired”,
“Retired_Medically retired”,
“Unable to work due to
chronic illness_Retired”

“Medically retired”, “Early
Retirement Due to Illness”,
“Retired”

Unemployed “Unemployed”, “Unable to
work due to chronic illness”

“Unemployed”,
“Unable to Work Due to
Chronic Illness”, “Unable to
Work due to Chronic Illness”

Full-time employment “Full-time employment”, “Full
time carer (children or other)”,
“Full-time employment_Prefer
not to say”, “Full-time
employment_Full time carer
(children or other)”, “Working
full-time”, “Working Full-time'

“Working Full-Time”

Carer NA (small n, so grouped w/
full-time employment above)

“Full time carer (Children or
Other)”, “Full Time Carer



(Children or Others)”,

Furloughed “Furloughed”, “Full-time
employment_Furloughed”

NA

Student “Student” Student

Part-time employment “Part-time employment”,
“Working Part-time”, “Working
part-time”

“Working Part-Time”

Supplementary Table S3. Predetermined groupings of variables, by country, for RF #2

Group Norway UK Combined MIC
cohort

1 Age Age Age

2 Educational attainment (years),
educational attainment quintile,
sex

Employment status, sex Employment status,
sex

3 Asthma, chronic pulmonary
disease (not asthma), smoking

Asthma, chronic pulmonary
disease (not asthma),
bronchiectasis, smoking

Asthma, chronic
pulmonary disease
(not asthma), smoking

4 Obesity, type 1 diabetes, type 2
diabetes, diabetes (type not
specified)

Obesity, type 1 diabetes,
type 2 diabetes, diabetes
(type not specified)

Obesity, type 1
diabetes, type 2
diabetes, diabetes
(type not specified)

5 Chronic cardiac disease (not
hypertension), hypertension

Congestive heart failure,
ischemic heart disease, atrial
fibrillation, chronic cardiac
disease (not hypertension),
hypertension, peripheral
vascular disease

Chronic cardiac
disease (not
hypertension),
hypertension

6 Chronic kidney disease, liver
disease (severity not specified)

Gastrointestinal (GI)
disease, chronic metabolic
endocrine disease, GI reflux
disease, hypothyroidism,
lipid disorder

Chronic kidney
disease, mild liver
disease

7 Chronic hematological disease,
rheumatological disorder

Chronic hematological
disease, rheumatological
disorder

Rheumatological
disorder



8 Psychological disorder, chronic
neurological disorder

Psychological disorder,
chronic neurological disorder

Psychological disorder,
chronic neurological
disorder

9 Malignant neoplasm Malignant neoplasm Malignant neoplasm

10 Other Myocardial infarction (MI) Other

11 Vaccination status Chronic infection Country

12 N/A Other COVID-19 disease
severity indicator

13 N/A Antiviral treatment N/A

14 N/A COVID-19 disease severity
indicator

N/A
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Supplementary Figure S1. Assumed DAGs for the combined MIC cohort, Norway, and UK
with SES indicators as exposure. DAG for employment status binary variable in the
combined MIC cohort (A), DAG for educational attainment binary variable in Norway (B),
DAG for employment status binary variable in the UK (C). Note: htn = hypertension, in
“Chronic Cardiac Disease (not htn).”
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Supplementary Figure S2. Assumed DAGs for the combined MIC cohort, Norway, and the
UK with Sex (female vs male) as exposure. DAG for Sex in the combined MIC cohort (A),
DAG for Sex in Norway (B), DAG for Sex in the UK (C). Note: htn = hypertension, in
“Chronic Cardiac Disease (not htn).”
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Supplementary Figure S3. Boxplot comparisons of EQ-5D-5L responses (score of 1-5) by
dimension and employment status category in the combined MIC cohort (A), by
dimension and quintile of educational attainment in Norway (B) and by dimension and
employment status category in the UK (C). Bars denote median scores. Points are drawn
for scores which lie 1.5*the interquartile range units above the upper quartile.
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Supplementary Figure S4. Boxplot comparisons of EQ-5D-5L responses by dimension
and sex (Female (F), Male (M), and Unknown (U)) in the combined MIC cohort (A) Norway
(B) and the UK (C). Points are drawn for scores which lie 1.5*the interquartile range units
above the upper quartile.



