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Abstract

Background: The COVID-19 pandemic has led to many studies of seroprevalence. A
number of methods exist in the statistical literature to correctly estimate disease prevalence
or seroprevalence in the presence of diagnostic test misclassification, but these methods
seem to be less known and not routinely used in the public health literature. We aimed to
examine how widespread the problem is in recent publications, and to quantify the magnitude
of bias introduced when correct methods are not used.

Methods: A systematic review was performed to estimate how often public health re-
searchers accounted for diagnostic test performance in estimates of seroprevalence. Using
straightforward calculations, we estimated the amount of bias introduced when reporting
the proportion of positive test results instead of using sensitivity and specificity to estimate
disease prevalence.

Results: Of the seroprevalence studies sampled, 78% (95% CI 72% to 82%) failed to
account for sensitivity and specificity. Expected bias is often more than is desired in practice,
ranging from 1% to 12%.

Conclusions: Researchers conducting studies of prevalence should correctly account for
test sensitivity and specificity in their statistical analysis.

Keywords: Prevalence, Seroprevalence, Diagnostic Tests, Statistical Methods, Rogen-
Gladen, Bayesian, Sensitivity, Specificity
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Introduction

Since the beginning of the SARS-CoV-2 pandemic, thousands of papers have been pub-

lished detailing seroprevalence estimates in various populations (1). A glance into recent

publications indicates that while some researchers used simple approaches such as pro-

portions or logistic regression, others used complicated methods like Bayesian hierarchical

models. An important question is therefore how often these methods are used in epidemio-

logical studies and what, if any, degree of bias was introduced by using one method or the

other.

As diagnostic tests are not 100% accurate, it is expected that some small number of test

results will be either false positives or false negatives. Using a simple proportion of the num-

ber of positive diagnostic tests over the total number of tests ignores any misclassification

inherent to the test. In the case where there are similar numbers of true positives and true

negatives in the population, the bias introduced by using the proportion of positive tests to

estimate the proportion of subjects with the disease may not be very high. However, if the

rate of false positives differs greatly from that of false negatives, the bias may be quite large.

Table 1: Typical example of 2x2 table comparing diagnostic test results and disease status.

Test neg Test pos total

Disease neg 724 80 804
Disease pos 20 176 196
total 744 256 1000

For example, in Table 1, 35.5% (355/1000) of subjects had a positive test result, but the

true disease prevalence in this population is 30.0% (196/1000). So there is a bias of 5.5%

because there are many more false positive test results (n = 70) than false negatives (n =

15). Other examples of this phenomenon are found in the literature (2,3). Statisticians often

talk about sensitivity, 95% in this example, and specificity, 90%, of the diagnostic in relation

to these quantities (described in more detail below), but it is accepted that without a “gold

standard” diagnostic tool, it is difficult to accurately assess disease prevalence.

Accounting for such misclassification in the interpretation of diagnostic tests is certainly not
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new in the literature. A straightforward method of adjusting observed prevalence is available

(4,5), which gives a maximum likelihood estimate of true prevalence assuming predefined

test sensitivity and specificity. The Rogan-Gladen correction has been extended to compute

confidence intervals (6,7). Recently, an adaptation of the Rogan-Gladen correction that

accounts for sampling bias, for example if only hospitalized subjects as opposed to the

general population have been tested, has been proposed (8–10). Bayesian approaches

have also been developed (3,11,12). A comparison of Bayesian and frequentist methods

(13) showed that Bayesian methods are to be preferred, or the method of (4) with confidence

intervals of (7).

Despite this extensive treatment of the misclassification problem in the statistical literature,

many public health researchers appear to not realize they may be publishing biased results

or know what to do about it. In what follows, a systematic review quantifies the proportion

of recent publications estimating seroprevalence that do not correct for diagnostic test

performance. We will describe key concepts, and derive an estimate of the bias, as well as

a range of prevalences where such naive estimates show low bias. Bias estimates will be

described according to test sensitivity and specificity, and we will apply these results to a

real example of SARS-CoV-2 seroprevalence in children.

Methods

To start, we introduce some notation. Disease status, D, is denoted 1 if a subject has the

disease in question (or for the case of seroprevalence, has antibodies for it), and 0 otherwise.

