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Author Summary 12 

This study investigates shared genetic influences that may contribute to the circadian rhythm disruption 13 

and sleep issues in neurodevelopmental and neuropsychiatric conditions. Using polygenic score 14 

analysis on large-scale genetic studies of autism, attention-deficit/hyperactivity disorder, schizophrenia, 15 

and bipolar disorder, we tested their ability to predict chronotype and insomnia status of participants in 16 

the UK Biobank. Our findings reveal that polygenic scores for autism, schizophrenia, and bipolar 17 

disorder are associated with an evening chronotype, while polygenic scores for attention-18 

deficit/hyperactivity disorder, autism, schizophrenia, and bipolar disorder are associated with insomnia. 19 

Pathway analysis identified the enrichment of shared genetic variation between chronotype and bipolar 20 

disorder in the NRF2-KEAP1 and mRNA splicing minor pathways. Previous studies have linked the 21 

NRF2-KEAP1 pathway to the pathology of bipolar disorder and schizophrenia. NRF2 and splicing 22 

components have been previously reported to be rhythmically regulated by circadian clock genes. These 23 

results suggest a potential role for the NRF2-KEAP1 and mRNA splicing minor pathways in mediating 24 

circadian rhythm disturbances in bipolar disorder, providing insights into the genetic basis of sleep 25 

issues in neuropsychiatric conditions. 26 
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Abstract 30 

It has been postulated that circadian dysfunction may contribute to the sleep problems prevalent in 31 

neurodevelopmental and neuropsychiatric conditions. Genetic correlations between numerous pairs of 32 

neurodevelopmental or neuropsychiatric and sleep phenotypes have been identified. We hypothesize 33 

that this overlapping genetic variation is enriched in certain biological pathways.  34 

We used genome-wide polygenic score analysis to confirm previously reported genetic correlations and 35 

pathway-based polygenic score analysis to identify enriched pathways. We created polygenic scores 36 

using summary statistics from the largest genome-wide association studies (GWAS) of autism (AUT), 37 

attention-deficit/hyperactivity disorder (ADHD), schizophrenia (SCZ) and bipolar disorder (BP). We 38 

tested the performance of these polygenic scores in predicting chronotype and insomnia status of UK 39 

Biobank participants.  For the pathway-based polygenic scores, we restricted genetic variation to SNPs 40 

that mapped to genes within 451 pathways from the Reactome database. 41 

Genome-wide polygenic scores for AUT, SCZ and BP were found to be associated with an evening 42 

chronotype, and polygenic scores for ADHD, AUT, SCZ and BP were found to be associated with 43 

insomnia status. Pathway-based polygenic score analysis identified the NRF2 KEAP1 and mRNA 44 

splicing minor pathways as being enriched for genetic variation overlapping between chronotype and 45 

BP. For the NRF2 KEAP1 pathway, the signal is enriched in the subset of genes that function with 46 

KEAP1 to regulate NRF2 expression. Examination of eQTL data pointed to BP associated SNPs within 47 

these gene-sets being associated with expression changes of many genes to which they map. A number 48 

of these eQTL SNPs were reported to be genome-wide significant for SCZ in previous studies. 49 

These results demonstrate that the overlapping genetic variation between chronotype and BP is enriched 50 

in genes involved in the NRF2-KEAP1 and mRNA splicing minor pathways. Animal model and human 51 

cell line studies have previously linked the NRF2 pathway to the pathology of BP and SCZ. 52 

Additionally, NRF2 and splicing components have been reported to be rhythmically regulated by 53 

circadian clock genes. Our results suggest that these pathways could be involved in mediating the 54 

disrupted circadian rhythm phenotype of BP. 55 

 56 
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Introduction 60 

Neurodevelopmental and neuropsychiatric conditions (NDPCs) encompass conditions that affect brain 61 

function, cognitive-processes, emotions and behaviour. Neurodevelopmental conditions manifest in 62 

childhood, with the most prevalent ones including autism spectrum disorder (AUT) and attention deficit 63 

hyperactivity disorder (ADHD) (1). Neuropsychiatric conditions typically have onset in adulthood and 64 

include schizophrenia (SCZ) and bipolar disorder (BP). NDPCs are characterised by their 65 

symptomatology, with many of them displaying overlapping symptoms. One example of such 66 

overlapping symptoms are sleep problems, considered a core symptom in the diagnostic criteria for BP 67 

(DSM-5; American Psychiatric Association, 2013), present in up to 80% of individuals with SCZ (3) 68 

and AUT (4,5) and observed in up to 50% of those with ADHD (6). 69 

Sleep is regulated by sleep/wake homeostasis, which balances the urge to sleep and the requirement for 70 

wakefulness. As wakefulness persists, the homeostatic sleep drive intensifies, promoting sleep. Sleep 71 

is also regulated by the circadian clock, a biological timing mechanism that is controlled by 24-hour 72 

transcription-translational feedback loops involving several core clock genes. The central circadian 73 

pacemaker in the suprachiasmatic nucleus (SCN) of the hypothalamus responds to external cues, such 74 

as light signals, and synchronizes circadian rhythms across all cells in the body (7).  75 

Both sleep/wake homeostasis and circadian rhythm have been shown to be disrupted in NDPCs. 76 

Disruption of homeostatic sleep drive, as indicated by reduced slow-wave activity, has been reported in 77 

SCZ and early-stage psychosis (8,9). Melatonin and cortisol are two hormones involved in circadian 78 

regulation. Melatonin is produced at night, while cortisol is primarily produced in the morning (10). 79 

Dysregulation of both hormones has been observed in NDPCs. For example, AUT has being associated 80 

with lower levels of melatonin at night (10,11) and ADHD has been associated with lower levels of 81 

cortisol after wakening (12). Significant reductions in melatonin levels have also been reported in the 82 

cerebrospinal fluid of BP patients (13). Conversely, activities that disrupt circadian rhythms, such as 83 

shift work and frequent transatlantic flights, have been associated with adverse mental health (14). 84 

Hence, a bidirectional relationship appears to exist, where environmental disruptions to circadian 85 

rhythm exacerbate NDPC symptoms, while inherent circadian rhythm disturbances potentially 86 

contribute to the development of NDPCs or share underlying mechanisms. This supports the hypothesis 87 

that overlapping genetic variation contributes to both circadian disruption and the development of 88 

