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Supplementary Materials 

1. Overview 

 

 

2. Phase-amplitude coupling 

 Testing for a connection between the phase of one frequency band and the power 

of another, generally higher frequency band, is what PAC entails. Exploratory approaches for 

phase and power should be employed to compute experimental phase-amplitude coupling. The 

quantification of PAC is based on Euler’s formula. PAC uses the time-varying power time series 

from a higher frequency band. A CFC measure should indicate the relationship between power 

and simultaneous phase, and the magnitude of power values should not arbitrarily impact it. The 

PAC value is compared to a distribution of PAC values anticipated under the null hypothesis using 
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non-parametric permutation testing. Permutation testing for PAC entails altering the power time 

series by a random temporal offset while keeping the phase angle time series unchanged. Under 

the null hypothesis, the phase-amplitude coupling value is computed using (Canolty et al., 2006): 

 

The Observed PAC values are compared to the distribution of PAC values under the null 

hypothesis by subtracting the mean and dividing by the standard deviation, creating a standardized 

Z-value of PAC (PACz). Normal-Z values are independent of the scale of the original data, are 

unaffected by violations of a von Mises distribution, and the result is not affected by substantial 

power fluctuations. 

The value represents the PAC between the respective phase and power frequencies at each 

position in the two-dimensional (2-D) matrix. In addition, PAC is a metric for detecting and 

quantifying phase synchronization between low-frequency and high-frequency oscillations. We 

have employed phase-locking value (PLV) (Penny et al., 2008) for PAC estimation for each pair 

of angle and power frequencies to create the 2-D matrix because the exaggerated coupling between 

β-phase and broadband γ-amplitude characterizes PD (de Hemptinne et al., 2013) and the coupling 

between different neural networks in multiple brain areas engaged in motor control leads to 

enhanced PAC in PD. The coupling of beta and gamma signals from separate regions seems 

pathophysiological (Gong et al., 2021). PLV solely considers phase consistency across trials. The 

PLV is computed by first extracting the phase of the amplitude ϕ, then deducting it from the phase 

of slower oscillations, then mapping the resulting time series onto the sophisticated circle, and 

lastly computing the mean of the length vector: 
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3. Model Architecture 

When the feature space distribution alters, the conventional machine-learning algorithms 

must be recreated from scratch. However, transfer learning transcends the separated learning 

framework and applies knowledge obtained for one task to tackle relevant ones (Tan et al., 2018). 

Convolutional Neural Network (CNN) models are acknowledged for their image processing 

capabilities because of their perfect performance on the ImageNet Large Scale Visual Recognition 

model; hence, to retrieve high-level features, their primary layers might be employed (Donahue et 

al., 2014). 

 

 



EEG Phase Amplitude Coupling in Parkinson’s Disease     4 

The proposed model comprises functional VGG-16, linear, and dropout layers. 

Convolutional layers of the VGG-16 convolve several kernels with input images to create various 

feature patterns (Simonyan & Zisserman, 2015). Batch normalization is a method used to 

normalize inputs to a network. It may be applied to either the activation functions of a preceding 

layer or inputs directly. It also speeds up training and provides some regularization, which reduces 

generalization errors (Ioffe & Szegedy, 2015). 

 Subsequently, a flattened layer is employed, which converts the feature maps into 

a 1-dimensional feature vector as an input into the next layer. Nodes in the fully connected layers 

are neurons trained to identify and estimate a single feature vector. The dimension gradually 

decreased after VGG-16 block processing and flattened into one feature vector of 2048 length. A 

dropout is a regularization approach that approximates training many neural networks with various 

designs simultaneously to reduce overfitting and improve generalization error(Srivastava et al., 

2014). The neurons in the fully connected layer are trained using the produced single feature 

vectors. The proposed model’s end layer is a linear regression, which regresses the MV by 

estimating an output value. 

