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1. Methods 

i. Flight passenger data 

We analysed flight passenger data purchased from the International Air Transport 

Association (IATA) (1). The dataset contained the numbers of passengers that travelled 

between pairs of international airports each month in the period January 2012 to December 

2020. We aggregated passenger numbers to a country level to obtain the monthly numbers 

of people travelling by air from country i to country j. In processing the data, we considered 

only the origin and ultimate destination of the journey, ignoring any countries that were 

passed through due to connecting flights. 

To identify differences in flight passenger volumes in epidemic periods relative to non-

epidemic periods, we examined the monthly number of flight passengers departing from 

South Korea, Brazil, and China, and calculated the changes in passenger numbers during 

the relevant epidemic period relative to the same month in the previous year. The epidemic 

periods for each outbreak in this study were: 

- MERS: May to July 2015; 

- Zika: February to November 2016 (the period in which Zika was classed as a Public 

Health Emergency of International Concern); 

- SARS-CoV-2: End of December 2019 to December 2020 (we analysed the first year 

of the pandemic). 

Motivated by the common use of historical flight passenger data to model where a pathogen 

might spread, we also analysed the temporal variation in the flight destinations from each of 

the three countries, considered as the epidemic centres. We compared how the top 10 

destinations (by monthly passenger volume) from the epidemic centres varied for a specified 

calendar month across the years 2012-2020. The months we selected were those at the 

beginning of the contemporary periods (see Table S1).  

ii. Simulation study 

We conducted a simulation study to compare the characteristics of epidemics modelled 

using “historical” flight passenger data from the year before the disease emerged with 

models that used “contemporary” flight data from the epidemic period. Details of the 

historical and contemporary periods are shown in Table S1. 



 

a. Epidemic model 

We used a stochastic discrete time SEIR metapopulation model to simulate the global 

spread of a pathogen that emerges or re-emerges in one country. Each country formed one 

of N patches (N=200) in the model. In each patch there were susceptible (S), exposed (E), 

infected (I) and recovered (R) compartments. The probability of movement between different 

patches during day t was defined by a movement matrix, P, with entries 𝑝𝑖→𝑗
𝑡 . We generated 

P from the IATA data by computing the probability that a person in country i will travel to j on 

day t, calculated as: 
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where 𝑝𝑖,𝑓𝑙𝑦
𝑡  is the probability that an individual in i takes an international flight on day t, 𝜙𝑖→𝑗

𝑡  

is the number of people flying from i to j on day t, and ∑ 𝜙𝑖→𝑥
𝑡

𝑥,𝑥≠𝑖  is the total number of 

people flying from i to all destinations on day t. We calculated 𝑝𝑖,𝑓𝑙𝑦
𝑡  from the monthly 

aggregated IATA data by assuming passenger numbers were uniformly distributed across 

the month and dividing the number of international passenger flight departures on day t by 

Ni, the population size of country i (2). Our model therefore assumed that all people in a 

country were equally likely to fly.  

For each day we modelled two processes in turn: 1) transitions between disease 

compartments; and 2) spatial movement. It was therefore possible that somebody 

progressed through disease stages and moved location in the same time step. The 

equations for the two processes in our spatial epidemic model at each time step (with Δt = 1 

day) were therefore: 

Process 1: Disease progression 

𝑆𝑖

∆𝑡
→ 𝐸𝑖  ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑆𝑖, 1 − exp (−

𝛽𝐼𝑖

𝑁𝑖
∗ ∆𝑡)) 

𝐸𝑖

∆𝑡
→ 𝐼𝑖 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐸𝑖 , 1 − exp(−𝛿 ∗ ∆𝑡)) 

𝐼𝑖

∆𝑡
→ 𝑅𝑖  ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐼𝑖, 1 − exp (−𝛾 ∗ ∆𝑡)) 
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where β is the per capita transmission rate, 1/δ and 1/γ are the mean latent and infectious 

periods respectively.  

b. Simulation scenarios  

We simulated epidemics for three flight scenarios that used data corresponding to the 

MERS, Zika, and SARS-CoV-2 epidemic periods. For each of these, we compared the 

dynamics of simulated epidemics when P was informed by contemporary flight data with 

simulations where P was informed by historical flight data; the periods we defined as 

contemporary and historical are detailed in Table S1. 

For each of the flight data comparisons above, we simulated epidemics of pathogens with 

natural history parameter values similar to MERS, Zika, and SARS-CoV-2 (see Table S2) 

These examples explored different basic reproduction numbers (R0, the average number of 

secondary cases generate by a primary case in a susceptible population) and generation 

times (time between infection of a case and their infector). Although they were initially 

informed by the natural history parameter values of MERS, Zika and SARS-CoV-2 from the 

literature, some adjustments have been made to the parameters we used so that we could 

explore a range of transmissibility scenarios across our three examples. In addition, our 

model does not attempt to model the vectors required for transmission of Zika. Instead, the 

Zika-like simulations are used to illustrate the potential spread of a pathogen with a long 

generation time. 

Combining the three flight scenarios and three natural history scenarios gave nine scenarios 

in which we compared historical and contemporary flight data. For each, we ran 100 

simulated epidemics for one year, starting with 100 infectious cases of the pathogen in the 

epidemic centre (South Korea, Brazil, and China for MERS, Zika, and SARS-CoV-2 flight 

scenarios respectively) and assuming that the rest of the global population were fully 

susceptible (using national population data from the World Bank (2)). 