NDPCs. Indeed, mouse models with circadian clock gene mutations display symptoms reminiscent of 89 

human NDPCs, with different gene or protein domain mutations resulting in varying sets of NDPC 90 

symptoms (15). 91 

Genome-wide association studies (GWASs) have identified hundreds of genome-wide single nucleotide 92 

polymorphisms (SNPs) associated with different NDPCs and sleep related phenotypes. Chronotype 93 

refers to individual's preference for wakening and preforming activity earlier in the day (morning 94 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted February 18, 2024. ; https://doi.org/10.1101/2024.02.16.24302920doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.16.24302920
http://creativecommons.org/licenses/by/4.0/


4 

 

chronotype) or later (evening chronotype). It is a behavioural manifestation of an individual's circadian 95 

clock and is often used as a proxy phenotype for circadian timing (16). In modern society, having a 96 

morning chronotype is considered advantageous due to its alignment with early school and work start 97 

times. Consequently, individuals with an evening chronotype may experience reduced sleep on 98 

work/school days and compensate for it on free days - this is known as 'social jetlag' (17). Evening 99 

chronotypes have being associated with numerous adverse psychological outcomes (18). The most 100 

recent GWAS of a morning chronotype reported enrichment of chronotype associated loci in the clock 101 

genes PER1, PER2, PER3, CRY1 and BMAL1. Furthermore, the top enriched biological pathways relate 102 

to the circadian clock (19).  103 

Surprisingly, no core clock genes have been linked with any NDPC through large-scale GWAS. 104 

However, genome-wide correlations in GWAS identified SNP effects have been reported between 105 

many sleep traits and NDPCs using the linkage disequilibrium score regression tool (Figure 1). This 106 

relationship is negative for the advantageous morning chronotype and positive for insomnia and 107 

daytime sleepiness, which are both debilitating. Polygenic score (PGS) analysis can also be used to 108 

assess genetic correlations between phenotypes. If a PGS created using effect sizes from a GWAS of 109 

one phenotype can significantly predict the phenotype of samples in an independent cohort, it indicates 110 

shared genetic variation between the two phenotypes in question (20). PGSs for ADHD and depression 111 

have been reported to positively correlate with initiating and maintaining sleep and excessive 112 

somnolence in children. Additionally, a PGS for anxiety disorder correlated with nightmares in children 113 

(21). These genetic correlation findings suggest that the shared genetic background between NDPCs 114 

and circadian rhythms likely extends genome-wide, beyond the core clock genes. 115 

Exploring the genes, biological pathways and tissue types impacted by the shared genetic variation 116 

between sleep and NDPCs has been a relatively unexplored area. A gene-based cross-trait meta-analysis 117 

identified forty-four genes common to both insomnia and ADHD, and found them to be enriched for 118 

genes within synaptic-related pathways (22). Another study identified 149 loci shared between 119 

psychiatric disorders (SCZ, BP and depression) and sleep traits (chronotype and sleep duration). Forty-120 

nine lead SNPs at these loci were found to act as eQTLs for 115 genes across various brain tissues 121 

including the basal ganglia, cortex, hippocampus and cerebellum (23). 122 

The aims of this study were two-fold. First, we investigated if genome-wide polygenic scores for 123 

ADHD, AUT, SCZ and BP could predict insomnia and chronotype in UKB. Secondly, using pathway-124 

based polygenic score analysis, we investigated the biological pathways implicated by shared genetic 125 

variation between these NDPC and sleep phenotypes. We report that polygenic scores for AUT, SCZ 126 

and BP were associated with chronotype status and polygenic scores for all four NDPC phenotypes 127 

were associated with insomnia. BP polygenic scores, restricted to genetic variation in the KEAP1-NRF2 128 

and mRNA splicing-minor biological pathways were both significant in predicting chronotype, over and 129 
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above the background signal. To gain further biological insights, we reviewed expression quantitative 130 

trait loci data, and found many BP associated SNPs within these gene sets to be associated with 131 

expression changes of the genes to which they map. 132 

 133 

134 

Figure 1. Published genetic correlations (rg) between pairs of neuropsychiatric or 135 

neurodevelopmental and sleep phenotypes. Heatmap cells marked with an asterisk (*) indicate that 136 

they were reported as statistically significant in the original publications, after multiple testing 137 

correction. The original publications include the latest and largest genome-wide association studies of 138 

Autism (AUT; Grove et al., 2019), morning chronotype (Jones et al., 2019), attention-deficit 139 

hyperactivity disorder (ADHD; Demontis et al., 2023), bipolar disorder (BP; Mullins et al., 2021), major 140 

depressive disorder (MDD; Howard et al., 2019), sleep duration (Dashti et al., 2019) and daytime 141 

sleepiness (Wang et al., 2019). Rows and columns are clustered based on similarity. 142 

Results 143 

Genome-wide polygenic score analysis 144 

To test for indication of shared genetic variation, we investigated if genome-wide polygenic scores for 145 

AUT, ADHD, SCZ and BP could predict chronotype and/or insomnia status of UKB participants. We 146 

implemented this using the PGS tool, SBayesRC, which re-estimates GWAS SNP effect sizes using a 147 

model that incorporates external linkage disequilibrium (LD) and biological annotation data (24). As 148 

discovery data for PGS analysis, we used publicly available GWAS summary statistics for the NDPC 149 
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phenotypes, which were based on studies containing between 46,350 (AUT) and 225,534 (ADHD) 150 

samples. As target data for PGS analysis, we used UKB genotype and questionnaire data related to 151 

chronotype and insomnia. After quality control, we had 409,630 samples with chronotype data and 152 

239,918 samples with insomnia data (see methods).  153 

Polygenic scores for AUT, SCZ and BP, were statistically significant for association with chronotype 154 

status (AUT: r2 = 3.57x10-4 [95% CI = 2.51x10-4 - 4.82x10-4], p = <2.20x10-16; SCZ: r2 = 5.13x10-4 [95% 155 

CI = 3.84x10-4 - 6.61x10-4], p = <2.20x10-16; BP: r2 = 2.97x10-5 [95% CI = 5.71x10-6 - 7.25x10-5], p = 156 

4.84x10-4) (Figure 2, Supplementary Table 1). Polygenic scores for all four GWAS phenotypes were 157 

statistically significant for association with insomnia, the strongest association being between the 158 

ADHD PGS and insomnia (ADHD: r2 = 2.36x10-3 [95% CI = 1.99x10-3 - 2.76x10-3], p = <2.20x10-16; 159 

AUT: r2 = 3.69x10-5 [95% CI = 4.29x10-6 - 1.02x10-4], p = 2.93x10-3; BP: r2 = 1.10x10-4 [95% CI = 160 

