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Abstract: Climate change impacts on zoonotic/vector-borne diseases pose significant threats to 

humanity1 but these links are, in general, poorly understood2. Here, we project present and future 

geographical risk patterns for 141 infectious agents to understand likely climate change impacts, 

by integrating ecological models of infection hazard (climate-driven host/vector distributions and 

dispersal3,4) with exposure (human populations) and vulnerability (poverty prevalence). 20 

Projections until 2050, under a medium climate change (Representative Concentration Pathway 

(RCP) 4.5), show a 9.6% mean increase in endemic area size for zoonotic/vector-borne diseases 

globally (n=101), with expansions common across continents and priority pathogen groups. 

Range shifts of host and vector animal species appear to drive higher disease risk for many areas 

near the poles by 2050 and beyond. Projections using lower climate change scenarios (RCP 2.6 25 

& 4.5) indicated similar or slightly worse future population exposure trends than higher scenarios 

(RCP 6.0 & 8.5), possibly due to host and vector species being unable to track faster climatic 

changes. Socioeconomic development trajectories, Shared Socioeconomic Pathways (SSPs), 
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mediate future risk through a combination of climate and demographic change, which will 

disrupt current, regional patterns of disease burden. Overall, our study suggests that climate 

change will likely exacerbate global animal-borne disease risk, emphasising the need to consider 

climate change as a health threat. 

One Sentence Summary: Climate change and socio-economic development dictate future 5 

geographical areas at risk of zoonotic and vector-borne diseases. 

Main Text: Climate change will profoundly affect the health and wellbeing of human societies1. 

Alongside direct impacts arising from physical processes such as sea level rise and extreme 

hydrometeorological events2, many indirect impacts to health will be mediated through changes 

in biodiversity, ecological communities, and associated ecosystem services3. In particular, 10 

climatic changes are reshaping the distribution and burden of zoonotic and vector-borne disease 

(ZVBD), as communities of hosts, vectors and pathogens are altering in abundance and 

geographical range in response to changing conditions4,5. Building resilience to these changes 

will require public health agencies to proactively build capacity to detect, respond to and treat 

ZVBDs as they emerge in novel settings, including in many regions with historically 15 

underdeveloped health systems6.  

Biodiversity in general is expected to be negatively impacted by climate change (for many 

biomes and taxonomic groups7–9), which contrasts with system-specific evidence that, of those 

examined, some key ZVBDs appear to be increasing in incidence or geographical area10–12. For 

instance, there is an emerging multi-model consensus that high burden diseases including 20 

malaria and dengue, will undergo significant increases and/or geographical redistribution in the 

coming decades, driven by climatic and socio-economic factors13–15. However, the net effects of 
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climate change on disease risk and burden across the full breadth of vector-borne and zoonotic 

pathogens are not well understood. 

Accurate prediction of animal-to-human infection (‘spillover’) patterns in space and time, and in 

response to climate change, ideally requires models fitted to fine-scale, systematic pathogen 

surveillance data from people and animals. However, most wildlife-associated ZVBD infections 5 

are neglected and data-deficient, which fundamentally limits such fine-scale prediction to all but 

a handful of diseases16. Statistical risk mapping approaches used to geographically interpolate 

present-day spillover risk (based on outbreak occurrence data) are unsuitable for longer-range 

projections due to the confounding effects of poorly-understood detection biases17. Models based 

on core ecological principles are a more appropriate basis for predicting future populations at 10 

risk of exposure to under-studied zoonotic pathogens18. The fundamental mechanism that 

constrains the local geographical hazard for wildlife-associated ZVBD infections, most of which 

have low human-to-human transmissibility, is the presence and abundance of competent hosts 

and vectors (i.e. a suitable host community19). Recent studies have shown that environmentally-

driven predictive models incorporating climate information, based on host and vector 15 

distributions and movement, can accurately determine the broad geographical extent and limits 

of transmission for particular animal-borne pathogens20–22. Beneficially, such models can draw 

on large and well-established databases and models for biodiversity range dynamics23, host 

dispersal24 and known host-pathogen and host-vector associations25, to examine questions across 

a range of animal-borne diseases. As such, this approach provides a good framework to study 20 

future climate-driven trends in ZVBD endemic range dynamics, identify regions at high risk of 

emergence of multiple known pathogens, and understand how these intersect with changing 

socioeconomic vulnerability to capture changing public health priorities. 
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Here, we project effects of climate change impacts on the size and location of endemic areas of 

animal hosted or vectored infectious agents. We employ a Hazard-Exposure-Vulnerability 

(HEV) risk framework26 to generalise an ecological-epidemiological modelling approach of host 

and vector environmental suitability and dispersal ('hazard’) for 165 animal-borne or vectored 

infectious agents (114 viruses,18 bacteria, 30 endoparasites and 3 fungi) with present day and 5 

projected future human populations (‘exposure’), under 15 combined climate-socioeconomic 

(‘vulnerability’) scenario pathways from 2030 to 208027 (fig.1, Methods). We collated all 

available data on associations between each agent and its currently-known hosts and vectors (i.e. 

representing the current state of knowledge, rather than a comprehensive understanding28) and 

then searched for information, for each agent, as to whether there was evidence of clinical 10 

disease in humans, recording countries that report infections, and more specific location where 

available (Data S1). We project the present (set at 2015) and future (i.e., for years 2030, 2050, 