Similarly, the result of the diagnostic test, Y, is given as 1 if the subject tests positive for the

disease, and 0 otherwise. FP is often used to refer to false positive test results, and similarly

FN for false negatives, TN for true negatives and TP for true positives.

Prevalence is the probability of having the disease of interest, P = Pr(D = 1). Often in

prevalence studies, this probability is studied at a specific point in time, giving so-called point

prevalence (14). Seroprevalence, a related concept, looks at the proportion of individuals in

the population have antibodies for a specific disease, for example, SARS-CoV-2 (15). Sensi-
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tivity, denoted Se, sometimes also called the true positive fraction (TPF), is the probability

of having a positive test result, given that the subject has the disease, Pr(Y = 1|D = 1)

(2). On the other hand, specificity, Sp is the probability of having a negative test result

when a subject does not have the disease, Pr(Y = 0|D = 0) (sometimes 1 - specificity

is discussed, which is often referred to as false positive fraction, or FPF (16)). In real

settings where true disease status is known via another method, sometimes referred to as

the “gold standard”, Se can be computed as TP/(TP + FN), where TP is the number of

true positives and FN is the number of true negatives. Similarly, Sp can be computed as

1 − FP/(FP + TN).

The proportion of positive tests can be expressed as

Pr(Y = 1) = (FP + TP)/(FP + TP + TN + FN),

while the disease prevalence in the sample can be expressed as

Pr(D = 1) = (FN + TP)/(FP + TP + TN + FN).

The difference between these two quantities is simply (FP − FN)/(FP + TP + TN + FN),

that is, the proportion of false positives minus the proportion of false negatives.

According to the definition of joint probability Pr(A, B) = Pr(A|B)Pr(B), the proportion of

false positives can be written as

Pr(Y = 1, D = 0) = Pr(Y = 1|D = 0)Pr(D = 0),

which simplifies to (1 − P)(1 − Sp). In a similar fashion, the proportion of false negatives

can be written as

Pr(Y = 0, D = 1) = Pr(Y = 0|D = 1)Pr(D = 1),

which simplifies to P(1 − Se). The bias when using the proportion of positive tests, Pr(Y =
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1), to estimate the proportion with disease, Pr(D = 1), is therefore (1 − P)(1 − Sp)−

P(1 − Se) or equivalently 1 − Sp + P(Sp + Se − 2).

Suppose we want to guarantee that the bias is no larger than, say, δ = 0.02, that is ±2% in

either direction. We can solve

−δ ≤ 1 − Sp + P(Sp + Se − 2) ≤ δ

for P, to get:

max
(

δ + Sp − 1
Sp + Se − 2

, 0
)
≤ P ≤ min

(
−δ + Sp − 1
Sp + Se − 2

, 1
)

.

The lower bound will be 0 if δ ≥ 1 − Sp, while the upper bound will be 1 if δ ≥ 1 − Se.

Therefore, if both Se and Sp are very high, say 99% or higher, then the proportion of positive

tests is a good estimate of the true prevalence. If only Se is that high, this is will be true only

when the true prevalence is quite high, and conversely if only Sp is very high, this will be

true only when true prevalence is quite low. When neither Se nor Sp is high, the proportion

of positive tests may or may not be a good estimate of the true prevalence.

One simple way to reduce this bias, if no dependence on covariates is assumed, is to use

the Rogan-Gladen correction (4). Assuming an observed fraction Pobs of positive test results,

the corrected prevalence is

PRG =
Pobs + Sp − 1
Se + Sp − 1

.

In a small number of cases, primarily when the sample size and the prevalence are both

small (17,18), the Rogan-Gladen correction will yield values less than 0 or greater then 1.

However, even if this “clipped” version has some bias, the variance will be smaller.

