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Abstract

Introduction: Liver cancer is the only cancer in Australia for which mortality
rates have consistently risen, despite tests to identify high-risk individuals.
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer.
Curative treatment for HCC is typically only available if detected early. Australian
clinical guidelines recommend routine 6-monthly ultrasound surveillance, with or
without serum alpha-fetoprotein, for individuals with liver cirrhosis. This study
assesses the health and economic implications of this recommendation, utilizing novel
modeling techniques.

Methods: We designed the sojourn time density model mathematical framework
to develop a model of the evolving risk of HCC, liver disease, and death based on time
since diagnosis, incorporating data on liver decompensation, HCC incidence, and HCC
survival, and the impact of surveillance on cancer stage and survival.

Results: We estimated that adherence to 6-monthly ultrasound, with or without
alpha-fetoprotein, can increase early-stage diagnosis rates, reducing HCC mortality by
22%. We estimate a cost-effectiveness ratio of $33,850 per quality-adjusted life-year
(QALY) saved for 6-monthly ultrasound HCC surveillance, under the $50,000/QALY
cost-effectiveness threshold. HCC surveillance was also estimated to be cost-effective
at any interval from 3-24 months.

Conclusions: These findings support the current clinical guideline recommendation
for 6-monthly ultrasound surveillance, affirming its health benefits and cost-effectiveness,
and show that alternative surveillance intervals would remain beneficial and
cost-effective. =~ Our model may be used to refine surveillance recommendations
for other at-risk population subgroups and inform evidence-based clinical practice
recommendations, and the framework can be adapted for other epidemiological
modelling. Supporting the clinical guidelines and their ongoing development as
evidence evolves may be key to reversing increasing HCC mortality rates in Australia,
which are predicted to increase by more than 20% by 2040.
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Modelling routine HCC surveillance 1 INTRODUCTION

1 Introduction

1.1 Hepatocellular carcinoma and surveillance

Worldwide, liver cancer is the fourth most common cause of cancer death;[1] in Australia,

it is the seventh most common cause of cancer-related death[2] driven by increasing trends

in both liver cancer incidence and mortality.[3] A key step to improving mortality outcomes

is increased detection at early stages, to improve the potential for curative treatment.[4, 5,
]

Hepatocellular carcinoma (HCC), the most common form of primary liver cancer, can
be detected early through routine HCC surveillance. Routine HCC surveillance is typically
recommended for high-risk populations.[7] In Australia, clinical guidelines recommend HCC
surveillance with six-monthly ultrasound (US) imaging, with the potential addition of
alpha-fetoprotein (AFP) blood testing, for people with compensated liver cirrhosis,[3, 9]
and some population groups with chronic hepatitis B.

Determining appropriate HCC surveillance recommendations poses significant
challenges, including identifying health benefits and long-term costs,[10] appropriate target
groups,[11, 12] and optimal technologies and intervals.[13] This is needed to develop an
economic case for health system investment.

1.2 Modelling and HCC

Epidemiological modelling allows a formal synthesis and extrapolation of data to evaluate
the impact of an intervention. This approach has been used to guide investment in cancer
control interventions.[14, 15, 16, 17, 18] For HCC, models can synthesise data sources such
as time to liver decompensation and HCC in patients with cirrhosis[19, 20] and cirrhosis
and HCC survival.[21, 22, 2, 23, 24] This can be combined with clinical data on surveillance
outcomes and cost data to provide cost-effectiveness estimates. Economic models of HCC
and surveillance are less established than for other cancers,[15] but are crucial for guiding
policy and investment in liver cancer control.

Internationally, modelling studies have analysed a range of populations and interventions
for liver cancer control; reviews have been published previously.[8, 7, 25] Australian
modelling has shown that six-monthly US, with or without AFP, is likely cost-effective
for patients with cirrhosis,[10] and biomarker testing can stratify risk to improve
cost-effectiveness.[26] Further modelling which captures detailed progression of liver
disease, operates at flexible timescales, and incorporates detailed survival data could refine
recommendations for surveillance algorithms.

There are a number of unique considerations for modelling HCC and liver disease,
such as the interaction of competing risks of liver decompensation and other liver disease
events,[27, 28] the complex distribution of sojourn times for the development of HCC
in cirrhotic patients,[29] significant comorbidities in the target population,[30] and short
expected survival times for HCC patients.[31] Simple Markov-style models struggle to
capture this complexity, while more complex models such as discrete event simulations[32,

, 34], agent-based /microsimulation models,[35, 14] and semi-Markov models[36, 37, 38]
can be hampered by a lack of data, and typically introduce stochastic elements and increase
computation burden. In the absence of detailed health state data, using observable data
on the time an individual takes to transition between health states, the sojourn time, can
improve model fidelity.

1.3 Approach

To address this, we developed the sojourn time density model framework. We model the
dynamics of the probability density of the sojourn time by health state, tracking both the
likelihood of being in a given state and the expected time in that state.
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The model is parametrised by the cause-specific hazard rates[39, 410] (analogous to
transition intensities[38]), allowing us to exploit survival data and methods[11] such as
Kaplan-Meier estimators[12, 39, 43] and risk ratios.[11] This captures the same detail as
typical survival models, with the addition of serial state transitions, and is analogous to
semi-Markov and discrete event simulations, but with a deterministic numerical scheme.