4.19x10-5-2.09x10-4], p = 2.90x10-7; SCZ: r2 = 3.32x10-5 [95% CI = 3.07x10-6-9.52x10-6], p = 4.79x10-161 

3; Figure 2; Supplementary Table 1). To enable direct comparison to the pathway PGS analysis in the 162 

next section, we also report genome-wide PGSs calculated using the tool, PRSice-2 (Choi & O’Reilly, 163 

2019), with a P-value threshold of 0.5 (Supplementary Table 1). These results are very similar to those 164 

obtained with SBayesRC, with the exception that SBayesRC performed better in the prediction of an 165 

evening chronotype based on all four NDPC PGSs, and also performed better in the prediction of 166 

insomnia based on the ADHD PGS. This improvement is to be expected given that the calculation of 167 

PGSs using LD clumping and p-value thresholding, as in PRSice-2, is not the optimal method for 168 

genome-wide PGS analysis (26). 169 

Pathway-based polygenic score analysis 170 

Pathway-based polygenic score analysis was performed to test if shared genetic variation exists between 171 

AUT, ADHD, SCZ or BP and chronotype or insomnia status at the biological pathway level. Here, all 172 

eight pairs of phenotypes were tested, regardless of whether statistically significant results were 173 

observed at the genome-wide level, because it is possible that shared genetic effects are present in 174 

certain biological pathways, but the effects are too small to be observable at a genome-wide level. We 175 

tested all Reatome pathways that contained between 50 and 500 genes, resulting in 451 pathways to 176 

test. Pathway-based polygenic scores were derived using SNPs that map by position to each of the 451 177 

pathways.  178 

Two pathways were statistically significant for the prediction of chronotype status based on BP genetic 179 

variation. These pathways encompass the mRNA splicing - minor pathway (r2 = 7.5x10-5 [95% CI = 180 

3.13x10-5-1.26x10-4], P = 3.18x10-8, competitive P = 1.33x10-5) and the KEAP1 NRF2 pathway (r2 = 181 

7.18x10-5 [95% CI = 2.92x10-5-1.33x10-3], P = 6.26x10-8, competitive P = 1.33x10-5; Figure 3, 182 

Supplementary Table 2). Note that the competitive P value achieved for each of these significant gene-183 

sets was the lowest possible based on the 75,000 permutations performed. Interestingly, the mRNA 184 
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splicing - minor pathway also ranked the highest, in terms of competitive P value, for the prediction of 185 

chronotype based on the SCZ PGS, but this did not surpass the multiple testing corrected threshold (r2 186 

= 5.62x10-5 [95% CI = 1.96x10-5-1.12x10-4], P = 1.65x10-6, competitive P = 1.0x10-3; Supplementary 187 

Table 2). 188 

No pathway PGS achieved a competitive P value that passed multiple testing correction for the 189 

prediction of insomnia. The pathway Nuclear Events Mediated by NRF2, which is a subpathway of 190 

KEAP1 NRF2, ranked as the second and third highest performing pathways, out of all 451 tested, for 191 

the prediction of insomnia based on SCZ and BP PGSs, respectively (Figure 3, Supplementary Table 192 

3). Competitive P values for the top four pathway PGSs for each of the eight phenotype pairs are 193 

visualised as a heatmap in Figure 3.  194 

Post-hoc analyses 195 

Interrogations of significant pathway-based polygenic score analysis results 196 

The mRNA Splicing – Minor Pathway encompasses 50 genes, to which 518 SNPs map, while the 197 

KEAP1 NRF2 pathway comprises 107 genes, to which 1,356 SNPs map. To explore potential 198 

enrichment of the observed signal within specific subsets of these pathways, we investigated Reactome 199 

subpathways, some of which were initially omitted due to our criteria of excluding pathways with fewer 200 

than 50 genes. Given the relatively small size of the mRNA splicing – minor pathway, it does not contain 201 

any Reactome subpathways. In contrast, the KEAP1 NRF2 pathway could be broken down into two  202 

Reactome subpathways, and an additional pathway that we established comprising of all genes that do 203 

not fall into these two subpathways, which we referred to as Regulation of NRF2 by KEAP1. Among 204 

the KEAP1 NRF2 sub-pathways, the gene-set that explained the most variance was Regulation of NRF2 205 

by KEAP1 (R2 = 5.0x10-5 [95% CI = 1.6x10-5-1.03x10-4], P = 6.25x10-6, competitive P = 1.87x10-4; 206 

Figure 4a; Supplementary Table 4). To account for the size of the pathways, we plotted the average 207 

variance in chronotype explained per SNP for these pathway PGSs, in comparison to the average 208 

variance explained per SNP by a PGS constructed using SNPs that map to all HGNC gene symbols 209 

(Figure 4b; Supplementary Tables 2 and 4).  210 

eQTL Analysis Results 211 

To gain a better understanding of the effect of BP genetic variation on the expression of genes within 212 

the mRNA Splicing – Minor Pathway and KEAP1 NRF2 pathways, we reviewed expression quantitative 213 

trait loci (eQTLs) data in the database, QTLBase (27). For the KEAP1 NRF2 pathway, five genes 214 

satisfied the criteria of having gene P values < 1x10-2 for BP and < 1x10-3 for chronotype based on gene-215 

based MAGMA analysis. Of these genes, three contained BP SNPs associated with their expression 216 

change: cullin-3 (CUL3), proteasome 26S subunit ubiquitin receptor, non-ATPase 2 (PSMD2) and 217 

proteasome 20S subunit beta 10 (PSMB10).  218 
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CUL3 is a core component of the CUL3-dependent E3 ubiquitin ligase complex which mediates 219 

ubiquitination and subsequent degradation of target proteins. This complex associates with KEAP1 to 220 

ubiquitinate NRF2, maintaining its abundance at a low level (28) At CUL3, the BP allele of the most 221 

significant BP SNP (rs6748341) is associated with decreased expression of CUL3 in the brain cortex (P 222 

= 4.91x10-6). Interestingly, a SNP in very high (LD) with this SNP (rs11685299; LD R2 = 0.99) is 223 

genome-wide significant for association with SCZ (29). The BP allele of a SNP in high LD with both 224 

of these SNPs (rs11681451) is also associated with decreased expression of CUL3, this time in three 225 

brain regions (Cortex P = 1.81x10-6, Hippocampus P = 1.95x10-5, Caudate P = 2.33x10-5; Supplementary 226 