2070, 2080) geographic range of all hosts and vectors (n=1058 across all agents), using species 

distribution models, filtered by suitable land-cover using an area of habitat (AOH) approach29, 

and biologically realistic models of species dispersal24 to account for temporal colonisation 15 

dynamics (fig. 1). We then predicted the endemic geographical limits for each agent (henceforth 

‘endemic area’) by combining the predicted animal distribution data with a mathematical 

function determined by each agent’s dominant known transmission pathway to humans (88 were 

host only, 53 host and vector, 24 were vector only; across these groups 13 also included an 

intermediate or amplification step and 6 had domestic animals as a key transmission component). 20 

We validated the predictive accuracy of present-day endemic areas using the country-, or state-

level infection reports (Data S1, S2), via sets of randomised pseudo-presence and pseudo-

absence points within and outside the reporting area, using the area under the receiver operating 

curve (AUC) statistic. Once validated, we calculated the change in each agent’s endemic area 
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across continents and among high priority infectious agent groups (e.g. WHO priority diseases, 

Data S1). To understand the drivers behind any trends, we then calculated the correlation 

between predicted endemic area size and future year for each agent, across all sets of future 

scenarios, and compared this to a randomised, null distribution of correlation values for the same 

sample sizes (Methods). We then examined the direction and size of endemic area change and 5 

mapped those areas most impacted by climate-driven changes in risk. 

Of the 165 animal-hosted or vectored infectious agents we examined, 141 (85.9%) had their 

ecologically modelled endemic area predictions matched to their present-day known endemic 

countries, or states, with an accuracy better than null expectation (i.e. AUC >0.5; 74.8% had 

AUC accuracy >0.6; 52.6% AUC>0.7). For those agents for which fine-scale validation data 10 

were also available (Data S3), our validation returned a mean accuracy again above random 

expectation (mean AUC=0.682, sd=0.172, n=10). For only 101 of these agents, however, we 

could confirm clinical evidence of disease in humans (all results hereon reported using this 

group, termed ZVBDs), and for this group by 2050, there was an overall 9.6% (bootstrapped 

95% confidence intervals (CI) 6.9-15.8%) increase in mean area at risk. This pattern was broadly 15 

similar across continents (fig. 2a). The ZVBDs within global priority groups all showed mean 

expansions (fig. 2b), with National Institute of Allergy and Infectious Diseases (NIAID) group C 

being the only group that had CIs that crossed zero. Surprisingly, endemic area growth trends to 

2080 became weaker with increasing levels of warming (i.e. highest risk increases under the 

lowest radiative forcing pathway of RCP2.6; fig. 2c), supporting recent work projecting changes 20 

in potential rates of cross-species viral transmission across different emission scenarios5. This 

may be because, in higher-warming scenarios, animal species are not able to disperse quickly 

enough to track the rapid movement of their preferred environmental niche5,24, a finding again 

consistent with expectations of greater biodiversity loss under more severe climate change30. 
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Lastly, ZVBDs with more complex transmission pathways (involving both wildlife host and 

vector species) had, by 2080, a range reduction compared to diseases that were transmitted just 

by vectors or from wildlife. This suggests that more complex infection systems (i.e. transmission 

requiring co-occurrence of at least two quite unrelated species) may be more susceptible to 

ecological disruption by climate change5. Indeed, organisms show contrasting responses to 5 

climate change31 and disease systems that require several co-occurring species within the 

transmission cycle and for spillover to occur32 may see species moving in opposing directions or 

at different rates, reducing the geographical range within which transmission can occur, in the 

absence of adaptive responses. 

To understand how consistent ZVBDs were in their climate change response, we then examined 10 

the frequency of expansions compared to reductions. By 2080, more than half of ZVBDs saw an 

expansion (54.5%) of their endemic area over time with climate change, while 27.4% remained 

similar-sized and 18.1% contracted, a finding that contrasts the widely accepted negative impacts 

of climate change on biodiversity more generally7,33, and similar region- or taxon-specific work 

(e.g. more than 50% of birds in Australia show projected endemic range contractions with 15 

climate change34). This pattern of more expansions than expected held when drawing different 

sized bootstrap samples of the 101 ZVBDs (fig. S1). A higher proportion of endemic area 

expansions (fig. S2) were projected for vector-only agents (e.g. dengue; median change in 

endemic area of 28,343km2 per year), compared to agents with non-vector-borne transmission 

(i.e. host to humans through direct or environmentally-mediated routes). This again contrasts 20 

with agents whose sylvatic and spillover cycles involve both host and vector species (e.g. Lyme 

disease, plague), which show more contractions than expected under the null (fig. S2) and a 

median endemic area decline of -2664 km2 per year. The large expansions for vector-borne 

pathogens are consistent with previous research that describes a positive association of climate 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 11, 2024. ; https://doi.org/10.1101/2024.02.09.24302575doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.09.24302575
http://creativecommons.org/licenses/by-nc-nd/4.0/


7 

 

change and disease risk10,11,35, often attributed to physiological drivers such as a tight coupling 

between ambient temperature and vector biological and life history parameters12. 