1.4 Aims

In this manuscript we describe the model structure and numerical scheme for sojourn time
density models. We develop a health-economic model of liver disease and HCC, and evaluate
the benefits and costs routine HCC surveillance through six-monthly liver US, with or
without AFP testing, compared to no surveillance. We also provide an analysis of the
potential impact of varying surveillance intervals.

The modelling described in this manuscript was developed to inform the Clinical
practice guidelines for HCC surveillance for people at high risk in Australia.[3] The
development of these guidelines was led by clinicians in the area of liver disease and
liver cancer alongside a multi-disciplinary working party, including healthcare and clinical
representatives, representatives with lived experience and other community representatives.
This group also informed the aims and structure of this economic analysis.
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2 Methods: Sojourn Time Density Model

We now describe the sojourn time density model framework and demonstrate its useful
properties. We also develop a numerical scheme for the calculation.

2.1 Sojourn time density modelling

Consider a compartmental model with N possible discrete states labelled 1,2, ..., N, such
that at any time ¢t € T (typically 7' = [0, 00)) an individual belongs to one of these states.
We describe not only the likelihood of an individual being in a given state, but also track
the distribution of the length of time spent in that state, the sojourn time 7 € T.

Doing so describes a continuous-time random process { X }:er with discrete state space
{1,2,..., N}. This process is defined such that P(X; = i) = P(individual in state ¢ at time ).
We can equivalently define the jump process {Y,, Ty }n=01,2,.., such that ¥,, = X, Vt €
[Tann+1)7 Yn 7& Yn+1'[ ]

The cause-specific hazard rates

/\i,j(t77—)7 (1)
depending on both the model time ¢ and sojourn time 7, are the key parameters for the
model. These are the instantaneous transition rates for an individual in state i to transition
to state j, at time ¢, given that the individual has spent time 7 in ¢ without any transitions
(i.e, entered state i at time t—7). By modelling the distribution of 7, we can capture evolving
transition rates. The ¢t dependency can capture temporal trends as well as evolving risk
with age a = ag + t where ag is the age at ¢t = 0. If there is no possible transition between
i and j, then \; ; = 0.

Formally, the following should hold:

. 1 , .

)\i,j (tv T) = AI%I—EIO EP(YnJrl =2 Tn+1 € [tv t+ At) |Yn =1, Tn =t— T) (2)
. 1 . . .

= Al}tgl() EP(XHM =j|Xs=iVse[t—rm,t), Xi—r #1).

Compare this to the equivalent definition for semi-Markov models, Equation (3) in Krol et
al, 2015[46]. For convenience assume A; ;(¢,7) = 0 (i.e. there are no self-loops).

To track the model state and the sojourn time, we introduce the density functions for

the sojourn time
filt,7) : T x T — [0,00) (3)