 

4. Performance metrics 

The evaluation metrics comprise Root Mean Square Error (RMSE), Mean Absolute Error 

(MAE), and R2-score as Mean Correlation (MC). The RMSE is a quadratic scoring method that 

determines the error’s average size. It’s the square root of the average squared differences between 

predicted and observed values. MAE is a statistic that quantifies the average magnitude of mistakes 

in a set of predictions without considering their direction. It’s the average of the absolute 

differences between prediction and actual observation over the test sample, where all individual 
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differences have equal weight. R denotes the proportion of variation in the output-dependent 

attribute that the input-independent variable can predict. It is also used to determine how 

effectively the model captures observed results based on the ratio of total deviation of results 

explained by the model. The formulas for each referred metric are described below: 

 

 

 

Where y, yˆ, y¯, and N are the actual value, predicted value, mean value of the 

variable/feature, and the number of samples, respectively. The model’s performance is assessed 

using particular 40-fold cross-validation, in which specific trials of each participant’s data are 

selected as the test data. The remaining are training and validation data (80 percent training dataset 

and 20 percent validation dataset). The model will be trained using the training dataset and 

validation dataset to optimize the model, and the model’s performance will be evaluated using the 

selected test data. The performance of the suggested model in terms of the loss function and metrics 

is high for training, validation, and test datasets. 

 

5. Visual explanation approaches 

The proposed model’s learned weights were saved to assess the features’ representations 

in each data sample and determine clinical significance. A reasonable visual explanation method 
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that can be used to explain any target (MV value and conditions) should have two properties: class 

discriminability and high resolution. It allows us to localize different regions in the input image, 

contributing to other output values and capturing fine-grained detail. 

Gradient-weighted Class Activation Mapping (Grad-CAM) uses gradients of any target 

concept flowing into the final convolutional layer to produce a coarse localization map 

highlighting the important regions in the image for estimating the idea (Selvaraju et al., 2017). 

Deep layers in a CNN capture higher-level visual constructs. Furthermore, convolutional layers 

naturally retain spatial information, which is lost in fully connected layers. The last convolutional 

layers have the best compromise between high-level semantics and detailed spatial information. 

We aim to get the features detected in the last convolution layer and examine which ones are the 

most active for high/low motor vigor values. To do so, each channel gets multiplied in the feature 

map array of the last convolutional layer about the output class and then sums all the channels to 

obtain a heatmap of relevant regions in the image (see the supplementary materials section 6 for 

more details). The backpropagation visualization (saliency map) (Simonyan et al., 2013) can be 

generated by getting the gradient of the loss concerning the image pixels. The changes in specific 

pixels that strongly affect the loss will be shown brightly. However, this often produces a noisy 

image, and it has been demonstrated that clipping the gradients less than zero during 

backpropagation (intuitively allowing only positive influences) gives a sharper image. The Guided 

Backpropagation technique produces a heatmap of gradients of the same size as the input image. 

Since we do not need to resize a small feature map to the size of the input image, this is by high 

construction resolution. However, the drawback here is that the visualization is not class 

discriminative. 
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6. Details of Statistical Tests 

According to fitting/training parameters, the deep Model converged on the data 

appropriately. A one-way repeated measure analysis of variance (ANOVA) is utilized to determine 

whether there are any statistically significant differences among the PAC values of each condition 

with others. The aim of this evaluation is that the model’s inputs are significantly different from 

each other, and the PAC values engulf the pertinent information about the conditions, such as 

stimuli, healthy, and PD. 

Study cases for PAC Sham vs. Stim7 Sham vs. Stim8 Stim7 vs. Stim8 

P-value 4.62 e-7 6.37 e-5 5.82 e-8 

 

Study cases for PAC HC vs. PD-off HC vs. PD-on PD-on vs. PD-off 

P-value 3.48 e-5 7.52 e-4 6.74 e-5 

 

The tables above indicate that these study cases are significantly different from each other. 