Next, we examined trends in the directionality of endemic area shifts, which could inform 

priorities for emerging disease surveillance, by examining the expected change in location of 

endemic area centroids by 2050 (fig. 3a). We project consistent poleward range shifts of endemic 5 

areas in temperate regions, across ZVBDs (1.182 times more northward shifts in the northern 

hemisphere than expected, and 2.54 times more southward shifts in the southern hemisphere, χ-

squared = 17.405, df = 3, p-value < 0.001) (fig. S3). ZVBDs in northern temperate areas 

(>23.5°N) have a mean centroid shift of 0.87°N (96.64km at the equator; 81.97-111.38km 

95%CI) from 2030 to 2080, whereas those diseases in southern temperate climates (< -23.5°) 10 

have a mean shift of 0.65°S (72.264km at the equator; 31.65-112.87km 95%CI) in the same 

period. Tropical areas are consistent with temperate areas in terms of the direction of mean shift, 

but show less consistent patterns, with smaller overall distances (0.16°N and 0.48°S for north 

and south tropics respectively). Indeed, there is a wide variety of projected endemic area shift 

responses in the tropics, with northern tropical areas having 1.61 times and southern tropical 15 

areas 1.28 times more equatorial movements than expected (χ -squared = 17.405, df = 3, p-value 

< 0.001). Overall, there appears a general pattern of increasingly larger range shifts towards the 

poles (fig. S4), meaning that more northern and southern areas will need to adapt quicker to 

patterns of changing disease risk. 

To understand how these geographical shifts may translate to net impacts on disease burden, we 20 

mapped the net changes to ZVBD endemic areas to 2050 under a medium-change scenario (RCP 

4.5 SSP2 – fig. 3b). There is evidence of geographical foci with moderate-to-high net increases 

in ZVBDs over the next 30 years relative to the present day, such as north-eastern North 
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America, northern Scandinavia, the Horn of Africa and the southern edge of the Tibetan Plateau 

(fig. 4). In Southern Europe, southern United States and central Africa, however, there appears 

some consensus for a decrease in the number of ZVBDs, possibly due to climate change 

reducing environmental suitability for the current host species that live there, or due to 

knowledge gaps about alternative (as-yet-unknown) ZVBDs that might replace them. Elsewhere, 5 

principally the tropics, there are areas of increasing and decreasing richness in close proximity, 

suggesting there is little clear evidence for overall geographical patterns of change in ZVBD 

diversity, at least at this coarse spatial scale (Data S4). For much of the world, however, the 

relatively small set of ZVBDs included in this analysis (101 compared to the estimated 1407 

zoonoses36) means there is incomplete information to uncover any trend (i.e. areas shown in light 10 

grey in fig. 3b).  

Lastly, to estimate how these geographical shifts in ecological suitability may translate to a net 

change in human health impacts, we projected risk across five socioeconomic development 

scenarios (SSPs – outlined in fig. 4 legend), using a HEV framework i.e. Risk = Hazard * 

Exposure * Vulnerability. Risk, or expected exposures, per grid cell, per ZVBD was the product 15 

of Hazard, defined as a value of 1 if a cell is located within the modelled endemic area and 0 if 

not; Exposure, defined as the predicted human population in the grid cell27; and Vulnerability, 

the fraction of people in relative poverty (set as the proportion of people earning less than the 

25th percentile of local income range). Our projections assumed that human contact rates with 

hosts and vectors are a linear function of human density, and that the proportion of low earners is 20 

an effective index of the factors that increase vulnerability to infection hazards, such as lower 

health systems access and poorer nutrition, housing and sanitation infrastructure. This 

assumption is generally empirically supported; poverty correlates with worse disease outcomes, 

higher incidence and greater impacts on future livelihoods37.  
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Our models project strong regional differences in expected burden change (fig. 4), with most 

continents, except Europe, seeing consistent increases in burden due to the combined effects of 

climate change and population growth. Africa had by far the largest increases in expected burden 

(between 25 and 75%) compared to smaller increases in Oceania, North America and South 

America (between 5 and 20%). South America and Asia see larger increases for SSP3 (a 5 

‘regional rivalry’ scenario with poor international cooperation on climate mitigation, adaptation 

and development), compared to more optimistic SSPs, such as the climate-focused cooperation 

proposed in SSP1, or technological-solution focus in SSP527. Europe, in contrast to other areas, 

is projected to see a reduction in expected burden across all SSPs, likely due to the projected 

reductions in ZVBD richness being concentrated in the currently most populated areas, and the 10 

increasing richness in the less densely populated regions, though the true pattern is potentially 

confounded by limited knowledge, or ineffective modelling, of invading diseases. In summary, 

ZVBDs in Africa are less sensitive to SSP scenarios (fig. S5, S6) and more strongly impacted by 

climate change, indicating that the general pattern of endemic area expansion is causing novel 

disease to spread into already highly populated areas, while those in Asia and Europe are more 15 

sensitive to patterns of population growth or reduction, as climate change drives spread generally 

into currently less populated areas e.g. boreal forests of Scandinavia and the Tibetan plateau (fig. 

3). 