for : =1,2,..., N. These are the density functions for the sojourn time 7 and the state i at
~~~~ N is a probability density function on
the sample space (7,7) € T x {1,2,...N}, describing the likelihood of being in a particular
state with a particular sojourn time at fixed time ¢t € T

Then we can define the probability mass of X,

Pexi=i) = | " it 5)ds = gild). ()

We should expect that

Zgi(t) =1 (5)

i.e. the total mass probability is 1.
Our goal now is to describe the dynamics of f;(¢,7), and then show this definition
satisfies (2) and (5). Let f;(¢,7) satisfy the partial differential equation

6T+ A fiT) = - S hen) | (e ()
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with boundary condition

0= (/Ooo Nalt, ), T)dT) . (M)

J

The LHS of equation (6) is motivated by the transport equation along lines of constant
t — 7, representing the likelihood of remaining in state ¢ while both ¢ and 7 increase, while
the RHS captures the likelihood of making a transition to a subsequent state. This can be
seen by observing that along the directional derivative

Vanfi=— |2 dijt.7) | filt,7) (®)
J

the likelihood decays proportionally to the hazard rate (see Section 2.2). The boundary
condition (7) represents the accumulation of probability mass in state ¢ post-transition. By
(5), the initial conditions f;(0,7) should satisfy

Z/OOO fi(0,7)dr = 1. (9)

Additionally,
lim f;(t,7) =0 (10)
T—00
(i.e. the model is supported on finite time only; see Section 2.4). For a further discussion
of initial conditions, see Appendix C.1.

We now have a complete description of the random process X; through (4), (6), (7),
and appropriate initial conditions. This constitutes what we will call a sojourn time density
model. These models resemble semi-Markov processes/Markov renewal processes,[38] as the
sequence of transitions is Markov (as the next state depends only on the previous state and
transition time) but the time between transitions is not.

We now show that the process defined by (4) is well-defined and driven by the hazards
Ai j(t, 7) as expected.

Theorem 2.1. The random process defined by (4) satisfies conditions (2) and (5).

Proof. We calculate the derivative of g;(t), i.e. the rate of change in likelihood of being in
state ¢ at time ¢

d d [
290 = %/0 filt, T)dr

<9
= /0 Efi(t,T)dT

6 oo
:_/O Efi(t,T)dT_/O Ej Xij(t,T) | fult,T)dr
(11)

:fi(t,O)—/Ooo S Niilt7) | ilts 7

3 ( /0 Tt fj(t,T)d7'> - /0 St | At

J

entering state % leaving state ¢
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This satisfies the definition the hazard rate - the likelihood of being in state ¢ decreases
proportionally to the hazard of every transition leaving state i > j Ai,j(t,7), and increases
for every transition entering state i 37, A;;(t, 7) proportional to the weight of those states
fj (ta T) :

Note that

Y Zal) =0, (12)

i.e. that the total probability mass is conserved. Therefore with initial conditions satisfying
equation (9), (5) is satisfied.

If we know that the system enters state ¢ at time t*, i.e. (Y,,T},) is realised as (i,t*)
and remains there to at least time t* + 7* (i.e. T,,41 — T, > 7*), this corresponds to

S(t—t*—1) ifi=j
fitr) =1 o=y (13)
0 ifi £
for all t € [¢t*,t* + 7*) where §(¢) is the Dirac delta function. Then
d > * * * *
91 Ot=trir = Zj: | At + 75 1) (8 + 77, T)dr
—/ Z Xij(t" 75 7) | fi(tt + 7, T)dr
P\ (14)
= —/ Z)\m’(t* +757) | 0(r* = 7)dr
0 .
J
= — Z)\Zd(t* + T*,T*)
J
and for j # ¢
d * * gk
%gj(t)h:t*—&-‘r* = Ale(t + 7 ,t ) (15)

In other words, the likelihood of transition out of state i is proportional to the sum of the
hazards > j Ai,; and the likelihood of transition ¢ — j is proportional to A; ;. Then

P(Yn+1 :j7Tn+1 <t+At|Yn:Z,Tn:t_T,Tn+1 zt)

= g,(t + At)
d (16)
~ g;(t) + At g;(t)
= Al»\i,j (t, 7')
by the above. By taking the limit At — 0, (2) is satisfied. O

2.2 Method of characteristics and survival analysis

We now compute survival curves using method of characteristics. As noted, equation (6)
is best interpreted along characteristics of constant ¢t — 7 corresponding to the state entry
time (Figure 1). This allows explicit solutions through method of characteristic, as well as
analogies to other survival modelling approaches.!

I'We refer to survival in the sense of survival analysis, i.e. the time until an event of interest,[39] not
necessarily mortality.
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Sojourn time
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Figure 1: Characteristics of constant t* = t — 1 for fi(t,7) (left) and the corresponding
elements F.""" with constant m —n for the numerical scheme (right).

Consider the characteristic t = t* + 7 for fixed t* € R. Then

dilei(t* +7,7)= %fi(t* + 7, 7')%(25* +7)+ %fz(t* +7,7) (17)
= — Z)\m»(t* +7,7) | fi(t* +7,7). (18)
J

If t* > 0, this corresponds to a characteristic starting from the boundary; if t* < 0, this
corresponds to a characteristic from the initial condition. This has solution

fl(t* + T, T) = fi(to, To)e_Ai’(t*—i_T’T) (19)

where tg = max(t*,0), 79 = max(—t*,0) (so that t* = tg — 70, to, 70 > 0) and

NEDY (/ /\i,j(t—7'+s,s)ds>. (20)

The function A;(¢,7) is the all-cause cumulative hazard along the characteristic t — 7 = t*.
Then
Sit,m) = e M7, (21)
is the all-cause survival along this characteristic, and f;(t* + 7,7) = fi(to, 70)S:(t* + 7, 7).
We can correspondingly calculate the time-to-event distribution after entering state i at
time ¢ — 7 as the distribution

Aij(t,7)Si(t, ) (22)

across 7 =1,2,..., N.
It follows that the probability of the next transition being before time ¢t = t* + 7 and
also from ¢ — j, given entry to state ¢ at time tg, is:

P(next transition time < ¢ N next transition ¢ — j| entered state ¢ at time t¢)
:P(Yn+1 :j, Tn-‘,—l <t‘Yn :’i, Tn :to)

t
:/ Aij(s,8 —17)Si(s, s — t*)ds.

to


https://doi.org/10.1101/2024.02.20.24303111
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2024.02.20.24303111; this version posted February 22, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