The systematic review of recent studies of seroprevalence in the literature started with a

pubmed (https://pubmed.ncbi.nlm.nih.gov/) search for “covid-19 seroprevalence”, which
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yielded 637 publications published in 2022. Publications were included in the systematic

review if they assess COVID-19 seroprevalence in humans, and were published in 2022

in English or German. Exclusion criteria included: 1) studies comparing seroprevalence

in different subgroups, 2) studies examining risk factors for seropositivity, 3) studies in

animals, 4) reviews, 5) methodological papers, 6) studies with possible conflict of interest, 7)

if the full text was not available or 8) if the publication was a research letter. The following

information was extracted: 1) whether the aim of the study was to assess COVID-19

seroprevalence in humans, 2) the sensitivity and 3) specificity of the diagnostic test, 4) the

reported seroprevalence estimate (the first mentioned value, and if unadjusted was reported

before adjusted, we extracted the most adjusted value of the first mentioned seroprevalence),

and 5) which statistical methods were used to calculate seroprevalence. A protocol for the

systematic review was developed using the PRISMA-P checklist (https://osf.io/b59x2/).

Two independent reviewers (SRH and DK) screened the publications using the rayyan.ai

web-based tool, and performed data extraction in parallel using a structured spreadsheet.

Discrepancies were resolved by discussion. Summary statistics were computed for the

methods used (n (%)), reported sensitivity and specificity (median [range]) and estimated

bias (median [range]).

To provide a concrete example of this problem, we use the Ciao Corona study (19), a

school-based longitudinal study of seroprevalence in Swiss school children with 5 rounds

of SARS-CoV-2 antibody testing between June 2020 and June 2022, covering a range

of seroprevalences in the population (Trial Registration: ClinicalTrials.gov NCT04448717).

The study was conducted in accordance with the Declaration of Helsinki and approved by

the Ethics Committee of the Canton of Zurich, Switzerland (2020-01336). All participants

provided written informed consent before being enrolled in the study.

Results

To examine the methods actually used in seroprevalence studies in the literature, we

performed a systematic review of publications from 2022 which estimated COVID-19 sero-
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Table 2: Key outcomes of systematic review. The main analysis included 291 publications
meeting all inclusion criteria.

Characteristic
Overall

N = 291 (100%)
uncorrected

N = 226 (78%)
corrected

N = 65 (22%)

Statistical method
Rogan-Gladen 39 (13%) 0 (0%) 39 (60%)
Bayesian 18 (6.2%) 0 (0%) 18 (28%)
unspecified method 8 (2.7%) 0 (0%) 8 (12%)
unclear 2 (0.7%) 2 (0.9%) 0 (0%)
uncorrected 224 (77%) 224 (99%) 0 (0%)

Reported test Se and Sp?
did not report 96 (33%) 93 (41%) 3 (4.6%)
partially reported 11 (3.8%) 11 (4.9%) 0 (0%)
reported 184 (63%) 122 (54%) 62 (95%)

Se 95.2 (60.2 - 100.0) 96.8 (60.2 - 100.0) 92.7 (66.9 - 100.0)
Sp 99.6 (82.4 - 100.0) 99.5 (86.5 - 100.0) 99.7 (82.4 - 100.0)
expected bias 0.0 (-12.2 - 9.1) 0.0 (-12.2 - 7.1) -0.3 (-12.2 - 9.1)
expected bias (category)

[-15,-10) 5 (2.7%) 3 (2.5%) 2 (3.2%)
[-10,-5) 6 (3.3%) 3 (2.5%) 3 (4.8%)
[-5,-1) 29 (16%) 18 (15%) 11 (18%)
[-1,1) 113 (61%) 74 (61%) 39 (63%)
[1,5) 28 (15%) 22 (18%) 6 (9.7%)
[5,10] 3 (1.6%) 2 (1.6%) 1 (1.6%)

1 n (%); Median (Range)

prevalence in humans (Table 2). Of the 640 publications identified in pubmed, 4 were

duplicates, and 349 were excluded (5 represented possible conflicts of interest, 7 were

published in languages other than English or German, 2 did not examine COVID-19, 9 were

animal studies, 22 described secondary research, 233 did not assess seroprevalence, 41

compared subgroups or risk factors for seropositivity, 3 did not have full texts available, and

23 were published as research letters). Of the remaining 291 publications (Supplementary

Material Table S1), 77.7% (n = 226, 95% CI 72.4% to 82.3%) did not adjust for diagnostic

test performance, while 22.3% corrected for sensitivity and specificity of the diagnostic test

(n = 65, 17.7% to 27.6%). Among the publications which adjusted for test characteristics, 39

(13.0%) used Rogan-Gladen correction, 18 (6.2%) used Bayesian approaches, and 8 (12%)

mentioned adjustment but did not specify further.
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Further, among those publications that did adjust for test performance, 122/226 (54.0%)

reported sensitivity and specificity, the remaining publications either did not report test

characteristics (41.0%, n = 93) or only reported partial test characteristics (4.9%, n = 11).