So, the input of the proposed model has the necessary information for training purposes. Moreover, 

the absolute error of the predicted and actual MV values for each data is calculated after training 

the model. R-2 score also is computed for predicted MV values in each fold for further statistical 

tests. Then, one-way repeated measures ANOVA is employed to test the significant differences of 

these performance metrics for each condition. The table below illustrates the p-value of the tests. 
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Study cases for MAE Sham vs. Stim7 Sham vs. Stim8 Stim7 vs. Stim8 

P-value 0.731 0.657 0.782 

 

Study cases for MAE HC vs. PD-off HC vs. PD-on PD-on vs. PD-off 

P-value 0.252 0.315 0.382 

 

Study cases for Correlation Sham vs. Stim7 Sham vs. Stim8 Stim7 vs. Stim8 

P-value 0.375 0.431 0.369 

 

Study cases for Correlation HC vs. PD-off HC vs. PD-on PD-on vs. PD-off 

P-value 0.865 0.458 0.641 

 

The tables above denote that the trained model gives the same level of performance across 

groups, which allows us to use the learned knowledge of the model for further exploration, for 

instance, exploring saliency maps to find influential PACs for PD due to the proof of PAC 

informativity. 

 

7. Details of the Statistical tests for the Health and Medication Effects 

The average and standard deviations reported here are average of fisher Z transformed 

values of the similarity scores. Within Delta-Beta PAC between HC and PD, we found a 
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significant interaction effect between health and stimulation f(2, 156) = 633.75, p<0.001, ηp
2 = .89 

which is confirmed by significant main effect in both health condition, f(1, 78) = 2836.78, p<0.001, 

ηp
2 = .97, and stimulation  f(2, 156) = 596.98, p<0.001, ηp

2 = .88. Critically, similarity scores for PD 

Off, (M = 0.28, SD = 0.01), were significantly higher than HC, (M = 0.21, SD < 0.01); t(78) = 

53.26, p < 0.001, Cohen's d = 11.91, pbonf. < 0.001, 95% CI [0.07, 0.07], which suggests that 

Delta-Beta was generally a more informative feature for the PD-off group. Delta-Beta did not 

capture the effect of stimulation in HC group (ps > 0.056, pbonf. > 0.168) while in PD-off group, 

GVS1, (M = 0.34, SD = 0.02) were significantly higher than GVS2, (M = 0.29, SD = 0.01); t(39) 

= 12.62, p < 0.001, Cohen's d = 2, pbonf. < 0.001, 95% CI [0.04, 0.06] which in turn were 

significantly higher than Sham, (M = 0.22, SD = 0.01); t(39) = 32.51, p < 0.001, Cohen's d = 5.14, 

pbonf. < 0.001, 95% CI [0.06, 0.07] (See Figure 7.A). Similarly, between PD-off and PD-on, we 

found a significant interaction effect between medication and stimulation f(2, 78) = 610.13, p < 

0.001, ηp
2 =  .94 which was confirmed by significant main effect in both medication condition, f(1, 

39) = 3923.89, p < 0.001, ηp
2 = .99, and stimulation  f(2, 78) = 655.18, p < 0.001, ηp

2 = .94. Similarity 

scores for PD-off, were significantly higher than PD-on, (M = 0.21, SD < .01); t(39) = 62.64, p < 

0.001, Cohen's d = 9.9, pbonf. < 0.001, 95% CI [0.07, 0.08], which suggests that medication effect 

on Delta-Beta was generally a more informative feature for the PD-off group. Delta-Beta captured 

the effect of stimulation in PD-on group as well such that GVS1, (M = 0.208, SD < .01) were 

significantly higher than both Sham, (M = 0.205, SD < .01); t(39) = 4.24, p < 0.001, Cohen's d = 

0.67, pbonf. < 0.001, 95% CI [.002, .005] and GVS2, (M = 0.205, SD < .01); t(39) = 3.8, p = 0.001, 

Cohen's d = 0.6, pbonf. = 0.002, 95% CI [.001, .005] (See Figure 7.A). Overall, Delta-Beta PAC 

could successfully capture both medication and stimulation effects on PD groups and dissociate 
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PD from HC. This PAC involves the coupling between delta (slow) and beta (relatively faster) 

brain oscillations. 