Modelling routine HCC surveillance 2 METHODS

The limit of this is the likelihood of the next transition being to a particular state:

P(next transition ¢ — j | entered state ¢ at time ¢g)

= / Nij(s,8 —t")Si(s,s —t")ds.

to

(24)

We can also calculate the cause-specific survival, assuming other transitions (or events)
are censored:

Si,j (t; T) =e f:o Aij (t—T-‘rs,S)ds' (25)

Where cause-specific survival data (equivalently, cause-specific cumulative incidence) is
available with competing events censored, this may provide a calibration target for the
hazard rates, which can be directly identified from the survival model (see Hazard and
Cumulative hazard in Clark et al[39]); parametrisation of A; ;(¢,7) across t* can then be

identified.
Given t*, the results above are analogous to the functions used for parametric competing
risk survival models, time-to-event models, and discrete event models.[17] The sojourn time

density model approach generalises this to modelling serial events deterministically. The
all-cause cumulative incidence function 1 — S;(t,7) is used in e.g. Fine-Gray modelling. 48]
A useful guide to translating between cause-specific and all-cause specific hazard rates is
included in Asanjarani et al,[38] and shows discrete event simulation distributions can be
translated into hazard rates. For discrete event simulations where events do not preclude
each other, transitions which preserve sojourn time may be added (Appendix C.4).

A common approach in analytical epidemiological models is to compute likelihood of
transition as the convolution of the 7-dependent hazard rate and the time of entry.[49, 50]
In our formulation, this is reflected in the boundary conditions

R0 =Y ([T astens (m)dT)

’ (26)

B> ([ 5= monutens;e.nr).

If we define entry time distribution Fj(z) = f;(x,0) and survival-adjusted cause-specific
hazard rate H(j,i)(z) = A;i(t, 2)S;(t,z), then F;(t) = >_,(Fj * H;;)(t), the convolution of
these. We have generalises this approach and incorporated serial transitions.

2.3 Numerical scheme

The characteristic solutions developed in Section 2.2 can be used to develop a numerical
scheme. For a discretisation of T' by fixed timesteps At € RT, define

f mAt, nAt)
—n)At,0)e M(MALRAY if 4y >y
At) —A;(mAt,nAt) ifm<n (27)

Fim n,oefAi(mAt,nAt) ifm>n
Fioﬂ—me—/\i(mAt,nAt) ifm<n

for m,n € Z*. Each value of m — n corresponds to a characteristic (m — n)At. The
cumulative hazard functions A; (¢, 7) may be computed by (20) in simple cases, or estimated
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iteratively by At steps. Equivalently, each element can be calculated iteratively by

Fen — pm—ln=1,-3%; JE N 5 ((m=1)At+s,(n—1)At+s)
1

28
~ mel,nfl 1— Z )\i,j((m — %)At7 (n — %)At) ( )

J

(see Figure 1 for an illustration of this).

For m < n, the initial condition is Fio’" = fi(0,nAt). For m > 0, the initial condition
F™0 = f,(mAt,0) is the boundary conditions of the full PDE. A first order scheme can be
computed as

F™ = fi(mAt,0)

= Z (/OOO Aji(mAL, T) f(mAt, T)dT)

~y <Z AtN; i (mAL, EAL) f;(mAt, kAt)) 29)

J k>0

=> (At/\j,i(mAt,kAt)F]m”“)

k>0,j

for m > 0.
One can subsequently approximate

gi(mAt) =~ Z Atf;(mAt, kAt)
k=0

~ Z AtFim’k
k=0

and hence the process X;.
An improvement can be made to this numerical scheme by adjusting the boundary
conditions to exactly preserve the total mass at all timesteps:

0 {m.k —1,k—1 K

B0 =N N - F") (31)
Jik
where L )
X'(n‘,k _ )\i,j((m B §)At’ (k - §)At) - (32)
Y Aa(m = )AL, (k= 5)At)

We can then verify that >, F™F is constant, i.e. the total probability mass > 9i(t) is
conserved. We have here used the midpoint estimates for A; ;, which improves accuracy
when there is a significant scale difference between hazards.

In epidemiological contexts, hazards are often modelled as continuous and smooth
functions, so this first order numerical scheme will have high accuracy.

2.4 Hazard functions and common parametric distributions

The sojourn time density modelling scheme is determined by the hazard rates A; ;(¢,7). It
is common to describe these rates parameterically.[51] Commonly used parametric forms
for these hazard functions include

e constant hazard A, ;(t,7) = ¢, corresponding to an exponential time-to-event
distribution; if all hazards are constant, X; is Markov.
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e polynomial hazard \; ;(t,7) = bkrF=1, corresponding to a Weibull distribution, often
used to model single-cause mortality.[52]

e exponential hazard A, ;(t,7) = pe"”, corresponding to a Gompertz distribution, often
used to model of all-cause mortality.[52]

There are many other potential choices for A; ;(¢, 7). It may be useful to define the hazard
rate piecewise over ¢, 7, or both, either piecewise constant or functions.[53] The choice of
hazard function is highly dependent on the nature of the system being modelled and the
available data sources.[54] Hazard rates can be estimated from processed survival data,
typically after smoothing[55] or time-to-event distributions.[38, 56]

Hazard can be adjusted to reflect covariates; Cox proportional hazard ratios can be
used to calculate \; ;(t,7|x) = \i;(t,7]0)e?* for some covariates x € R and a baseline
hazard function \; ;(t, 7]0).[44, 48] Constant hazard multipliers can be used as calibration
targets, to maintain the shape of the distribution,[53] and hazards can be adjusted to
reflect lead-time biases in the data (see Appendix C.1). With minor alterations, one can
also introduce hazards which are dependent on the current state of the system; for example,
this allows for modelling of infectious disease models. See Appendix C.3 for further details.

2.5 Example model

An example sojourn time density model is shown in Figure 2, demonstrating the impact of
t- and 7-dependent hazard rates. This model has four states, A, B, C', D. The transitions