Among all publications reviewed, it is therefore observed that 33% (99/291) neither adjusted

for test performance nor reported sensitivity and specificity. Among those that did not correct

for test performance but did report both sensitivity and specificity (n = 122), expected bias

ranged from -12.2% to 7.1%. 74 (61%) of the publications reporting seroprevalence to

within ±1% of the true value despite not using any adjustment, while the remaining 48 (39%)

needed adjustment for test performance (8 of those were not even within ±5%). It could be

inferred therefore that approximately 41 of the 104 publications not or partially reporting

test performance are also in need of adjusted seroprevalence estimates to account for test

performance, even though all of those publications reported naive estimates. These results

did not change when including publications denoted “research letters” (Supplementary

Material Table S2). While the need to adjust seroprevalence estimates for test performance

is well known the the statistical literature, the vast majority of published analyses on this topic

fail to account for it when they should have. This problem is also not restricted to “low quality”

journals, as such analyses can be found also in many prominent journals (Supplementary

Data).

Next, we sought to characterize scenarios where expected bias would be minimal. Using

the result bias = 1 − Sp + P(Sp + Se − 2) described above, we calculated the expected

bias for a range of reasonable combinations of sensitivity, specificity and disease prevalence

(Table 2, Figure 1). When sensitivity and specificity were both 90%, bias was as high as

10%, especially near prevalences of 0% or 100% (bottom row of Table 2, solid line in leftmost

panel of Figure 1). When specificity was 90%, a bias of 10% could be expected with small

prevalences near 0% even if sensitivity was 99% (e.g. 3rd line of Table 2). The least bias,

1%, could be expected where sensitivity and specificity were both 99% (1st line of Table 2).

Using the bounds of prevalence as derived above, we explored where the maximum tolerated

bias is limited to 1%, 2.5% and 5% (Figure 2). When Se and Sp are each 90%, bias is within
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Table 3: Estimated bias (in percentage points) for selected combinations of sensitivity (Se),
specificity (Sp) and disease prevalence (P)

Se Sp P=2 P=10 P=30 P=50 P=90 P=98

90 99 0.8% -0.1% -2.2% -4.4% -8.8% -9.8%
90 95 4.7% 3.5% 0.5% -2.2% -8.5% -9.7%
90 90 9.8% 8.0% 3.8% 0.1% -7.6% -9.6%

95 99 0.9% 0.4% -0.8% -2.1% -4.4% -4.9%
95 95 4.8% 4.0% 1.8% 0.0% -4.0% -4.8%
95 90 9.7% 8.7% 5.2% 2.7% -3.6% -4.7%

99 99 1.0% 0.8% 0.4% 0.0% -0.8% -1.0%
99 95 4.9% 4.4% 3.3% 1.9% -0.3% -0.9%
99 90 9.8% 9.0% 6.8% 4.6% 0.1% -0.8%

a tolerance of 1% only very close to 50% disease prevalence, within 2.5% tolerance in the

range of 38% - 62% disease prevalence and to within 5% tolerance as long as disease

prevalence is between 25% and 75%. When the desired tolerance is 1%, the range of

disease prevalence where a naive approach will yield unbiased results is fairly narrow in

all cases, unless Se and Sp are each at least 99%. Outside of these ranges, using the

proportion of positive test results to estimate seroprevalence will be too biased, and more

sophisticated analysis methods should be used.

As an example of this, take the Ciao Corona study (19), a school-based longitudinal study

of seroprevalence in Swiss school children with 5 rounds of SARS-CoV-2 antibody testing

between June 2020 and June 2022. The antibody test used has a sensitivity of 94% in

children, and a specificity of 99.2%. In June 2020, 98 / 2473 (4.0%) of subjects showed as

seropositive, compared to 154 / 2500 (6.2%) in October 2021, 17.3% (426 / 2453) in March

2021, 48.5% (910 / 1876) in November 2021, and 94.5% (2008 / 2125) in June 2022. Given

the diagnostic test characteristics, absolute bias can be expected to be less than 1% in the

range of 0% - 26.5% disease prevalence, and less than 2% for disease prevalence of up to

41.2%. These results imply that reported seroprevalence estimates based on a naive logistic

approach are likely relatively unbiased for the first 3 rounds of Ciao Corona antibody testing

(0.5%, 0.4% and -0.4% respectively), but that after that any seroprevalence estimates that

do not adjust for test characteristics are likely quite biased (-2.4% and -5.6%). In order
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to adjust for covariates and survey sampling weights, we corrected the seroprevalence

estimates using a Bayesian hierarchical model approach in all rounds of testing.