We characterised each simulated epidemic with the following metrics: 



- Number of invaded countries over time: the number of countries with at least 10 

cumulative infections at each day. 

- Invasion time in i: the time to a country i experiencing its 10th cumulative infection. 

For the historical and contemporary simulations in each scenario, we summarised the 

distributions of each metric across the 100 simulated epidemics using the median, 2.5% and 

97.5% quantiles. We ordered countries by their median invasion times to obtain the average 

invasion ranking. We identified the first n countries that were invaded with the 

contemporary flight data, and then calculated the percentage of those countries that were 

also invaded first when using historical data. 

For the simulations using SARS-CoV-2 flight data and natural history, we used the invasion 

rankings to validate the performance of the model against independent data. We compared 

the first 10 countries to report 10 SARS-COV-2 cases according to the World Health 

Organisation (3) to the top 10 invasion rankings predicted by our model. In this validation 

step we used model simulations that were seeded in China in January 2020 and used flight 

data for the period January-December 2020. 

 

2. Code and data availability 

All code used in this analysis is available at https://github.com/j-

wardle/flight_passenger_paper. Flight passenger data used in the analysis can be 

purchased from https://www.iata.org.  
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Supplementary Tables and Figures 

 

Flight scenario Epidemic 
centre 

Flight data used in 
“historical” simulations 

 

Flight data used in 
“contemporary” 

simulations 

MERS 
 

South Korea June 2014 – May 2015 June 2015 – May 2016 

Zika 
 

Brazil Mar 2015 – Feb 2016 Mar 2016 – Feb 2017 

SARS-CoV-2 
 

China Feb 2019 – Jan 2020 Feb 2020 – Jan 2021 

Table S1. Summary of the time periods that were defined as “contemporary” and 
“historical” for the epidemic simulations. “Contemporary” describes flight data that 
included the period where there was disruption due to an epidemic. “Historical” describes 
flight data from the 12-month period prior to the start of the contemporary period. The 
epidemic centre refers to the country where the epidemic simulations began.  

Please note the deliberate choice for the contemporary periods to not directly align with the 
true dates of the outbreak. For example, the MERS outbreak in South Korea took place from 
May to July 2015, the Zika epidemic in Brazil was declared a Public Health Emergency of 
International Concern in February 2016, and the first cases of SARS-CoV-2 were reported at 
the very end of December 2019. We chose for the contemporary simulations to begin one 
month into each of these periods, as this resulted in the contemporary periods containing 
increased levels of passenger disruption. Consequently, this improved our ability to detect 
any impacts of using historical data in the models. 

  



Natural 
history 
scenario 
 

R0 Mean pre-
infectious 

period (days) 

Mean 
infectious 

period (days) 

Mean 
generation 
time (days) 

‘MERS’-like 
 

1.2 6 3 9 

‘Zika’-like 
 

2.0 14 7 21 

‘SARS-CoV-
2’-like 
 

3.0 4 4 8 

 

Table S2. Natural history parameters used in simulation scenarios. These scenarios 

were chosen to explore epidemic simulations for pathogens with differing characteristics. 

Although they were initially informed by the natural history parameter values of MERS, Zika 

and SARS-CoV-2 from the literature, some adjustments have been made to the parameters 

we used so that we could explore a range of transmissibility scenarios. 

 

 

  



Country name Order in which 
country reported 10 

cumulative cases 
(WHO case database) 

Order in which country experienced 10 
cumulative infections in simulated 

epidemics using…  

…contemporary 
movement data 

…historical 
movement data 

Thailand 1st 1st  1st 

Singapore 2nd 7th 6th 

Japan 3rd 2nd 2nd 

South Korea 4th 3rd 3rd 

Germany 5th 15th 16th 

Australia 6th 6th 7th 

USA 7th 4th 4th 

Malaysia 8th 5th 5th 

United Kingdom 9th 14th 12th 

Vietnam 10th 12th 9th 

 

Table S3. Validation of global epidemic model using SARS-CoV-2 data. The table 

presents a comparison of the first 10 countries to report 10 cumulative cases of SARS-CoV-

2 (3) and the order in which those countries experienced 10 cumulative infections in SARS-

CoV-2 epidemic simulations using contemporary or historical movement data. The 

simulation period for model validation ran from January-December to provide a more 

suitable comparison to the WHO data. 

  



 

Figure S1. Changes in departing flight passenger volumes over time (global totals). 

The lines show the monthly global numbers of flight passengers (right-hand axis) from 

January 2012 to December 2020. These numbers exclude passengers taking internal flights 

(i.e. those that depart and land in the same country). The bars denote the percentage 

change in flight passenger numbers (left-hand axis) relative to the same calendar month in 

the previous year. Blue bars represent an increase in passenger numbers, red bars 

represent a decrease. Green rectangle represents the SARS-CoV-2 pandemic. 

  



 

Figure S2. Difference in A) peak sizes and B) attack rates for SARS-COV-2 epidemics 

simulated with contemporary vs historical flight data. Each black dot represents an 

individual country. Countries are grouped by the average order in which they are invaded 

(invasion rank) in simulations using contemporary flight data. The red dot summarises 

across all countries, with the error bar showing the 2.5% and 97.5% quantiles. The 

difference on the y-axis is obtained by subtracting the mean peak size or attack rate across 

simulations using historical flight data from the mean values in simulations using 

contemporary data. 
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