Table 5). 227 

The gene PSMD2 encodes a subunit of the 26S proteasome, which degrades NRF2 (28). At PSMD2, 228 

the BP allele of rs843355 is associated with decreased expression of PSMD2 in various immune cells 229 

in the blood, including Blood-Neutrophils CD16+ (P = 1.38x10-6) and Blood-Monocytes (P = 1.79x10-230 

6) (Supplementary Table 5).  231 

Similarly to PSMD2, the PSMB10 gene also encodes a proteasomal subunit involved in NRF2 232 

degradation (28). At PSMB10, the BP allele of rs5923 is associated with both increased and decreased 233 

expression of PSMB10 in various blood immune cells (Increased: Blood P = 4.2x10-9, Blood-Monocytes 234 

CD14+ P = 5.11x10-9, Blood-Neutrophils CD16+ P = 2.94x10-7; Decreased: Blood-Monocytes CD14+ 235 

P = 9.56x10-7, Blood-Neutrophils CD16+ P = 8.21x10-6).  236 

For the mRNA Splicing - Minor Pathway, six genes satisfied the criteria of having gene P values < 1x10-237 

2 for BP and < 1x10-3 for chronotype: splicing factor 3b subunit 1 (SF3B1), splicing factor 3b subunit 1 238 

(SF3B2), RNA polymerase II, I And III subunit H (POLR2H), small nuclear ribonucleoprotein U5 239 

Subunit 200 (SNRNP200) and pre-mRNA processing factor 6 (PRPF6).  240 

SF3B1 encodes subunit 1 of the splicing factor 3b protein complex (SF3b) which is a component of the 241 

U12 small nuclear ribonucleoprotein (snRNP) of the minor spliceosome and a component of the U2 242 

snRNP of the major spliceosome. At SF3B1, the BP allele of the SNP most associated with BP 243 

(rs55775495) is associated with increased expression of SF3B in the central nervous system (P = 244 

2.68x10-15), peripheral nervous system (P = 1.13x10-6), brain cerebellum (P = 1.30x10-6) and brain 245 

caudate (P = 2.19x10-6). Interestingly, the SNP rs6434928, which is in very high LD (R2 = 0.88) with 246 

this SNP is genome-wide significant for association with SCZ (30) and has almost the exact same eQTL 247 

results. SF3B2 encodes subunit 2 of SF3b. The BP allele of rs2270448 is associated with decreased 248 

expression of SF3B2 in the brain cerebellum (P = 1.28x10-5).  249 

POLR2H encodes a subunit shared by the three eukaryotic polymerases. The BP allele of rs62287507 250 

is associated with increased expression of POLR2H in blood (P = 2.33x10-6). SNRNP200 encodes an 251 

RNA helicase that comprises one of the U5 snRNP-specific proteins. At SNRNP200, the BP allele is 252 

associated with increased expression in blood neutrophils CD16+ (P = 2.02x10-11). PRPF6 encodes a 253 
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protein that acts as a bridging factor between U5 and U4/U6 snRNPs in formation of the spliceosome. 254 

The encoded protein can also bind androgen receptor, providing a link between transcriptional 255 

activation and splicing. The BP allele of the most significant SNP at this loci, rs3829704, is associated 256 

with decreased expression of PRPF6 in blood cells (Lymphocyte P = 1.29x10-31, Blood P = 3.95x10-11, 257 

Blood-T cell CD4+ activated P = 1.48x10-7) and decreased expression of PRPF6 in the brain (Cortex P 258 

= 1.2x10-6; Caudate, P = 6.0x10-6). 259 

Differential Expression Analysis 260 

We next investigated if genes within the mRNA Splicing – Minor Pathway and KEAP1 NRF2 pathway 261 

are differentially expressed between BP cases and controls. We used PsychEncode differential 262 

expression data based on postmortem dorsolateral prefrontal cortex samples from 144 BP cases and 899 263 

healthy controls. Two genes within the mRNA Splicing – Minor Pathway were found to be differentially 264 

expressed. These are Serine and Arginine Rich Splicing Factor 6 (SRSF6; log2FC = -0.07; P = 2.0x10-265 

4; FDR = 0.01) and Small Nuclear Ribonucleoprotein Polypeptides B and B1 (SNRPB; log2FC = 0.08; 266 

P 4.4x10-4= FDR = 0.02). Four differentially expressed genes were observed in the KEAP1 NRF2 267 

pathway. These are Sestrin 1 (SESN1; log2FC = 0.07; P = 2.8x10-4; FDR = 0.02), cyclin dependent 268 

kinase inhibitor 1A (CDKN1A log2FC = 0.32; P = 2.51x10-4; FDR = 0.02), AKT serine/threonine kinase 269 

1 (AKT1; log2FC = 0.04; P = 6.8x10-4; FDR = 0.03) and MAF BZIP Transcription Factor G (MAFG; 270 

log2FC = -0.05; P = 4.9x10-4; FDR = 0.02). Interestingly, three of these genes are present in Regulation 271 

of NRF2 by KEAP1, which had a higher average R2 per SNP than the KEAP1 NRF2 pathway itself 272 

(Figure 4b). However, none of these gene-sets had a statistically significant enrichment of differentially 273 

expressed genes (Regulation of NRF2 by KEAP1 P= 0.09; KEAP1 NRF2 P = 0.5; mRNA Splicing – 274 

Minor Pathway P =0.5).  275 

 276 

Discussion 277 

Using genome-wide polygenic score analysis, we have found that polygenic scores for AUT, SCZ and 278 

BP could predict an evening chronotype and polygenic scores for all four NDPC phenotypes could 279 

predict insomnia status in UKB. Pathway-based polygenic score analysis identified the NRF2 KEAP1 280 

and mRNA splicing minor pathways as being enriched for genetic variation overlapping between 281 

chronotype and BP. For the NRF2 KEAP1 pathway, the signal is enriched in the subset of genes that 282 

function with KEAP1 to regulate NRF2 expression. Examination of eQTL data pointed to BP associated 283 

SNPs being associated with expression changes of many genes within the highlighted pathways to 284 

which they map. Interestingly, three of the ten eQTL SNPs are genome-wide significant for SCZ 285 