Within Theta-Gamma PAC (See Figure 7b) between HC and PD, we found a significant 

interaction effect between health and stimulation f(2, 156) = 76.79, p < 0.001, ηp
2 = .05 which was 

confirmed by significant main effect in both health, f(1, 78) = 195.98, p < 0.001, ηp
2 = .72, and 

stimulation  f(2, 156) = 28.51, p < 0.001, ηp
2 = .27. Similarity scores for PD-off (M = 0.26, SD = 

0.01), were significantly higher than HC, (M = 0.25, SD = 0.01); t(78) = 14, p < 0.001, Cohen's d 

= 3.13, pbonf. < 0.001, 95% CI [.008, .01], which suggests that Theta-Gamma was generally a 

more informative feature for the PD-off group. Within PD-off group, Theta-Gamma PAC 

similarity scores were significantly higher for GVS1, (M = 0.27, SD = 0.01) compared to GVS2, 

(M = 0.26, SD < 0.01); t(39) = 4.67, p < 0.001, Cohen's d = 0.739, pbonf. < 0.001, 95% CI [0.003, 

0.01] which in turn was higher than Sham, (M = 0.25, SD < 0.01); t(39) = 10.03, p < 0.001, Cohen's 

d = 1.59, pbonf. = 0.016, 95% CI [.007, .01]. Within HC group, Sham (M = 0.255, SD = 0.01), 

were significantly higher than GVS1, (M = 0.251, SD = 0.01); t(39) = 3.67, p = 0.001, Cohen's d 

= 0.58, pbonf. = 0.002, 95% CI [.002, 0.01]. Between PD-off and PD-on, there was a significant 

interaction between medication and stimulation, f(2, 78) = 67.94, p < 0.001, ηp
2  = 0.64 which was 

confirmed by a significant main effect in both medication f(1, 39) = 280.7, p < 0.001,  ηp
2  = 0.88; 

and stimulation, f(2, 78) = 49.89, p < 0.001,  ηp
2  = 0.56, such that similarity scores for PD-off, (M 

= 0.26, SD < 0.01), were significantly higher than PD-on, (M = 0.25, SD < 0.01); t(39) = 16.78, p 

< 0.001, Cohen's d = 2.65, pbonf. < 0.001, 95% CI [0.01, 0.01]. Importantly, theta-gamma captured 

the effect of stimulation in PD-on group such that Sham, (M = 0.254, SD < 0.01), were significantly 

higher than GVS1, (M = 0.252, SD < 0.01); t(39) = 2.79, p = 0.008, Cohen's d = 0.44, pbonf. = 
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0.024, 95% CI [0.001, 0.004], and GVS2, (M = 0.251, SD < 0.01); t(39) = 4.22, p < 0.001, Cohen's 

d = 0.67, pbonf. < 0.001, 95% CI [0.002, 0.01].  

Within Alpha-Gamma PAC (See Figure 7c) between HC and PD, we found a significant 

interaction between health and stimulation, f(2, 156) = 3.61, p = 0.03, ηp
2 = 0.04 which was 

confirmed by main effects of health, f(1, 78) = 39.53, p < 0.001, ηp
2 = 0.34 and stimulation f(2, 156) 

= 19.52, p < 0.001, ηp
2 = 0.2. Similarity scores for PD-off (M = 0.262, SD < 0.01), were significantly 

higher than HC, (M = 0.257, SD < 0.01); t(78) = 6.287, p < 0.001, Cohen's d = 1.41, pbonf. < 0.001, 

95% CI [.004, 0.01], which suggests that alpha-gamma was generally a more informative feature 

for the PD-off group. Within the PD-off group, alpha-gamma PAC could dissociate sham, (M = 

