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Abstract
The spread of viral respiratory infections is intricately linked to human interactions, and this
relationship can be characterised and modelled using social contact data. However, many
analyses tend to overlook the recurrent nature of these contacts. To bridge this gap, we
undertake the task of describing individuals’ contact patterns over time, by characterising the
interactions made with distinct individuals during a week. Moreover, we gauge the implications
of this temporal reconstruction on disease transmission by juxtaposing it with the assumption
of random mixing over time. This involves the development of an age-structured
individual-based model, utilising social contact data from a pre-pandemic scenario (the
POLYMOD study) and a pandemic setting (the Belgian CoMix study), respectively. We found
that accounting for the frequency of contacts impacts the number of new, distinct, contacts,
revealing a lower total count than a naive approach, where contact repetition is neglected. As
a consequence, failing to account for the repetition of contacts can result in an
underestimation of the transmission probability given a contact, potentially leading to
inaccurate conclusions when using mathematical models for disease control. We therefore
underscore the necessity of acknowledging the longitudinal nature of contacts when
formulating effective public health strategies.
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1. Background
The propagation of infectious diseases is characterised by various modes of
transmission. Transfer of pathogenic agents can occur through contact with fomites,
vectors (e.g., insects or animals), airborne aerosols, droplets, or direct physical contact
[1]. Notably, viral respiratory infections, primarily transmitted during social interactions
via droplets, aerosols and physical contact continue to be major contributors to global
morbidity and mortality [2]. Recognising the significance of information on close
interactions is pivotal for elucidating disease transmission [3]; thus, social contact data
is often employed as a valuable proxy for identifying transmission routes. This
information has primarily been collected through diary-based social contact surveys in
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various countries [4]. An important study is the groundbreaking POLYMOD study which
is the first large-scale study which gathered data from eight countries in the European
Union [5]. Numerous studies similar in setup have been conducted in different
countries in both pre-pandemic and pandemic periods [4]. The CoMix study is the
largest study across Europe gathering social contact data aiming to assess changes in
contact behaviour during the pandemic [2,6–11]. The information from these surveys
has proven invaluable in informing transmission dynamics within mathematical models
including network models [12], agent-based models [13], and compartmental models
[14–16].

In contrast to our everyday experience, many mathematical models commonly assume
a homogeneous mixing [17]. However, research demonstrates that mixing patterns
exhibit heterogeneity influenced by factors like age, location, household sizes, intimacy
levels, and frequency of contact [5]. Incorporating this heterogeneity in mathematical
models is therefore essential to accurately describe transmission dynamics. Various
techniques have been developed to achieve this by leveraging social contact data [18].
These methods often involve the use of contact matrices, which consider different
contact rates for different subgroups of individuals within a structured population. The
contact rate is typically calculated using the average number of contacts reported on a
daily basis [19], implicitly assuming that the probability of contacting the same person
more than once is negligible and the time between successive contacts within a given
age bracket follows an exponential distribution. This contrasts with our daily
experience, where we, e.g., frequently interact with household members, a significant
aspect of mixing patterns that is not entirely accounted for by modelling methods
relying on contact matrices.

Eames et al, (2008) and Smieszek et al, (2009) have demonstrated the importance of
considering contact repetition in representing disease transmission [20,21]. Their
studies reveal that contact repetition can limit the spread of infection, significantly
impacting epidemiological measures when the number of contacts and probability of
transmissions are low, as opposed to a random mixing model. However, these studies
primarily focused on the theoretical framework and the exploration of repetition in
mixing patterns using data has not been fully realised. More recently, Pung et al,
(2023) also pointed out the importance of considering the temporal components of
contact patterns, highlighting the implication of contact retention by temporally
reconstructing dynamic contact networks using data collected via close-proximity
sensors [22]. While the use of sensor data provides advantages, the analysis
conducted is reliant on information from specific locations and may not
comprehensively capture real-life contacts typical in open populations.

Building on previous research, our objective is to reconstruct temporal contact patterns
of subgroups within the population and calculate the age-specific number of distinct
contacts over a one-week period. We use social contact data obtained from contact
diary surveys [2,5], exploring various age groups and different countries to elucidate
contact patterns in various settings. Furthermore, we also consider the effect of
non-pharmaceutical interventions, delineating how these temporal patterns fluctuated
during the COVID-19 pandemic. With the reconstructed patterns, we developed an
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individual-based model to assess the influence of considering contact repetition,
obtained from temporal contact reconstruction.