Discussion

We have demonstrated that average bias in prevalence estimates can be higher than desired,

as high as 10%, when using a naive approach of calculation based on the proportion of

positive test results, even if sensitivity and specificity are 90% or higher. Further, we have

derived a range of disease prevalence values for which the naive approach gives reasonably

unbiased prevalence estimates. A systematic review indicates that many public health

researchers are not aware of methods for reducing this potential bias, and do not correct for

this in their own studies of prevalence. Nor do peer reviewers and editors seem to notice

this widespread problem.

Taken together, the results emphasize the necessity in public health research to not sim-

ply report raw proportions of positive tests, even if those are adjusted for demographic

characteristics using logistic regression. Since disease prevalence is of course not known

precisely prior to study conduct, the most straightforward approach is then to plan statistical

methods so that sensitivity and specificity are accounted for. Even if other sources of bias

(e.g. sampling bias, or sampling variation) are accounted for, the results of seroprevalence

studies will continue to be biased if analyses do not also account for test sensitivity and

specificity. Care should also be taken in reading publications reporting (sero)prevalence

estimates to ensure that suitable statistical methods have been used.

These results are based on the definitions of sensitivity and specificity only and require no

complicated derivations. we have not adjusted for demographic characteristics, such as age

and gender, or used weighting to approximate the target population, as is typical in surveys

of disease prevalence. However, such adjustment cannot alleviate any general concerns of

bias as presented here. The bias demonstrated here is also an average bias, and observed

bias may vary more or less depending on the size of the sample. The results do not account

for other possible issues with a diagnostic test (20–22), that can often not be corrected with
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statistical methods (e.g. when the validation sample, on which the sensitivity and specificity

estimates are based, is not similar to the population of interest). Average bias is given,

which does not account for sampling bias or variation, as has been described elsewhere (9).

The question remains as to how best to account for diagnostic test sensitivity and specificity

when estimating disease prevalence. A nice outline of some appropriate methods along

with implementation in R (23) code is given by (13,24,25). To calculate corrected confidence

intervals for prevalence in studies where covariates do not need to be adjusted for, and no

survey weights are needed, the R package bootComb (26) and website “epitools” (https:

//epitools.ausvet.com.au/trueprevalence) are available, while Bayesian methods are

available in prevalence (27). Using the Rogan-Gladen correction with bootstrap confidence

intervals, or the Bayesian correction in the prevalence package are appropriate when there

is no need to adjust for any other factors. Adjusting for covariates, adjusting for sampling

bias or variation, or application of post-stratification weights (among other issues) may

unfortunately need to be done without the use of such prepackaged code, e.g. as described

by (28). Collaboration with experienced statisticians is invaluable in ensuring that correct

analysis techniques are used so that unbiased prevalence estimates can be reported.

The majority of publications, even if high impact journals, reporting seroprevalence estimates

in the literature do not account for sensitivity and specificity of the diagnostic test. Bias

introduced by reporting the proportion of positive tests rather than prevalence can be

easily as high as 10%, or more if sensitivity or specificity are less than 90%. Public health

researchers performing prevalence studies should consult experienced statisticians when

analyzing such data, and be sure to account for test performance. However, researchers

reviewing published prevalence studies also need to be aware of this issue. The results

here will assist reviewers in determining the the magnitude of bias that can be expected, so

that publications in the epidemiology literature can be interpreted properly.
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Figure 1: Estimated bias in prevalence estimate for selected combinations of sensitivity,
specificity and true disease prevalence
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Figure 2: Range of true disease prevalence where the rate of positive tests is a close
approximation of disease prevalence, to within maximum absolute tolerated bias
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