Taken together, the climate change effects on the ecological niche processes underlying the 

distribution of animal host species appear to be both overall increasing the size and shifting the 20 

distribution of risk areas for wildlife-borne diseases. The modelling approach we use means that 

these projections are broad-scale indicators of underlying trends; due to data limitations our 

models cannot represent the numerous smaller-scale social and ecological processes that drive 

fine spatial and temporal patterns of transmission infection, nor any counteracting effects of 
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pathogen and host/vector adaptation to changing conditions. Our results however are indicative 

of the large-scale emerging patterns of climate change pressures on wildlife-borne disease, and 

these general trends suggest pathogen movement into areas with potentially immunologically-

naive human populations, possibly altering large outbreak and pandemic risk38. Furthermore, this 

means the current type, capacity and location of healthcare, diagnostic and urban infrastructure 5 

may not be appropriate to mitigate the changing patterns of risk seen in the near future (e.g. open 

gutters on housing given shifting dengue risk39). Collectively, humanity needs to respond to the 

disruption of climate change to prepare societies for future increases in zoonotic and vector-

borne disease burden. 

  10 
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Figure 1. Diagram of present day and future projections of a disease endemic area. Panel A 

illustrates the predicted current disease endemic area (turquoise polygon) that is formed by the 5 

intersection of data within Panels B-D. Beige colour in A indicates countries with reported cases, 

while light blue shows non-reporting areas. Crosses and ticks represent points within and outside 

the endemic area, respectively, used to evaluate the model's accuracy against country reports. 

Panel B displays human population density. Panel C & D represents a spatial occurrence model 

for vectors and hosts respectively, inferred using climate, and land-use information. Both panels 10 

exclude those areas without observed occurrences despite suitable climatic conditions (brown 

shape in D). Panels E-H project future scenarios: Panel E predicts future endemic areas by 

integrating data from Panels F-H, which use CMIP5 climate projections to forecast changes in 

vector (G) and host occurrence (H) and Shared Socioeconomic Pathways (SSP) to predict human 

populations (F). Dotted regions in Panels G and H signify potential future spread, constrained by 15 

biologically plausible movement rates derived from empirical studies. 
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Figure 2. Mean change in geographical area at risk of wildlife- and vector-borne disease 

under climate change. Dots are mean values and whiskers the 95% CI across diseases in the 

sample. Panels show mean and standard error of the per disease area change a) in all continents, 

and within individual continents for the year 2050; b) for all diseases and for groups of priority 5 

diseases for the year 2050, c) across four RCP pathways (2.6, 4.5, 6.0, 8.5) for the year 2080, d) 

for groups of diseases with different transmission mechanisms for the year 2080.  
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Figure 3. Global maps of disease endemic area range shifts. Panel a) represents present 

location of disease endemic area centroid, marked by arrows, colour coded by absolute bearing 

to reinforce the direction of the arrows, which point in the direction of future shifts caused by 

climate change by 2050, for 101 animal and vector-borne diseases; and b) how the movements of 

these risk areas alters the net mean per pixel disease richness within administrative level three40 5 

regions for these same set of diseases by 2050. Projection is Mollweide and units are degrees of 

latitude and longitude. 

a) 

b) 
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Figure 4. Percentage change in expected number of wildlife- and vector-borne disease 

exposures in economically vulnerable populations (those earning less than the 20th 

percentile of income) continentally, by 2050, across 5 different shared socio-economic 

pathways (SSP). Dots are mean and whiskers 95% CI. Where SSP1 - the focus is on sustainable 5 

development; SSP2 - where trends from the past continue without significant efforts to address 

sustainability or inequality; SSP3 - a future marked by high regional competition, economic 

inequality, and slow technological progress; SSP4 - explores a future characterised by high levels 

of socioeconomic inequality; SSP 5 - emphasis is on high energy demand, rapid economic 

growth, and a reliance on fossil fuels. 10 
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Materials and Methods 

Our modelling approach consisted of five main steps, as summarised in fig. 1: First, we collated 

data on all infectious agent-by-host species interactions where wild animals were involved in the 

transmission pathway, noting that this work pre-dates and complements other recently published 

datasets41. Second, we collated occurrence data for all non-human actors in the transmission 5 

process, created individual species distribution models (SDMs) for each host and vector species, 

and then used these models to predict gridded layers of geographic suitability using both present 

and future climatic conditions. Third, we created an infectious agent spatial occurrence 

suitability composite layer for present day, by combining suitability for all transmission 

components mathematically, evaluated the predictive performance of this resulting layer against 10 

spatial data on infection, and then used optimised presence-absence thresholds from the 

validation process to threshold suitability and delineate the present-day infectious agent endemic 

area predictions. Fourth, we generated the same composite layers using future host and vector 

projections under climate change, and used the per-agent threshold values to determine whether 

an agent’s endemic area was projected to expand or reduce. Fifth, we used a contact rate model 15 

to examine how changes to agent’s endemic areas interact with projected changing human 

populations under a variety of future socio-economic development scenarios to establish a 

compound risk value. We expand on these sections below. 