0.258, SD = 0.01) from both GVS1, (M = 0.265, SD = 0.01); t(39) = -4.4, p < 0.001, Cohen's d = -

0.7, pbonf < 0.001, 95% CI [-0.01, -0.004] and GVS2, (M = 0.264, SD = 0.01); t(39) = -4.23, p < 

0.001, Cohen's d = -0.67, pbonf < 0.001, 95% CI [-0.01, -0.003]. Within HC group, GVS2, (M = 

0.26, SD = 0.01) were significantly higher than both GVS1, (M = 0.256, SD = 0.01), t(39) = 3.68, 

p = 0.001, Cohen's d = 0.58, pbonf. = 0.002, 95% CI [0.002, 0.006] and Sham, (M = 0.254, SD = 

0.01), t(39) = 4.372, p < 0.001, Cohen's d = 0.69, pbonf.< 0.001, 95% CI [0.003, 0.009]. Critically, 

in the PD-off group, alpha-gamma showed consistency of informativeness in the same level for 

both GVS1 and GVS2 and higher than Sham. Between PD-off and PD-on, there was a significant 

interaction between medication and stimulation, f(2, 78) = 13.11, p < 0.001, ηp
2  = 0.25 and a 

significant main effect of medication, f(1, 39) = 13.62, p < 0.001,  ηp
2  = 0.26, such that similarity 

scores for PD-off, (M = 0.262, SD < 0.01), were significantly higher than PD-on, (M = 0.259, SD 

< 0.01); t(39) = 3.69, p = 0.001, Cohen's d = .58, 95% CI [0, 0.01]. 

Within Beta-Gamma PAC (See Figure 7d) between HC and PD-off, we found a 

significant interaction effect between health and stimulation f(2, 156) = 15.77, p < 0.001, ηp
2 = .17 
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which was confirmed by significant main effect in both health condition, f(1, 78) = 16.35, p < 

0.001, ηp
2 = .17, and stimulation  f(2, 156) = 13.2, p < 0.001, ηp

2 = .14. Similarity scores for PD-off 

(M = 0.23, SD < 0.01), were significantly higher than HC, (M = 0.227, SD < 0.01); t(78) = 4.04, p 

< 0.001, Cohen's d = 0.9, pbonf. < 0.001, 95% CI [.001, 0.004], which suggests that Beta-Gamma 

was generally a more informative feature for the PD off group. Beta-Gamma PAC did not capture 

the effect of stimulation in HC group (ps>0.674) while in PD-off group, could dissociate all 

stimulations consistently such that similarity scores for Sham, (M = 0.24, SD = 0.01), were 

significantly higher than GVS1, (M = 0.23, SD = 0.01); t(39) = .643, p < 0.001, Cohen's d = 0.64, 

pbonf. = 0.001, 95% CI [0.003, 0.01] which in turn was significantly higher than GVS2, (M = 

0.225, SD = 0.01); t(39) = 3.46, p = 0.001, Cohen's d = 0.55,  pbonf. = 0.004, 95% CI [0.002, 0.01]. 

Critically, between PD-off and PD-on, there was a significant interaction between medication and 

stimulation, f(2, 78) = 23.83, p < 0.001, ηp
2  = 0.38 which was confirm by main effect in both 

stimulation, f(2, 78) = 12.48, p < 0.001, ηp
2  = 0.24, and medication, f(1, 39) = 4.82, p = 0.03, ηp

2  = 

0.11 such that Similarity scores in PD-off, (M = 0.23, SD < 0.01), were significantly different from 

PD-on, (M = 0.232, SD < 0.01); t(39) = -2.2, p = 0.034, Cohen's d = -0.35, 95% CI [0, 0]. Within 

PD-on group, GVS1, (M = 0.229, SD = 0.01), were significantly different from GVS2, (M = 0.2341, 

SD = 0.01); t(39) = -4.021, p < 0.001, Cohen's d = -0.636, pbonf. = 0.001, 95% CI [-0.007, -0.002]. 
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