Supplementary Figure S5. Correlation plots for all variables (combined MIC cohort).



Supplementary Figure S6. Correlation plots for all variables (Norway).



Supplementary Figure S7. Correlation plots for all variables (UK).
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Supplementary Figure S8. All output for the combined MIC cohort mediation analyses.
Estimated NDEs and NIEs (point estimate and 95% confidence interval) (A). Colors
denote the contrast of interest (pink: full-time employment vs all other employment
status categories; cyan: female vs male sex). Estimate proportions non-mediated (B).



Supplementary Figure S9. Output for country-specific mediation analyses in the
combined MIC cohort. Panels are reported for each country, with estimated NDEs and
NIEs (point estimate and 95% confidence interval) for each contrast. Colors denote the
contrast of interest (pink: full-time employment vs all other employment status
categories; cyan: female vs male sex; note no estimated NDE and NIE for sex in Brazil).
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Supplementary Figure S10. All output for Norway mediation analyses. Estimated NDEs
and NIEs (point estimate and 95% confidence interval) in the main analysis (A) and in the
sensitivity analysis (B). Colors denote the contrast of interest (pink: high vs low
educational attainment; blue: quintile 3 vs 1 of educational attainment; green: quintile 4
vs 1 of educational attainment; khaki: quintile 5 vs 1 of educational attainment; purple:
female vs male sex). Estimated proportions non-mediated (point estimate and 95%
confidence interval) in the main analysis (C) and in the sensitivity analysis (D).
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Supplementary Figure S11. All output for UK mediation analyses. Estimated NDEs and
NIEs (point estimate and 95% confidence interval) in the main analysis (A) and in the
sensitivity analysis (B). Colors denote the contrast of interest (pink: full-time employment
vs all other employment status categories; green: full-time employment vs
unemployment; blue: female vs male sex). Estimated proportions non-mediated (point
estimate and 95% confidence interval) in the main analysis (C) and in the sensitivity
analysis (D).



Supplementary Figure S12a. Estimated variable importance measures, i.e. % increase in
mean squared error or MSE, from individual random forest implementation (RF #1) for
Norway (sex-based population correction sensitivity analysis).



Supplementary Figure S12b. Number of times (frequency) each variable appears in
clusters selected for each CoV-VSURF run (RF #3) for Norway (sex-based population
correction sensitivity analysis).



Supplementary Figure S12c. Estimated variable importance measures, i.e. % increase in
mean squared error or MSE, from pre-grouped random forest implementation (RF #2) for
Norway. Rows indicate cluster names (a full list of variables belonging to each cluster
can be found in Supplementary Table S3) and corresponding principal components, if the
cluster consists of multiple variables. PC1 denotes principal component 1 and PC2
denotes principal component 2 (sex-based population correction sensitivity analysis).



Supplementary Figure S13a. Estimated variable importance measures, i.e. % increase in
mean squared error or MSE, from individual random forest implementation (RF #1) for the
UK (sex-based population correction sensitivity analysis).



Supplementary Figure S13b. Number of times (frequency) each variable appears in
clusters selected for each CoV-VSURF run (RF #3) for the UK (sex-based population
correction sensitivity analysis).



Supplementary Figure S13c. Estimated variable importance measures, i.e. % increase in
mean squared error or MSE, from pre-grouped random forest implementation (RF #2) for
the UK. Rows indicate cluster names (a full list of variables belonging to each cluster can
be found in Supplementary Table S3) and corresponding principal components, if the
cluster consists of multiple variables. PC1 denotes principal component 1 and PC2
denotes principal component 2 (sex-based population correction sensitivity analysis).
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