Host-vector-agent data collection 

Data on infectious agents, host and vector associations were collated from the literature 20 

(Extended data table 1) for zoonotic or vector borne infectious agents found in wild animals and 

have potential for infecting humans (data collation was undertaken over years 2014-2020). To 

structure the search, we started with all the named infectious agents with a wild animal 

(host/vector) involved in the transmission pathway, that were listed in a review of human 
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infectious diseases for which there is spatial occurrence information42 available. This set was 

chosen as a) it contains the vast majority of high-burden animal-borne disease, and b) the spatial 

data in this publication can provide a basis for validation of the modelling outputs. For all the 

zoonoses in this dataset we searched the literature to identify the putative reservoir host, i.e. 

species that carry an infectious agent with minimal cost to individual fitness and that play a key 5 

role in maintaining infection across the landscape. For agents transmitted by vectors, where 

possible, we identified principal vectors rather than rare or occasional ones. We focused on 

putative reservoirs vectors rather than incidental actors, where indicative data were available, as 

these species are most likely to have an impact on the distributions of infection risk, if they move 

in response to environmental change. For many infectious agents, there has been little review or 10 

critical analysis of principal hosts or vectors, and for a few agents we identified host/vectors for 

only one part (e.g. continent) of the endemic geographical range. Indeed, since the highest 

impact diseases are generally much better-studied, our attempt to create a comprehensive dataset 

will suffer from many systematic biases. For instance, more information will be weighted 

towards agents that directly affect populations of richer industrialised countries as they tend to 15 

spend more funding on research. Furthermore, certain groups of agents that have caused large, 

disruptive outbreaks will also be more researched and subsequently better understood28,43. Our 

analyses attempted to adjust for these biases through weighted bootstrapping of the data when 

visualising and summarising.  

To validate geographical predictive performance of models, we recorded the countries which 20 

have reported each agent (Data S1). For infectious agents documented in two countries or fewer, 

where country boundaries could grossly overrepresent the size of the endemic area, we 

undertook a literature search for locations where cases had occurred. We used those locations to 

assign as “present”, all administrative level 3 geopolitical entities40 in which cases for that agent 
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occurred (Data S2). For a subset of agents (n=10) there were geolocated cases or outbreaks 

available from online databases to provide a more detailed, fine-scale validation of model 

outputs (Data S3). 

Mapping ecological hazard using hosts and vector distribution 

We used an Area of Habitat (AOH) approach29 to ensure that locations where host and vector 5 

species were deemed present, or dispersed into according to climate based models, contained 

habitat suitable for those species. We first determined habitat suitability for each species, based 

on land-cover-land-use, across 7 broad categories (Primary – forest, Primary – non-forest, 

Secondary – forest, Secondary – non-forest, Pasture, Cropland and Urban)44. For vertebrates, 

these categories were then matched to broad IUCN habitat preference data at species-level, 10 

which provides three levels of suitability for each species; we gave a value of 1 to suitable 

habitat, a value of 0.5 to marginal habitat and a value of 0 to unsuitable habitats. We multiplied 

the resulting climate suitability map by the climatic niche prediction for each species (as defined 

below) to produce an area of habitat species occurrence layer29. For invertebrates, where there is 

limited information on habitat type, we used occurrence point data to determine whether habitats 15 

were suitable or not. We did not alter the habitat layer in the AOH calculations for future 

predictions because there is extremely wide uncertainty in future modelled trajectories of land 

change45, which are highly sensitive to difficult-to-forecast factors such as sociopolitical change, 

patterns of market demand and unexpected global shocks, as well as model assumptions. 

Although a limited selection of future land use scenarios are available for global change 20 

modelling (e.g. Land Use Harmonization), unfortunately, these do not provide a means to 

quantify uncertainty in future risk associated with future land change patterns. We therefore 

focused on climate change as the key driver in this study, where the availability of multiple 

general circulation models (GCMs) enables a robust quantification of uncertainty in forecasts.  
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Next we constructed potential climatic niches for all host and vector species identified above 

using the MAXENT46 algorithm, with rasters representing all 19 BIOCLIM climatology 

variables and altitude47 as input variables. We used the MAXENT algorithm because it performs 

accurately for many datasets and is both computationally efficient and has a very high capacity 

for automation48. For presence points in the MAXENT inference, we downloaded occurrence 5 

data for hosts and vectors of each of the 586 identified agent-animal associations, using the API 

of the online database Global Biodiversity Information Facility (GBIF; using the spocc function 

spocc package49). Specifically, for each taxon we checked for misspelling or out-dated names 

against a set of existing taxonomies using the taxize package50 and then downloaded all 

recognised synonyms (synonyms function taxize package50). We then downloaded all geolocated 10 

occurrence data for all taxa and all their species level synonyms. For each infectious agent we 

choose subsets of those occurrence points that were located in the global subregions40 that 

contained countries that had reported the agent42, such that even if occurrences of an agent-

carrying species were located in Africa and Asia but autochthonous infection only known to take 

place from species’ individuals in Asia, we only used Asian occurrences, since sub-species can 15 

have difference climatic tolerances. For example, for Lassa fever virus, the host Mastomys 

natalensis occurs in a variety of habitats across the whole of sub-Saharan Africa but Lassa Fever 

cases are restricted solely to West Africa21 and, therefore, only M. natalensis occurrence points 

from West Africa were used for the host niche estimation for this agent. This means that widely 

occurring species hosting more than one agent could either have: More than one regional climate 20 

niche model inferred for each different agent they host, or a single model if the multiple agents 

they host all occur in the same subregion. However, if there were too few occurrence points 

within the endemic subregion (n<25) we then downloaded all species occurrence points in the 

encompassing region. If again there were too few points (n<25) we did not model this animal-
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agent interaction. This resulted in 390 animal-agent links being brought forward to the next stage 

of modelling.   