out of A are A p(t,7) = Aac(t,7) = 0.2, as these are constant, P(X; = A) decays
exponentially, like a Markov process (Figure 3). The subsequent transitions are Ag p(t,7) =
0 if 7 < 1, 5 otherwise, and A¢,p(t,7) = 0 if ¢ < 2, 2 otherwise. The impact of the ¢ and
7 dependencies can be seen in the evolving density of f;(¢,7). The initial condition was
fa(0,7) =1 for 7 € [0,1). Further examples are included in Appendix C.2.
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Initial condition f4(0,7)

Sojourn time density, state A Sojourn time density, state B
T T

4 5 0 1 2 3 4
X 04 ; X X X
i
|
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N i
=} |
1
Il .
— \\
S
= -2 N
&
<
<
3
4 AN
Oif r<1
Aac(t,7) = 0.2 Ap.p(t,T) =
o D7) 5if 7> 1

Sojourn time density, state C Sojourn time density, state D

0ift <2
2ift>2

|

Boundary condition fc(t,0)
Density enters here
)\c, D (t, 7')

Figure 2: An example sojourn time density model, showing the evolution of the density of
sojourn time. Darker regions have higher density, and lighter regions have lower density.
Note how the density in state B sharply decreases at T > 1, and in state C at t > 2. See
Figure 3 for the resulting process.
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Figure 3: The resulting process X; from the model illustrated in Figure 2

3 Methods: Modelling Liver cirrhosis and HCC

We now describe the development of a sojourn time density model of liver disease and
HCC. The Consolidated Health Economic Evaluation Reporting Standards (CHEERS)[57]
checklist is included in Appendix D.

3.1 Model structure

The structure of the model is illustrated in Figure 4. Individuals start with compensated
liver cirrhosis, which can develop into decompensated cirrhosis and/or undiagnosed HCC.
These states were selected to capture the most clinically-relevant details based on the
available data. Undiagnosed HCC is diagnosed either symptomatically/incidentally or at
a routine HCC surveillance event. The Australian liver cirrhosis patient population was
modelled.

HCC stage at diagnosis was modelled according to the Barcelona Clinic Liver Cancer
(BCLC) staging system,[58] which is based on a patient’s Eastern Cooperative Oncology
Group (ECOG) performance status,[59] Child-Pugh Score,[60] and tumour stage. Cancers
were identified as early (BCLC stage 0/A: ECOG status 0, tumour < 3cm), intermediate
(BCLC stage B: ECOG status 0, multinodular), or late stage (BCLC stage C/D: ECOG
status > 1, vascular invasion, extrahepatic spread, and/or Child-Pugh C). These groupings
aligned with available survival data. Patients with compensated cirrhosis initially develop
early stage HCC, which can subsequently progress; patients with decompensated cirrhosis
develop late stage HCC only. The modelled stage is stage at diagnosis only; post-diagnosis
progression is not explicitly modelled, but is reflected in modelling of stage-at-diagnosis
survival per the available data.

3.2 Cirrhosis and health state transitions

Decompensation rates for patients with compensated liver cirrhosis were directly available
from cohort studies.[61] HCC incidence, diagnosis, and upstaging rates were calibrated
based on time-to-event data for HCC diagnosis and observed stage at diagnosis.[01, 62] This
was supplemented with data on observed stage at diagnosis in cohorts routinely undergoing
HCC surveillance[62] and data on the sensitivity and specificity of HCC surveillance. [63]
The full list of sources for the model parameters are included in A.
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Cirrhotic liver Undiagnosed HCC Diagnosed HCC
Incidental or
Compensated | Early symptomatic Early
cirrhosis | BCLC Stage 0/A diagnosis BCLC Stage 0/A

Routine

surveillance

PR S— P S—

. Death
Intermediate Routine Intermediate (HCC)

BCLC Stage B surveillance BCLC Stage B

False negative P S
Decompensated | Late Late
cirrhosis l BCLC Stage C/D BCLC Stage C/D

Death

(other cause)

Figure 4: A simplified schematic of the model of HCC and liver surveillance.

3.3 HCC and other cause survival

Five-year stage-specific overall survival rates were calculated based on data from the
NSW Cancer Registry, as these data are stratified by stage,[64] augmented by national
data.[65] International studies were used to inform survival by time since diagnosis, by
stage, and screen- vs symptomatically-detected HCC.[24] Treatment modalities, including
serial treatments, were not modelled explicitly.

HCC recurrence over five years after initial diagnosis was not modelled due to lack of
data; HCC recurrence within five years of the initial diagnosis is included in the modelled
five-year survival rates. Other-cause mortality was modelled for people with compensated
or decompensated cirrhosis [29] relative to the age-specific mortality rate in Australian
data.[66]

3.4 Routine HCC surveillance

HCC surveillance is modelled as routine US with or without AFP after the diagnosis
of compensated cirrhosis. Six-monthly US with AFP was modelled as the base case,
as currently recommended.[8, 67, (8] Diagnosis to confirm suspected HCC, either after
symptomatic development or positive surveillance event (including false positives), was
modelled as computed tomography or magnetic resonance imaging, with biopsy in cases
where imaging was insufficient.[10] People who experience liver decompensation do not
recieve HCC surveillance, per recommendations.[7] For the purposes of this study, patients
were assumed to have perfect uptake and adherence to surveillance, to assess the impact of
the surveillance recommendations rather than of patient behaviours.

3.5 Costs and health state utilities

The benefits of surveillance were measured in quality-adjusted life-years. Disutilities were
identified for patients with compensated cirrhosis, decompensated cirrhosis, and HCC
patients. Disutilities for HCC patients were classified according to their phase of care