2. Methods
2.1 Temporal reconstructions of individuals’ contact patterns
Drawing from data obtained through the POLYMOD and Belgian CoMix studies [2,5],
we reconstructed individuals' contact patterns over a, without loss of generality,
one-week period to replicate the social contact dynamics of each individual. In our
main analysis, ‘contact’ is defined as physical interactions, including both
conversational and non-conversational encounters involving skin-to-skin touching. This
approach provides a more nuanced representation of age-specific seroprevalence
patterns observed in airborne infections compared with non-physical interactions [12].
Using information from the POLYMOD study, we first scrutinised mixing patterns within
a pre-pandemic setting. Subsequently, we consider a pandemic scenario relying on the
data collected within the Belgian CoMix study. In the latter case, we addressed the
under-reporting issues by expanding upon the method used by Loedy et al, (2023).
This correction involved adjusting the reported number of contacts to accommodate
under-reporting and redistributing contacts based on the reported frequency for each
individual. The choice of the Belgian CoMix study was motivated by its extensive data
collection period, allowing us to observe the impact of interventions on reported
contacts over an extended timeframe. Notably, the initial eight waves of the Belgian
CoMix study lacked information on participants younger than 9 years old, prompting
our focus on the later waves. Details regarding the utilised datasets are presented in
the Supplementary Materials.

We divided the population into four age categories: Children (0-12 years), Teens (13-18
years), Adults (19-65 years), and the Elderly (66+ years) and reconstructed temporal
contact patterns for each of these subgroups. We did so by considering two
approaches, a so-called naive approach, where only the number of contacts reported
on a daily basis is considered and no frequency is accounted for, and the
frequency-based approach. In the latter case, we focused on using the reported
frequency of contacts, which indicates how often participants interacted with those they
contacted, to reconstruct individuals' contact patterns over a week. We categorised
these interactions into two groups: “daily contacts” (reported as occurring daily in the
survey), involving interactions with the same individuals every day, and “non-daily
contacts” (reported as weekly, monthly, a few times a year, or for the first time in the
survey) - encompassing interactions with different individuals throughout the week.
Subsequently, we redistribute the number of distinct contacts over days using a𝑑 =  7
multinomial distribution, where is an index over days in the week (Monday, Tuesday,𝑑
…, Sunday). The probabilities for this redistribution are derived from the data,
acknowledging that individuals may have varying numbers of distinct contacts each
day throughout the week. To accommodate data variability, we undertake the
reconstruction of contacts for each individual , by randomly sampling a value from the𝑖
Generalised Poisson distribution, allowing us to describe under- and over-dispersion in
the data, to represent their everyday contacts [23,24]. We define as an index𝑘
representing the frequency of contact, partitioned into five categories (daily, weekly,
monthly, a few times a year, first time) and serves as an index for age groups (0-12,𝑎
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13-18, 19-65, 66+). Let and be the mean and variance, respectively, for ageµ
𝑎,𝑘

σ
𝑎,𝑘

2

group with contact frequency . Mathematically, the frequency-based approach can𝑎 𝑘
be expressed as

with and . An example showing theα
𝑎,𝑘

 =  µ
𝑎,𝑘

µ
𝑎,𝑘

/ σ
𝑎,𝑘

2 β
𝑎,𝑘

 =  1 −  µ/σ2

outcome of the frequency-based reconstruction is presented in Table S1. Relying on
this framework and the considered approaches to reconstruct contact patterns, the

total number of distinct contacts in a week is calculated as andλ
𝑇,𝑖

 =
𝑑 = 1

7

∑  λ
 𝑑,𝑖

for the naive and the frequency-basedλ
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=  λ
𝑘 = 𝑑𝑎𝑖𝑙𝑦, 𝑖

 +
𝑑 = 1
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∑
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5

∑  λ
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approach, respectively.

2.2 Epidemic simulation and scenarios
To investigate the impact of temporal contact patterns on transmission dynamics, we
developed a discrete-time age-structured stochastic individual-based model in which
contact patterns are implemented using either the naive or the frequency-based
approaches described previously. In both cases, epidemics start with seeding one
index case in a closed and fully susceptible population and will persist until no infected
individuals are present [25]. We simulated contact interactions for each infected
individual, and we conducted a Bernoulli trial with probability to assess whether the𝑞
specific interaction led to a transmission event. Within both approaches, such a
probability is constant and of the same value among the different age groups, but it is
set to describe a different value of the reproduction number according to the social
contact hypothesis [19]. In the naive approach, at each time step, every infected
individual comes into contact with individuals drawn randomly from the population,𝑐

𝑖

setting the within and between mixing rate among the different age groups from the
observed data. In the frequency-based approach, for each individual , we randomly𝑖
selected daily contacts, with whom would have an interaction every day, and𝑖
non-daily contacts, sampling different individuals who were not part of the daily
interactions.

We consider an S-I-R type of dynamics [26], assuming the infectious period to be
geometrically distributed with an average of 7 days. We further set the𝐼 ~ 𝐺𝑒𝑜(γ),
values of the reproduction number ( ) equal to: = 1.3, to represent diseases with the𝑅

0
 𝑅

0

spreading potential of a seasonal influenza-like illness [27], and = 3.3, reflecting𝑅
0

diseases with the spreading potential of a COVID-19-like infection [28]. Fixing the
population size at , we ran 3000 simulations for each considered scenario.𝑁 =  5000
From the simulated epidemics, we only considered the non-extinct outbreaks, defined
as the outbreaks where at least 10% of the population was eventually infected, and we
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calculated and reported attack rates, time to peak, peak incidence, and epidemic
durations as epidemiological summary measures.