Before inference, we verified and cleaned the occurrence data from GBIF. First, from all datasets 

we removed all points that were not on land or an island according to a high-resolution coastal 

boundary dataset (according to gsshs data set wrld_simpl function in maptools) or had errors in 5 

the associated data file. Second, we removed the most imprecise points i.e. with less than 2 

decimal place precision. Third, to reduce the impact of any spatial bias of sampling points we 

removed any points that co-occurred in 1-degree grid cells globally. Then to infer the niche 

model we ran 50 iterations of the MAXENT algorithm using random subsets of each species’ 

occurrence dataset, with random regression model configurations and random numbers of 10 

pseudo-absence points from 100 to 5000 per sub-model. For input data we downloaded all 19 

bioclimatic variables for present day (averages 1960-2010) and altitude in 30 second grid 

format47. Using 10% holdout samples to calculate AUC, and employing an ensemble prediction 

approach, as it is shown to be more effective than choosing a single best-performing model51, we 

combined the rasters of global spatial predictions of the top five best performing models creating 15 

a mean prediction value for each grid cell. We undertook this inference approach for all hosts 

and vectors for which there was available data, and then predicted for each species by agent 

combination a layer of mean climatic niche suitability (predict function from raster) for the 

present day. 

For future niche predictions we used the same input data variables as for the Maxent inference 20 

(bioclim and altitude) which were downloaded for the individual years 2030, 2050, 2070 and 

2080, based on general circulation model (GCM) future modelled climates from the Coupled 

Model Intercomparison Project 5 (CMIP5) (http://ccafs-climate.org/data_spatial_downscaling/). 
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These layers consisted of summaries of spatial predictions from 26 different climate models with 

variations (Data S5) under three different RCP scenarios (RCP 2.6, 4.6, 6.0) giving a total of 318 

possible future scenarios over all four future years. Due to high computational costs, we sampled 

14,625 species-by-model scenarios by choosing approximately 50 model by RCP scenarios at 

random for each of the 390 animal agent associations, representing 11.79% of the 124,020 5 

possible combinations. This random subsampling of GCMs by species and year combinations 

was a compromise for computational time (i.e. predicting for all combinations of model, species 

and year would have been unfeasible) while ensuring that projections captured the full breadth of 

modelled climate futures across the ensemble of GCMs from CMIP5.  

Present day agent hazard, validation, thresholding 10 

The step above produced predicted present and future raster layers for each agent by wild species 

interaction. Where present, multiple host and vector occurrences were combined, for each grid 

cell , agent , and time  (initially this was just for present day set as 2015), as follows: 

Host Occurrence Probability ( ): 

    15 

   where  is the probability of at least one host occurring in cell  for agent  at time , and 

 is the probability of occurrence for a putative host species in cell  for agent  at time . 

Vector Occurrence Probability ( ): 
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   where  is the probability of at least one vector occurring in cell  for agent  at time , and 

 is the probability of occurrence for a putative vector species in cell  for agent  at time . 

We then combined these species distribution grids into a single agent hazard layer using a 

mathematical function determined by the agent’s presumptive transmission pathway to predict 

the endemic geographical limits for each agent (henceforth “endemic area”): 5 

Hazard Estimation ( ) for Host-to-Human Transmission: 

     

Hazard Estimation ( ) for Human-to-Vector-to-Human Transmission: 

    

Hazard Estimation ( ) for Host-to-Vector-to-Human Transmission: 10 

    

Hazard Estimation ( ) for Host-to-Human Transmission with Amplification Component: 

    

   where  is the density of amplifiers in cell  for agent  at time . 

Hazard Estimation ( ) for Host-to-Vector-to-Human Transmission with Amplification 15 

Component: 
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Applying the above equations resulted in a single present day hazard grid for each agent. We 

then validated these resulting hazard grids using data on known agent occurrence. Fine-scale data 

(i.e. point occurrences) on the known endemic area are available for a small proportion of agents 

(6%), so we needed to take a multi-tier validation process; firstly, at country level, secondly at 

state/county level for agents found in 2 countries or less, and lastly for the few diseases with 5 

geolocated case occurrence data available, we used point locations. We employed an area under 

the operating curve (AUC) algorithm to calculate predictive accuracy across these scales.  

 

where  represents the true positive rate (TPR) value corresponding to a given 

false positive rate (FPR) value. True Positive Rate (TPR) is defined as the ratio of true positives 10 

to the total number of positive points.  False Positive Rate (FPR) is defined as the ratio of false 

positives to the total number of pseudo-absences. 