(Supplementary Table 5). 286 
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The genome-wide polygenic score results we report support previously published genetic correlation 287 

results. AUT and SCZ have previously been reported to exhibit a negative genetic correlation with a 288 

morning chronotype, as demonstrated by linkage disequilibrium score regression (31,32). Using a 289 

different method and data, our study provides further evidence for these findings, as well as 290 

demonstrating a positive association between the BP PGS and an evening chronotype. Additionally, our 291 

results confirm that insomnia is genetically correlated with ADHD, SCZ and BP (33–35), the strongest 292 

relationship being between ADHD and insomnia. We also report a negative genetic correlation between 293 

AUT and insomnia, whereas, in previous studies this relationship was not statistically significant (31). 294 

BP polygenic scores created using SNPs that map to the KEAP1 NRF2 and mRNA splicing-minor 295 

Reactome pathways were associated with chronotype, over and above the background signal. The 296 

majority of the variance explained by the KEAP1 NRF2 gene-set is concentrated within genes belonging 297 

to the subpathway, Regulation of NRF2 by KEAP1. It must be noted that the R2 values of these pathway-298 

based PGSs are low. This is partly to be expected, given the small numbers of genes in these pathways. 299 

Clear enrichment of explained variance by the mRNA splicing – minor and KEAP1 NRF2 pathways are 300 

observed when plotting the average variance explained per SNP for these pathways in comparison to 301 

the average variance explained per SNP by PGSs created using all genes based on BP genetic variation 302 

(Figure 4b).  303 

A sub-pathway of KEAP1-NRF2, Nuclear Events Mediated by NRF2, ranked very highly in predicting 304 

insomnia status, based on BP and SCZ genetic variation. This did not reach statistical significance, 305 

possibly due there being less insomnia samples (N=239,918) than chronotype samples (N=409,630), 306 

and therefore reduced power. NRF2 is a transcription factor that, under normal conditions, is bound by 307 

KEAP1 in the cytoplasm as part of the CUL3-KEAP1 E3 ubiquitin ligase complex, which facilitates 308 

the ubiquitination of NRF2, marking it for proteasomal degradation. When cells are exposed to 309 

oxidative stress, toxins, bacteria, viruses or other forms of cellular damage, KEAP1 cysteine residues 310 

are modified, disrupting its binding affinity for NRF2. As a result, NRF2 stabilises and translocates to 311 

the nucleus where it binds antioxidant response elements (AREs) in the promoter regions of genes 312 

encoding antioxidant enzymes and detoxification proteins (36). Of particular interest regarding sleep 313 

and circadian rhythms, NRF2 has also been observed to undergo rhythmic regulation by the two 314 

circadian clock genes, BMAL1 and CLOCK, in myeloid cells. These clock genes promote NRF2 315 

expression by binding to the NRF2 E-box domain (37). Through these pathways, NRF2 mediates 316 

coupling between oscillations in redox balance and circadian timekeeping mechanisms, with this loop 317 

serving to optimise the timing of circadian and seasonal timing of antioxidant responses (38,39). 318 

Elevated oxidative stress has been consistently documented in numerous NDPCs (including BP), and 319 

this contributes to the concurrent neuroinflammation observed in these conditions (40,41). The 320 

increased expression of NRF2 target genes help cells mitigate oxidative stress, improve mitochondrial 321 
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function and reduce inflammation, all of which are involved in the pathology of NDPCs (36,42). NRF2 322 

also acts as a negative regulator of the NFκB signalling pathway, while the NFκB pathway reciprocally 323 

negatively regulates NRF2 signalling. This interaction helps maintain control over basal inflammation 324 

and oxidative stress levels (43). When the NRF2 pathway becomes saturated or is deficient, activation 325 

of the NFkB pathway is heightened, which leads to an increased production of pro-inflammatory 326 

cytokines (36). Given this relationship, it is therefore interesting that the KEAP1 NRF2 and Nuclear 327 

Events Mediated by NRF2 pathways clustered together with the FCERI mediated NF-kB activation 328 

pathway competitive P value heatmap of the top four pathways across all phenotype pairs (Figure 3).  329 

Studies in a seasonal animal model (Meduka fish) that exhibits a constitutive depressive winter 330 

phenotype have shown that NRF2 signalling pathways were inactivated in winter photoperiods, and 331 

that this was associated with a depressive phenotype that could be reversed by treatment with NRF2 332 

activators (44).  These functions of NRF2 signalling in regulating seasonal changes in behaviour are 333 

significant since seasonality is such an important clinical feature of human NDPCs.  For example, the 334 

prevalence of major depressive disorder and seasonal affective disorder show seasonal variation and 335 

the oscillations in mood and metabolic function that characterise BP recur with a seasonal rhythm (45).  336 

Furthermore, people with BP have higher self-reported seasonality scores (46) and altered sensitivity to 337 

changes in day light (47). Chronotype also links seasonality and BP, as evening chronotype is associated 338 

with increased self-reported seasonality (48) and with the presence and severity of signs of BD (49).  339 

Given the beneficial antioxidant and anti-inflammatory roles of NRF2, it may be hypothesized that 340 

NRF2 is downregulated in NDPCs. This was observed in animal models of depression, where lower 341 

levels of NRF2 and KEAP1 were reported in the prefrontal cortex and the dentate gyrus and Cornu 342 

Ammonis 3 (CA3) regions of the hippocampus, along with increased blood levels of inflammatory 343 

cytokines (50). Similar results were seen using human postmortem samples, where protein levels of 344 

KEAP1 and NRF2 in the parietal cortex of major depressive disorder, schizophrenia, and bipolar 345 

disorder samples were significantly lower than controls. Indeed, there is evidence supporting the 346 

potential of natural and synthetic molecules, including melatonin, that elevate NRF2 levels to be used 347 

as treatments for psychiatric conditions (36,42). 348 

However, there is some disagreement in the literature, with some studies reporting that NRF2 signalling 349 

is upregulated in NDPCs. For example, Lukic et al. (2014) reported increased abundance of NRF2, 350 

KEAP1, and NF-κB within the cytoplasm of peripheral blood mononuclear cells of MDD patients (51). 351 

This lack of consistent direction, in terms of up- or down- regulation of NRF signalling, is reflected in 352 

our eQTL results, where BP genetic variation is associated with inconsistent changes in expression of 353 

genes within the NRF2 KEAP gene-set. For example, the CUL3 gene encodes the cullin 3 protein, 354 

which is a core component of ubiquitin ligase complex which ubiquitinates NRF2 and the PSMD2 gene 355 

encodes a subunit of a proteasome that degrades NRF2. Therefore, CUL3 and PSMD2 function together 356 
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to degrade NRF2, yet BP eQTLs within these genes are associated with expression changes that are in 357 

opposite directions. Additionally, the four genes within the NRF2 KEAP1 gene-set that are 358 

differentially expressed between BP cases and controls, based on PsychEncode differential expression 359 

data, are upregulated.  360 

The other pathway highlighted by our study is the mRNA-splicing minor pathway. Splicing of mRNA 361 

refers to the removal of introns from pre-mRNA transcripts, a process performed by the spliceosome. 362 