(diagnostic, ongoing, or terminal), as well as multiplicative existing disutilities due to
cirrhosis.[69, 70]

Costs and benefits were analysed from a health system perspective to capture the most
relevant cost for Australian governmental policymakers, and presented as 2023 Australian
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dollars with costs adjusted using the Australian health CPI index.[71] Costs relating to
cancer treatment were based on an excess-cost study which stratified patients by their

primary treatment,[23] which varied by stage at diagnosis. These data were chosen as they
are locally relevant and based on real-world observations rather than idealised treatment
recommendations.

Costs for surveillance and diagnostic procedures were collated from the Australian
Medicare Benefits Schedule. Other costs included annual costs of cirrhosis care for patients
with and without decompensation, and end-of-life costs.[72, 73] A lifetime time horizon was
included to capture the full downstream benefits of surveillance. For the cost-effectiveness
analysis, a 5% annual discount rate was applied to both costs and QALYs, in line with

other health economic analyses in Australia.[74] A supplementary sensitivity analysis on
the impact of the choice of discount rate was completed. Cost inputs are included in
Appendix A.

3.6 Parameters and calibration

Parameters were directly derived or calibrated from relevant sources identified in the clinical
guidelines,[8] with Australian studies used where possible. Where Australian trial data were
not available, the data sources prioritised meta-analyses with large cohort sizes.

Parametric forms for the hazard rates were chosen to best fit the data while minimising
the number of parameters to avoid potential overfitting. Where necessary, the Nelder-Mead
algorithm was used to determine the best-fit parameters by minimising the mean square
error between the model outputs and the target data. Additional methodology is included
in Appendix A.

3.7 Scenarios modelled

For the baseline analysis, we estimated the health benefits and economic impacts
of 6-monthly HCC surveillance with US, with or without AFP, with no routine HCC
surveillance as the comparator. This was modelled for a cohort with mean age 51 (standard
deviation 11) to reflect the general cirrhotic population,[75] by aggregating single-age
simulations. We calculated HCC stage, likelihood of HCC death, quality-adjusted life
expectancy, and costs. A further analysis was conducted to assess the impact the frequency
of surveillance.

3.8 Sensitivity analyses

One-way sensitivity analyses and probabilistic sensitivity analyses were conducted to assess
the model’s sensitivity to key parameters. Additional methodology is included in Appendix
B.

3.9 Role of the Funders

Financial support for this study was provided by Cancer Council Australia through a
contract as part of a project Optimising Liver Cancer Control in Australia which was
funded through the Australian Government Department of Health and Aged Care. The
funding agreements ensured the authors’ independence in designing the study, interpreting
the data, writing, and publishing the report.
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Outcome No Intervention 6-monthly US 6-monthly UsS
with AFP
HCC incidence per 100,000 21,541 - -
Proportion of HCC diagnosed at | 47.0% 79.6% 81.3%
early stage*
HCC mortality per 100,000 14,918 11,680 11,504
Reduction vs no surveillance - 21.7% 22.9%
Lifetime liver-related healthcare | $12.91 $13.63 $13.68
costs per 100,000 (billions)
Increase in costs vs no surveillance | - 5.6% 5.9%
Liver costs per 100,000 (billions, | $8.30 $8.89 $8.99
discounted)
Quality-adjusted life expectancy | 865,630 919,300 922,300
per 100,000
Increase vs no surveillance - 6.2% 6.5%
Quality-adjusted life expectancy | 562,200 579,800 581,000
per 100,000 (discounted)
CER vs No Intervention - $33,850 $36,870
ICER - $33,850 $81,360

Table 1: Key results for the health benefits and cost-effectiveness of routine HCC' surveillance
by 6-monthly ultrasound vs mo surveillance, with or without AFP. Costs include costs
associated with ongoing cirrhosis care, surveillance costs, HCC diagnosis and treatment
costs, and end-of-life costs. US - ultrasound. AFP - alpha-fetoprotein. HCC - hepatocellular
carcinoma. CER - cost-effectiveness ratio vs no surveillance. ICER - incremental
cost-effectiveness ratio vs previously most cost-effective strategy.

4 Results

4.1 Model calibration

The model was calibrated to reproduce key targets (Figure 5). The model was well-fitted
to the target data, reproducing the terminal values for the survival curves and remaining
within the 95% confidence intervals for the duration of the survival data. The full parameter
set for the model is shown in Appendix A, including calibration targets and parameter
distributions used in the sensitivity analyses.

4.2 Health benefits and cost-effectiveness of surveillance

The results of the analysis are shown in Table 1. These analyses were for a cirrhotic cohort
with no decompensation, and a mean age of 51 + 11 years. Among those diagnosed with
HCC, the probability of being diagnosed at early-stage disease would increase by 81.3% for
those that undergo six-monthly US surveillance with AFP.

Six-monthly HCC surveillance with US alone would reduce a person with cirrhosis’
likelihood of HCC death by 21.7% compared to no intervention, increasing the
quality-adjusted life-expectancy by 6.2%. Six-monthly US with the addition of AFP would
reduce likelihood of HCC death by 22.9%, increasing the quality-adjusted life-expectancy
by 6.5%. On average, people with cirrhosis would experience 17.6 surveillance events over
their lifetime, and have an average total cirrhosis and HCC costs of $136,324 (2023 AUD),
a 5.6% increase compared to those who do not undergo surveillance, with similar increases
with the addition of AFP.