For most diseases, where we had only country level infection data, during each run we generated 

random absence points (using 100, 500, 1500, 5000 or 10,000 points selected randomly) across 

the whole endemic sub-region and random presence points (i.e. 100, 500, 1500, 5000) within the 15 

boundaries of reporting countries. After validating, we then thresholded each hazard layer by 

optimising by AUC score. From 25 replicates of this validation, we created three threshold 

values: the minimum optimum value, the mean optimum value and maximum optimum value to 

act as a sensitivity test on this process. These optima gave qualitatively similar results (fig. S7; 

Data S6) and so we used the mean optimum hereon. Then taking all hazard layers, any grid cells 20 

with values below each of the mean threshold level were designated as not present (i.e. marked 

as NA) and then “presence” polygons were drawn around all contiguous positive grid cells i.e. 
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designating those areas above the presence threshold. Then referring to the points downloaded 

from GBIF to create the presence models we only kept those “presence” polygons in the analysis 

that had known occurrences, to remove any suitable areas that had low evidence of ever being 

occupied. 

Future change in hazard 5 

The future projected species occurrence rasters were then combined into single future hazard 

layers using the same equations as in above step, for each climate emissions scenario by year by 

climate model combination. One difference from the present day calculations described in the 

previous step, was that there was also variation by climate models, so we averaged across 

different future climate models for each climate emissions scenario (RCP 2.6, 4.5, 6.0) by 10 

decadal climatology (referred to as by the initial years 2030,2050, 2070,2080) to create 12 future 

hazard layers per agent. Next, using the threshold for each agent set in the previous step, we 

again designated any grid cells below the respective suitability threshold as ‘not present’, and 

those above the threshold ‘present’, to result in binary layers containing predicted future 

presence and absence.  15 

To model biologically realistic species dispersal from the present-day range position to newly-

suitable areas (i.e. range dynamics), we used the present day polygon as a range boundary to 

determine those ‘present’ cells that were occupied both presently and in the future. Then, for all 

cells outside the present day range, those suitable cells in the future predictions were only 

included as occupied in the future if they matched a set of diffusion criteria: Cells were only 20 

marked as present if they were less than 2 cells per decade from the present day range edge 

depending on the year (to match the empirically observed average dispersal rate from a large 

scale meta-analysis24), which meant change could only occur contiguously from the current 
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range edge (so only known occupied areas were included in future predictions) and at a rate 

calculated using the empirical data estimate. All other cells, if there were any outside this area, 

were marked as not present. Therefore by 2080 each part of the range edge can only grow or be 

reduced by a maximum of 14 cells from its present-day location. Furthermore, we used present 

day land-cover type and habitat preferences of each species to prevent movement of animals into 5 

unsuitable habitat53 e.g. grassland species into forest. Finally, we then drew a polygon around all 

remaining contiguous grid cells and calculated future range size and centroid location for all 12 

future layers for each agent.  

We then, for each known infectious agent (n=101), calculated the correlation between (Spearman 

rank; function cor; base package in R54) the number of cells in the endemic area and year, using 10 

the years 2030-2080. We then repeated this, sampling different size subsets of the 101 agents 

(groups of 40, 56, 65, 71 sampled randomly 100 times) attempting to control for biases resulting 

from some geographical areas and some agent types being sampled more often, by weighting 

less represented agents by the reciprocal of the relative sample proportion (function sample; base 

package in R). For each sample we then randomised cell number (area) with respect to the year 15 

and took another correlation measure as a null expectation, to capture the frequency of strong, 

weak and neutral relationships that would be expected to be generated by chance using data of 

the same size and mean values. We then categorised all these correlations as either being 

negative (Rho < -0.25), neutral (Rho> -0.25 but Rho<0.25) or positive (Rho>0.25) and counted 

the number of samples where the cell number-year relationship fitted into these categories. We 20 

also repeated this process with a different threshold (i.e. Rho thresholds -0.5 and 0.5; -0.1 and 

0.1) to test the sensitivity of the result to this value. 
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We then examined how the mean location of the endemic areas changed by measuring where 

their centroid moved from the year 2030 to 2080. We then labelled the agents depending on 

where the centroid was located latitudinally. The endemic areas in northern regions (>23.5°N) 

and those areas in southern regions (< -23.5°S) were designated as temperate, while all those in 

between were designated as tropical. For tropical endemic hazards we then designated between 5 

those that sat north of the equator (>0°) and those south (<0°).  

HEV Risk Model 

Finally, we employed a Hazard-Exposure-Vulnerability (HEV) risk framework26 across agents, 

generalising an ecological-epidemiological modelling approach previously used to predict future 

Ebola and Lassa fever outbreak potential20,21, assuming homogeneous random contact within 10 

each grid cell. For each grid cell i, per agent j, at each year time point t: 

Ci,j,t = estimated exposures 

Ci,j,t = Sj * Hi,j,t * Pi,t * Vi,t 

where Sj = spillover rate, Hi,j,t is hazard in grid cell i in year t as defined in steps 3 and 4 

above, Pi,t = human population density in grid cell i in year t (from SSP populations27) and Vi,t  = 15 

proportion of vulnerable people. Where Hi,j,t * Pi,t represents the expectation of Pi,t draws from 

binomial distribution with the probability of success Hi,j,t i.e. expected exposure = Binom(Pi,t, 

Hi,j,t). 

We used the approximate spillover rate Sj to predict expected exposures and, therefore, weight 

higher-burden diseases relatively more in any summary, and it was calculated using present day 20 

annual cases taken from the literature C2015 divided by the total human population in the present-

day hazard area: 
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While the values for human populations P were taken directly from gridded data sources, we 

defined Vulnerability (V)  as the proportion earning less than 25% of the median income which 

we calculated for present day and across five Shared Socioeconomic Pathways (SSP) scenarios27. 