The spliceosome comprises distinct complexes responsible for various mRNA splicing steps, composed 363 

of both proteins and small nuclear RNAs. While the majority of splicing events are carried out by the 364 

major spliceosome, a subset of introns, known as minor introns, necessitates the involvement of the 365 

minor spliceosome for their excision (52). Minor splicing is less efficient than major splicing, this 366 

reduced efficiency has been proposed to play a role in the regulation of genes containing minor introns, 367 

as minor intron containing transcripts are retained in the nucleus until the minor spliceosome 368 

components become available. Of relevance to NDPCs, the cerebral cortex is one of the tissues with 369 

the highest expression of genes containing minor introns (53).  370 

The importance of minor intron splicing is evident by the fact that minor-intron containing genes are 371 

highly conserved and thirteen diseases have been linked to mutations in minor splicing components, 372 

including the neurodegenerative diseases, amyotrophic lateral sclerosis, and spinal muscular atrophy 373 

(52,54,55). A study by Buel and colleagues found oscillations in many components of the major 374 

spliceosome pathway mirror that of the clock and bmal1 transcripts (56), indicating that the major 375 

spliceosomal pathway is at least partly regulated by the circadian clock. This is interesting in relation 376 

to the minor spliceosome too, given the overlap in these pathways. Interestingly, the biologically related 377 

pathway, Processing of Capped Intron-Containing Pre-mRNA, ranked as the second highest performing 378 

pathway PGS in the prediction of insomnia based on ADHD genetic variation. This pathway clustered 379 

together with mRNA-splicing minor pathway in the heatmap in Figure 3. 380 

Neither the NRF2 KEAP1 or the mRNA-splicing minor pathways were found to be enriched in genes 381 

differentially expressed between BP cases and controls in the post-mortem dorsolateral prefrontal 382 

cortex. It could be that these genes are differentially expressed in a different tissue type to the one we 383 

investigated or that the shared genetic variation we have identified only applies to a subset of 384 

individuals, and differential expression of these genes would only occur for this subset. A future analysis 385 

could select BP cases with high NRF2 KEAP1 / mRNA-splicing minor PGSs and restrict the differential 386 

analysis to just these cases (this would require genotype and RNA-sequencing data on BP cases and 387 

controls).  388 

We implemented MAGMA gene-set analysis to investigate if the NRF2 KEAP1 and mRNA splicing 389 

minor pathways could be identified using standard single phenotype pathway enrichment methods. 390 

Neither the NRF2 KEAP1 and mRNA splicing minor pathways were enriched for genetic variation 391 
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individually associated with BP, chronotype or SCZ (Supplementary Table 6). This indicates that these 392 

pathways are enriched for the genetic variation shared between these two phenotypes and are not 393 

enriched for the genetic variation associated with each individual phenotype.  394 

There are some limitations to the pathway-based PGS method we have implemented. Firstly, we 395 

mapped SNPs to genes solely based on the physical distance of SNPs to genes. While, it has been 396 

reported that the majority (76%) of GWAS SNPs affect the closest gene (57), SNPs can be located in 397 

regulatory elements up to hundreds of megabases away from the causal gene. Such distal causal genes 398 

were not included in our analysis. Another limitation is that polygenic score analysis cannot distinguish 399 

between horizontal versus vertical pleiotropy i.e. whether genetic variation within the NRF2 KEAP1 400 

and mRNA splicing minor pathways independently contribute to both BP and an evening chronotype, 401 

or whether genetic variation within these pathways contribute to an evening chronotype, which in turn, 402 

causes BP, or vice versa.  403 

This is the first study to investigate the biological pathways enriched in genetic variation overlapping 404 

between NDPC and sleep phenotypes, using pathway-based PGS analysis in a global, rather than 405 

hypothesis-based design. We used the largest available datasets from GWASs of ADHD, AUT, BP as 406 

our discovery datasets, and our target dataset consisted of up to 409,630 samples from UKB.  407 

Our findings of shared genetic variation between chronotype and BP in a pathway that is known to 408 

regulate circadian rhythms and seasonality in animals (NRF2 KEAP1) in addition to the strongly 409 

seasonal nature of the clinical features and prevalence of BP, are further evidence to support the 410 

hypothesis that disrupted circadian rhythm and seasonal adaptive responses underlie the pathology of 411 

BP (58). Furthermore, our findings highlight the mRNA splicing-minor pathway, which has also been 412 

shown to be at least partly regulated by the circadian clock. Thus, this study provides further evidence 413 

to support the circadian clock hypothesis of BP disorder. 414 

 415 

Methods 416 

Target Data for Polygenic Score Analysis – UK Biobank 417 

Quality Control (QC) 418 

Genotype data was collected, processed and imputed by UKB (59). We accessed and analysed the data 419 

through the UKB Research Analysis Platform (Application ID: 71469). UKB research participants were 420 

excluded based on the following criteria: not being of Caucasian ancestry (data-field: 22006), 421 

containing a sex chromosomal aneuploidy (data-field: 22019), having a high SNP missingness and/or 422 

having unusually high or low heterozygosity (data-field: 22027), having ten or more third-degree 423 

relatives (data-field: 22021) and performing shift work (data-field: 826). Further samples were removed 424 
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based on relatedness using the UKB supplied relatedness file, which lists pairs of individuals related up 425 

to a third degree. One individual from each pair was removed without removing samples from pairs 426 

where a sample had already been removed. A total of 487,409 samples passed these quality control 427 

measures. To minimize any potential overlap between UKB and PGC SCZ and BP cohorts, participants 428 

who had received SCZ or BP diagnoses were excluded from the construction of the SCZ PGS or BP 429 

PGS, respectively. Such samples were identified through self-reported diagnoses (data-field: 20544) 430 

and linked health records reporting international classification of disease (ICD10) codes, F200-F209 431 

for SCZ and F310-F319 for BP (data-field: 41270). This resulted in a further removal of 1,223 SCZ 432 

samples and 1,866 BP samples, in the construction of the SCZ and BP PGSs, respectively. 433 