The cost-effectiveness of HCC surveillance with six-monthly US would be $33,850/QALY
compared to no surveillance, below the indicative willingness-to-pay threshold of
$50,000/QALY often used in Australia. This indicates that surveillance using six-monthly
US would be cost-effective. Six-monthly surveillance with US and AFP would have a
very similar cost-effectiveness of $36,860/QALY compared to no surveillance and be
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Figure 5: Key calibration outputs. From top to
Vilar Gomez 2018 [61]) and decompensation rates (right); all-cause death rates in patients
with compensated (left; includes any decompensation events) and decompensated (right)
cirrhosis; HCC stage at diagnosis with (left) and without (right) routine HCC surveillance.
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Additional costs per QALY saved
by ultrasound surveillance interval in months
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Figure 6: Discounted costs vs discounted QALYs saved for routine ultrasound surveillance
with alpha-fetoprotein by surveillance interval in months, from 1 month to 48 months.

cost-effective. The incremental cost-effectiveness ratio of US with AFP vs US alone would
be $81,360/QALY, indicating it is unlikely to be an incrementally cost-effective compared
to offering US only.

The impact of varying the interval for routine US is shown in Figure 6. Shorter
surveillance intervals have higher benefits, but at correspondingly higher costs. Surveillance
intervals of 7 months or longer had cost-effectiveness ratio under $30,000/ QALY for US with
or without AFP. Additional benefits and costs are in very similar proportions at intervals
over 12 months, while shorter intervals led diminishing benefits per cost increase. The
addition of AFP was approximately equivalent to extending the surveillance interval by 1-3
months.

The results of the one-way sensitivity analysis found that the cost-effectiveness was
most sensitive to parameters regarding early-stage HCC, including 5-year survival for
Stage 0/A HCC and the proportion of HCCs diagnosed at Stage 0/A. The probabilistic
sensitivity analysis found that six-monthly US was cost-effective in the 85.5% of simulations,
demonstrating that this result is robust to parameter uncertainty. The analysis of the
discount rate found that lower discount rates led to more favourable cost-effectiveness, due
to the long-term benefits of surveillance. The full results are included in Appendix B.
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5 Discussion

We described the development of a model of HCC surveillance in Australians with liver
cirrhosis. This leverages a novel mathematical approach to simulating the sojourn time
allowing detailed survival data sources to be used and short timescale events to be modelled.
The model was calibrated to capture health outcomes and costs and reproduced the targets
to a high level of precision.

Our findings indicate that routine HCC surveillance with six-monthly US with perfect
adherence would be cost-effective and reduce the likelihood of HCC death. These results
align with similar recent cost-effectiveness studies in Australia[l0] and internationally[25,

].  This analysis found that the addition of AFP would have further health benefits
and would be cost-effective compared to no surveillance, but would not be incrementally
cost-effective; there was a high degree of uncertainty around this outcome, as demonstrated
by the included sensitivity analyses. Earlier versions of these findings were included in the
Clinical practice guidelines for HCC surveillance for people at high risk in Australia[3] to
support recommendations for the provision of US surveillance, which were endorsed by the
Australian Government National Health and Medical Research Council in 2023.

We also analysed the impact of differing surveillance intervals, finding that routine
HCC surveillance at an interval of 7 months or longer would be cost-effective under a
$30,000/QALY threshold, while intervals of 3 months or longer would be cost-effective under
a $50,000/QALY threshold. These findings indicate that the current six-month interval
recommendation is appropriate, but also longer intervals would remain cost-effective
and still have some health benefits. Longer surveillance intervals caused by patient
noncompliance, delays, resource limitations, or other reasons would therefore remain
cost-effective and have health benefits. There is limited longitudinal data on liver
surveillance compliance with small sample sizes;[76] however, a correlation between
compliance and HCC survival has been observed.[77] We also found that the addition of
AFP may allow for similar benefits and costs as US alone at a longer interval.

The novel sojourn time density model structure allows for flexible analyses which rely
on detailed survival data and flexible timescales. Most liver cancer models are Markov
models,[8, 7] which may not be able to exploit complex survival data or reflect detailed
disease progression.[78, 79] Liver disease states, both as clinically reported and as typically
modelled, are usually a set of well-defined discrete disease states which serve as proxies
for a more complex continuous spectrum of disease, such as HCC staging which simplifies
variables such as the number and size of tumours, liver function, and other factors.
Approaches to address this, like hidden states,[30] can increase the potential detail at
the cost of interpretability. Modelling sojourn times based on survival data can reduce
reliance on unobservable states and the reliance on detailed calibrations and potential for
overfitting. By using the hazard rates as model parameters, the model can be interpreted
directly in the context of source epidemiology studies, and parameter values can be directly
inferred from survival data. Our approach to modelling also avoids relying on a fixed time