We then used projected future Gini coefficients at the regional level to update present day per 5 

country Gini estimates55, to calculate the number of people projected to be earning less than a 

quarter of the median income, assuming that cumulative income distribution follows a parabolic 

curve and that poverty rate was geographically invariant. We then calculated mean values to 

summarise the differences in risk across continents, years and SSP scenarios. To account for 

variation across the dataset we expressed these results as the mean across 100 random bootstraps 10 

of 80% of the data, using the following notation: 

 

Where,  represents the averaged estimate of the number of cases in grid cell  for agent  at 

time .  represents the bootstrapped estimate of cases for the -th sample.  is the total 

number of bootstrap samples.  15 
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Figure S1. Variation in the response of zoonotic and vector-borne disease endemic hazards 

given climate change over the next 60 years (2030 to 2080). Each panel represents a different 

size subset of diseases (median n in panel banner) repeated taken at random 1000 times and the 

number of those disease (coloured dots) that had a spearman rank correlation between endemic 5 

area size and climate change (represented by year) of -1 to -0.25 (Contracting), -0.25 to 0.25 

(Static) or 0.25 to 1 (Expanding). Whiskers represent 95% HPDI around the median. Grey dots 

and whiskers represent the same values but for 1000 simulations where endemic hazard size is 

randomised with respect to climate change. 

 10 
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Figure S2. Proportion of disease endemic areas expanding, remaining static and contracting over 

time (coloured dots) compared to null expectation (grey dots). Variation in the response of 

endemic hazard size change of zoonotic and vector-borne diseases (n~55 from 1000 random 

samples taken from an overall pool of 101 diseases) given climate change over the next 60 years 5 

(2030 to 2080). Coloured dots show the median relative frequency of diseases that had a 

spearman rank correlation of -1 to -0.25 (Contracting), -0.25 to 0.25 (Static) or 0.25 to 1 

(Expanding). Whiskers represent 95% HPDI around the median. Grey dots and whiskers 

represent the same values but for 1000 simulations where for each disease year is randomised 

with respect to disease areas before the correlation is taken. Panels other than “All” represent the 10 

relationship in subsets of the data where only those diseases described in the panel title are 

included. 
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Figure S3. Expected change in degrees of the longitude and latitude of the centroid of 101 

zoonotic and vector-borne disease endemic hazard limits from 2030 to 2080 The panel represent 

the global region the centroid belongs to, with temperate areas being greater than 23.5ο north and 

less than -23.5ο south and tropical areas from 0ο to 23.5ο and 0ο to -23.5ο for north and south 5 

tropical areas respectively. Triangles are vectored diseases whereas diseases represented as 

circles have no known vector. Colours represent the pathogen group.  
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 5 

 

Figure S4. Relative latitudinal shift in degrees (y-axis) compared to the number of degrees from 

the equator (absolute latitude, x-axis). Dots represent change on each axis from 2015 to 2050 for 

individual disease projections and the line is the smoothed (loess) trend. 

  10 
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Figure S5. Relationship between change in disease endemic area from 2015-2050 and the 

expected change in disease cases over that same time period for RCP 4.5. Dots are individual per 

disease mean projections and lines are mean trends across all diseases. Colours represent 

different Shared Socioeconomic Development Pathways, defined in fig. 4. 5 
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Figure S6. Influence of human population growth and climate change on size of area at risk of 

disease. Comparison of Pearson correlation of regional burden change and the change in human 5 

population density (y-axis), and Pearson correlation of regional burden change and the change in 

area at risk of disease due to climate change (x-axis), for zoonotic and vector-borne diseases 

whose endemic area centroid is located in different global subregions. All change is from the 

year 2015 to 2050 and for RCP4.5 and SSP2 (business as usual) and points are colour coded by 

continent. 10 
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Figure S7. Variation in the response of zoonotic disease endemic hazards given climate 

change over the next 60 years (2030 to 2080). Each panel represents threshold used define the 5 

edges of the endemic hazards with panel (A) the mean best (max AUC) threshold, panel (B) the 

maximum possible threshold and panel (C) the minimum possible threshold and the number of 

those diseases (coloured dots) that were expanding, remaining static and expanding. Whiskers 

represent 95%HPDI around the median. Grey dots and whiskers represent the same values but 

for 1000 simulations where endemic hazard size is randomised with respect to climate change. 10 
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Supplementary Data Folder: 

[link for preprint: 

https://www.dropbox.com/scl/fo/lrsts3ipcalppzktlol9e/h?rlkey=dnvh4rgpbe225pxdwwekpwq4z

&dl=0 ] 

Data S1. (separate file) 5 

Table of modelling parameters for all infectious agents examined and associated hosts and 

vectors. 

Data S2. (separate file) 

Table of known locations of infectious agents found in two countries or less. 

Data S3. (separate file) 10 

Locations of ten diseases that have point location data and sources of these data. 

 

Data S4. (separate file) 

Table of regional and disease group summaries of burden trends by SSP scenarios 

 15 

Data S5. (separate file) 

Table of climate models used in the future host/vector predictions 

 

Data S6. (separate file) 

Zip file of estimated present day ranges with recorded locations. 20 
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