SNPs were excluded based on the following criteria: imputation quality score (INFO) < 0.7, proportion 434 

of missing genotypes > 0.02, minor allele frequency (MAF) < 0.005, Hardy–Weinberg equilibrium 435 

(HWE) < 1×10-6. Duplicate SNPs were removed using Plink2 with the flag “--rm-dup force-first”. 436 

Plink2 binary file-sets were created using the “--make-bed” flag and chromosome specific files were 437 

merged using the Plink2 “--merge-list” flag. Finally, ambiguous SNPs and SNPs not present in the 438 

corresponding neuropsychiatric GWAS were removed. 439 

Phenotype Generation 440 

Two UKB phenotypes were used for this study: chronotype (“Morning/evening person (chronotype)”; 441 

data-field 1180) and insomnia (“sleeplessness/insomnia”; data-field 1200). These data points were 442 

gathered as part of a questionnaire participants completed on touchscreen computers at UKB assessment 443 

centres.  444 

For chronotype, participants were asked the question, “do you consider yourself to be”?, and they had 445 

six optional answers, which we encoded as a quantitative eveningness phenotype: “Definitely an 446 

‘evening’ person” was encoded as 4, “More an ‘evening’ than a ‘morning’ person” was encoded as 3, 447 

“More a ‘morning’ than an ‘evening’ person” was encoded as 2 , “Definitely a ‘morning’ person” was 448 

encoded as 1, “Prefer not to answer” and “Do not know” were both encoded as missing. This resulted 449 

in 409,630 post-QC samples with chronotype data. 450 

For insomnia, participants were asked the question, “do you consider yourself to be”? and had four 451 

optional answers, which we encoded in a binary fashion: “never/rarely” was encoded as 0, “usually” 452 

was encoded as 1 and “sometimes” and “Prefer not to answer” were both encoded as missing. This 453 

resulted in post-QC 239,918 samples with insomnia data. 454 

Correcting for Confounders 455 

The UKB phenotypes were corrected for the effects of confounders by taking the residuals of regression 456 

models with the UKB phenotype as the dependent variable and the confounders as the independent 457 

variables. For the binary insomnia phenotype, a logistic regression model was used, while a linear 458 
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regression model was used for the quantitative chronotype phenotype. The residuals of these models, 459 

representing the variation in phenotype left unexplained by the effects of confounders, were assigned 460 

as the corrected phenotypes. The fourteen confounders corrected for were: age, sex, UKB assessment 461 

centre, genotyping batch and genetic principal components (PCs) 1-10. 462 

Discovery Data for Polygenic Score Analysis – GWAS Summary Statistics 463 

Discovery data for polygenic score analysis included summary statistics from the latest and largest 464 

published GWAS of AUT (18,381 cases and 27,969 controls from a Danish population (31)), ADHD 465 

(38,691 cases and 186,843 controls from European, Danish and Icelandic populations (33)), SCZ 466 

(74,776 cases and 101,023 controls from European, East Asian,  467 

African American and Latino populations (30)) and BP (41,917 cases and 31,358 controls from a 468 

European population (35)).   469 

Genome-Wide Polygenic Score Analysis 470 

Effect sizes for all imputed SNPs were estimated using SBayesRC based on GWAS summary statistics. 471 

SBayesRC models SNP effects using a mixture of normal distributions that differ in their variances and 472 

uses SNP annotation information to select which of these distributions best model SNP effect sizes. 473 

This allows for SNP effect probability distributions to differ across annotation groups and has been 474 

shown to perform better than other popular PGS methods (24). Inputs to SBayesRC include GWAS 475 

summary statistics, LD European reference data and data containing 96 functional annotations for 8 476 

million imputed SNPs (the latter two data files were downloaded from 477 

github.com/zhilizheng/SBayesRC)  478 

The first step involves converting GWAS summary statistics to COJO format, and converting odds 479 

ratios to beta values using log(OR) when beta values were not provided. Subsequently, the SBayesRC 480 

tidy function was run to filter SNPs based on inconsistent alleles between the GWAS summary statistic 481 

and LD data and per SNP sample sizes less than three standard deviations of the mean. The SBayesRC 482 

impute function was implemented to impute the GWAS summary data based on LD. This resulted in 483 

7,356,519 SNPs for each phenotype. The main SBayesRC function was then run to estimate SNP 484 

effects. These SNP effects were provided to the --score command in Plink1.9 to calculate PGSs for all 485 

individuals in the UKB test dataset (60). Performance metrics were calculated in R by running linear 486 

regressions with UKB chronotype or insomnia status as the dependent variable and the SCZ, BP, AUT 487 

or ADHD PGS as the independent variables. P values and variance explained (R2) were obtained using 488 

R’s summary function. Confidence intervals were created using the ci_rsquared function as part of the 489 

confintr R package (https://github.com/mayer79/confintr). 490 
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Pathway-Based Polygenic Score Analysis 491 

Pathway data 492 

Pathway data for pathway based PGS analysis was sourced from Reactome, an open-source, manually 493 

curated and peer-reviewed pathway database (61). We used all Homo sapien pathways that contained 494 

greater than 50 genes, to remove overly specific pathways, and less than 500 genes, to remove overly 495 

broad pathways and limit the computational intensity of pathway-based PGS analysis. This resulted in 496 

451 pathways to test.  497 

Pathway-based polygenic score analysis using PRSet 498 

Polygenic score analysis was performed using the tool, PRSet (62). Inputs to PRSet included Reactome 499 

pathway data, published GWAS summary statistics to be used as discovery data, UKB files in PLINK 500 

binary format (.bed, .bim and .fam) to be used as target data and a GTF file for the genome build, 501 

GRCh37. SNPs with a reported P > 0.5 from the corresponding GWAS were removed. This resulted in 502 

final SNP numbers of N = 2,374,077 for the AUT PGS, N = 2,187,591 for the ADHD PGS, N = 503 

2,525,546 for the SCZ PGS and N = 2,416,496 for the BP PGS. 504 

Pathway-based PGS analysis in PRSet involves three steps. The first step is to map SNPs to genes by 505 

genomic position using GRCh37 start-stop coordinates extended 35kb upstream and 10kb downstream 506 

to include potential regulatory elements. The second step is to perform pathway specific LD clumping 507 

(parameters used: --clump-kb 250kb --clump-p 1 --clump-r2 0.1). Clumping is performed for each 508 

pathway independently to retain the genetic signal for each pathway i.e to prevent a SNP outside of the 509 

pathway being assigned as the lead clumped SNP. The third step involves calculating pathway specific 510 