discretisation, which could lead to numerical errors if chosen poorly[31] and can limit a
model’s ability to capture short-timescale events such as late-stage HCC survival without
recalibration. This may limit the model’s ability to reflect the true health benefits of
early-stage diagnosis. Our model can be numerically evaluated at any timescale, allowing
us to make simulate surveillance intervals which were not been included in real-world trials.

Alternative model structures such as discrete event simulations[32, 33, 34], which are
commonly used in cancer modelling, [I8, 81, 82, 83, 84] agent-based/microsimulation
models,[35, 14] and semi-Markov models[36, 37, 38] can allow for complex distributions

of times between health states. However, these typically require stochastic evaluation,[38,

, 86] which slows model performance and therefore limits the capacity for iterative model
design and methods which explore wide parameter spaces, such as probabilistic sensitivity
analysis. Designing models that reduce computational burden to facilitate probabilistic
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sensitivity analyses has been identified as a priority for health technology assessments,[37]
with surrogate methods such as metamodelling reducing the reliance on larger models.[38,

, 90] Our approach is fully deterministic and uses a simple numerical scheme, avoiding
long runtimes as well as the need for sampling. It is also very flexible, with the capacity
to capture a wide range of simulations, and can be expanded to capture systems such as
infectious disease models as well (see Appendix C.3).

There is great potential to refine survival analysis estimates designed to guide
policy recommendations,[91] and it is hoped that this modelling approach allows for
the development of straightforward models which incorporate existing data sources in
a clear and flexible way, reducing the need for model calibration and minimising data
post-processing and model design effort. The benefits of this approach are demonstrated in
the closeness-of-fit to the calibration targets (Figure 5) as well as the flexibility to evaluate
surveillance at a wide range of intervals (Figure 6).

In future, this model will be used to analyse combinations of surveillance technologies
and intervals . This will allow us to analyse more complex surveillance algorithms, such as
the FIB-4 algorithm recommended by the Asian Pacific Association for the Study of the
Liver clinical guidelines,[92] and optimise these algorithms through iterative design enabled
by the fast computation time and high precision.

The limitations of this model structure include the semi-Markov property; each state
transition depends only on the current state, the sojourn time, and the model time. This
approach may therefore not be appropriate in contexts where multiple prior events are
required to inform future likelihoods, with the number of states needed to represent these
growing exponentially.

This model considers only the Australian population with liver cirrhosis. Liver cirrhosis
is typically attributable to chronic hepatitis B, chronic hepatitis C, alcohol-related liver
disease, metabolic-associated fatty liver disease, or a combination of these. Each of these
groups have differing HCC risks, potentially differing treatment needs,[93] and differing
prevalence in the Australian population.[11, 94] Although these groups are included in
the aggregate liver cirrhosis population modelled here, they are not modelled explicitly by
aetiology. Future model expansions to capture these risk groups explicitly, will allow more
precise cost-effectiveness estimates and recommendations by group, identifying the optimal
benefit of health benefits and costs between surveillance technology options and varying
intervals.

Another limitation of our model is that treatment is not explicitly modelled by modality;
patients are instead modelled based on aggregate survival and costs by stage at diagnosis.
Although this is in line with many other models of cancer and surveillance,[15] models
of HCC treatment can provide additional detail, particularly regarding health service
utilisation.[10] Another limitation is the uncertainty around appropriate willingness-to-pay
thresholds for Australia, with both $30,000 and $50,000 per QALY used. The interpretation
of these results should consider the context to determine the apppriate threshold.

The current simulation of the influence of age on HCC risk was limited by a lack of
data. Currently, the modelled age influences HCC risk through time exposed to cirrhosis
and risk of other-cause mortality. Incorporating further targets for the evolving risk
of HCC and stage at diagnosis would improve the cost-effectiveness estimates and help
refine recommendations. In general, data regarding HCC development and surveillance is
limited; for example, differences in estimated stage at diagnosis,[62, 95] with significant
differences likely attributable to surveillance adherence and patient cohorts, and sensitivity
and specificity of US.[96, 63] As further data are made available, modelling will be updated
and refined to help guide interventions.
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Modelling routine HCC surveillance 6 CONCLUSIONS

6 Conclusions

There is great potential for routine HCC surveillance to improve mortality outcomes in
Australia. However, any recommendations must account for the costs and the consequences
of the lower life expectancy and quality-of-life for high-risk individuals. Our robust and
flexible model of liver disease and surveillance can estimate the impact of surveillance
interventions and inform planning and policy in this area. Future evaluations will provide
refinements and extensions of the economic evaluations to capture detailed patient risk
groups and alternative surveillance modalities.
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