PGSs for each individual, by summing up, for each SNP, the number of minor alleles at that SNP 511 

multiplied by the GWAS effect size. Finally, performance metrics (R2 and P value) are calculated for 512 

each pathway. Competitive analysis was performed by creating 5,000 background polygenic scores, 513 

each constructed by randomly sampling the same number of post LD clumped SNPs as contained within 514 

gene-set being tested and conservatively including the gene-set being tested as one background set. A 515 

competitive P value is created using a formula that counts the number of times the P value for a 516 

background gene-set is less than the P value for the gene-set being tested and dividing by the number 517 

of permutations (62). A disadvantage of this method is that the lowest possible P value is 1 / (number 518 

of permutations + 1). Therefore, gene-sets that reached the lowest possible competitive P value at 5,000 519 

permutations were re-analysed with a higher number of permutations. Confidence intervals were 520 

calculated for the top performing pathways in R using the same method as for the genome-wide PGSs. 521 

Multiple testing correction was performed for pathway-based PGS analysis by calculating a Bonferroni 522 

corrected P value threshold, where 0.05 was divided by the number of tests performed (four GWAS 523 

phenotypes x 451 pathways x 2 UKB phenotypes = 3,608).  524 
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 525 

Post-hoc analysis 526 

MAGMA gene-set analysis 527 

Gene-sets that were statistically significant in the PGS analysis, and the genes within them, were tested 528 

for enrichment of common genetic variation using region-based multi-marker analysis of genomic 529 

annotation (MAGMA; http://ctg.cncr.nl/software/magma; (63) and summary statistics from published 530 

GWAS on chronotype (69,369 cases and 236,642 controls of British ancestry; 3) and BP. An analysis 531 

involves three steps. First, in the annotation step, SNPs with available GWAS results are mapped on to 532 

genes (GRCh37/hg19 start-stop coordinates +35kb/-10kb). Second, in the gene analysis step, gene P 533 

values are computed for each GWAS dataset. This gene analysis is based on a multiple linear principal 534 

components regression model that accounts for LD between SNPs in each gene, number of SNPs in 535 

each gene, inverse of the mean minor allele count of variants in each gene and the GWAS sample size. 536 

The European panel of the 1000 Genomes data was used as a reference panel for LD. Third, a 537 

competitive GSA based on the gene P values, also using a regression structure, was used to test if the 538 

genes in each gene-set were more strongly associated with either phenotype than other genes in the 539 

genome.  540 

eQTL Analysis 541 

Expression quantitative trait loci (eQTL) data was examined using QTLbase2 (27), a database that 542 

aggregates published genome-wide QTL summary statistics across more than 95 tissue and cell types. 543 

We reviewed eQTL data related to genes found within the gene-sets prioritised by pathway-based PGS 544 

analysis. Specifically, we considered genes that achieved significance levels of P < 1x10-2 for BP and P 545 

< 1x10-3 for chronotype in the gene-based MAGMA analysis. This was to identify genes individually 546 

enriched for BP and chronotype genetic variation, as these are the genes most likely contributing to the 547 

significant pathway-based PGS results and therefore of interest. Since these genes were already 548 

highlighted as being of interest through pathway-based PGS analysis, it was not necessary that they 549 

were individually statistically significant in the MAGMA analysis.  550 

The most statistically significant SNP at each gene locus was searched in QTLbase to identify if it had 551 

been associated with expression changes of the mapped gene in biologically relevant tissues or cell 552 

types, including those related to the brain, central nervous system, peripheral nervous system, blood, or 553 

immune systems. If the top SNP at a locus did not show any eQTL associations, we investigated other 554 

SNPs with similarly low P values at that locus. It was assumed that the SNPs demonstrating the highest 555 

statistical significance for association with BP would also contribute to chronotype prediction, given 556 

that BP effect sizes were used to compute the pathway-based PGSs. 557 
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Differential Expression Analysis 558 

Differential expression summary data was downloaded as Supplementary Table 1 from Gandal et al. 559 

(2018). This is a PsychENCODE Consortium study that performed RNA-sequencing, followed by 560 

differential expression analysis, of samples isolated form the postmortem dorsolateral prefrontal cortex 561 

samples for 144 BP cases and 899 controls. Specific details of the analysis performed are provided in 562 

the paper (64) 563 

More specific methodology details and code for all analyses are provided here: 564 

https://github.com/laurafahey02/ Polygenic_Score_Analyses. 565 
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 756 

 757 

Figure 2. Genome-wide polygenic score analysis results. Linear regressions were run with UK Biobank chronotype or insomnia status as the dependent 758 

variable and SCZ, BP, AUT or ADHD polygenic score as the independent variables. UK Biobank phenotypes were corrected for sex, genotyping batch, 759 

UK Biobank assessment centre and the top ten ancestry-informative genetic principal components prior to running this regression. Horizontal bars show 760 

the variance explained (R2), error bars indicate 95% confidence intervals. Bars marked with an asterisk (*) indicate that they surpass the Bonferroni-761 

corrected p value threshold of p ≤ 0.0001. 762 
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 764 

Figure 3. Top performing pathways from pathway-based polygenic score analysis. Performance metrics for pathway-based polygenic score analysis 765 

were calculated by regressing insomnia or chronotype case status on each of the pathway-based polygenic scores. Competitive P values were calculated 766 

by creating at least 5,000 background polygenic scores, consisting of random sets of post-clump SNPs, the same size as the pathway under test (in this 767 

way, pathway size is controlled for). The competitive P value takes into account the number of times a background gene-set obtains a lower null P value 768 

than the pathway being tested. The four pathways that resulted in the lowest competitive P values for each of the eight phenotype pairs were identified, 769 

and their competitive P values across each of the eight phenotype pairs were plotted as a heatmap. The white stars represent pathway based polygenic 770 

scores statistically significant after multiple testing correction (P < 1.39x10-5). Rows are clustered based on similarity. 771 
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 772 

Figure 4. Variance explained (R2) by the statistically significant pathway-based BP PGSs, and their subpathways, in predicting chronotype. Bars 773 

marked with an asterisk (*) indicate that they surpass the Bonferroni-corrected P value threshold of P ≤ 1.39x10-5. A) Total variance explained per pathway. 774 

Horizontal bars show the variance explained (R2), error bars indicate 95% confidence intervals. B) Average variance explained per SNP. This was obtained 775 

by dividing the total variance explained per pathway by the number of SNPs in that pathway. 776 
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