The simulations were run for all eight countries participating in the POLYMOD study
and 3 different waves of the CoMix study for Belgium. These three different waves are
wave 19 (mandatory telework and mask-wearing, curfew, part-time distance learning in
schools, maximum 1 (2 if one lives alone) close contact, and full closure (except take
away) for restaurants, cafes, and bars), wave 27 (mandatory mask-wearing,
compulsory telework, maximum 8 people per table when dining in restaurants, cafes,
and bars), and wave 43 (mandatory mask-wearing and COVID safe ticket) which
represent three different stages in the COVID-19 pandemic intervention [2].

3. Results
3.1. Pre-pandemic setting
3.1.1. Contact repetition
The proportions of daily and non-daily physical contacts for the pre- and pandemic
scenarios are presented in Figure 1 and Figure S2, respectively. In the former case, we
first noticed that age affects the frequency of contact. In most of the countries
considered, children and teenagers reported more daily than non-daily contacts, while
adults and the elderly reported more non-daily contacts.

Figure 1. The distribution of the total number of daily and non-daily physical contacts
from the POLYMOD study.

Following the methodology presented in Section 2.1., we calculated the total number of
distinct contacts using the naive and frequency-based approach for different European
countries. Failing to account for repetition leads to overestimating the total number of
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different contacts occurring in one week (Figure 2). This pattern holds across different
age groups and countries. For the Elderly, the effect is considerably smaller than other
age categories as the ratio of frequency-based and naive distinct contacts is closer to
1. We further notice that the relative difference between the total number of contacts
made by specific age groups varies depending on the approach considered to
reconstruct contact patterns, possibly affecting the contribution of such age groups in
transmission (Figure S3).

Figure 2. The ratio between frequency-based and naively calculated distinct contacts
over a week in a pre-pandemic scenario, together with its 95% Confidence Interval
obtained by a non-parametric bootstrap for Children, Teens, Adults, and the Elderly in
different countries.

3.1.2. Outbreak characteristics
Results of the simulation study suggest that epidemics are affected by the contact
pattern considered over time. Consistently, the attack rate is observed to be higher
when the naive reconstruction is assumed, especially when the reproduction number is
lower (Figure 3 and Figure S4). Furthermore, the frequency-based approach
consistently results in a lower peak incidence (Figure S5) and a longer time to peak.
Regarding the overall epidemic duration, the difference is not apparent between the
frequency-based and naive approaches for influenza-like illness, but a slight
discrepancy is observed for COVID-19-like illness, with the former leading to epidemics
with longer duration. In addition, a higher extinction rate is also observed when the
frequency-based approach is considered (Table S2).
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Figure 3. Changes in epidemic attack rates in influenza-like illness when simulating
epidemics using a frequency-based approach compared to a naive approach during a
pre-pandemic scenario, along with non-parametric bootstrapping for 95% confidence
intervals.

3.2. Pandemic setting
3.2.1. Contact repetition
In addition to investigating the impact of temporal reconstruction across different
countries in Europe, we further describe how such contact profiles vary during a
pandemic setting, by using the Belgian CoMix data as a case study. A different
behaviour can be seen during the pandemic scenario, where for all age categories, the
majority of reported contacts are daily contacts (Figure S2). The ratio of the number of
distinct contacts between the frequency-based and naive approaches during the
pandemic is greater than that of the pre-pandemic period with the decrease varying
across age categories, with more variability shown in the elderly (Figure S6). While for
adults and the elderly, the total number of distinct contacts seems to be stable over the
different ways, a higher variation is observed for children and teenagers (Figure S7). In
addition, for children and teenagers, we observed a higher difference between distinct
contacts reconstructed with the naive and the frequency-based approach. As expected,
we observed that the number of distinct contacts is greatly reduced when comparing it
with the number of contacts during the pre-pandemic scenario. This holds true for all
and only physical contacts.

3.2.2 Outbreak characteristics
Considering the same respiratory infections assumed previously, we simulate
epidemics during a pandemic scenario. Calculating attack rates using the
frequency-based approach results in an underestimation, ranging from approximately
25-45% in influenza-like scenarios to about 60-85% in COVID-19-like scenarios when
compared to the naive approach (Figure S8). This effect is also more pronounced in
survey waves with stricter interventions (wave 19 compared to wave 43). When
evaluating other epidemiological measures, we observed a lower peak incidence when
simulating the epidemic with a frequency-based approach in the pandemic scenario
(Figure S9), while the impact on the epidemic duration and time to peak was less
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pronounced in the pre-pandemic scenario and extended over a longer period in the
pandemic scenario. Lastly, extinction rates depend on the reproduction number
assumed but are always computed to be higher for the epidemics simulated with the
naive approach, showing more pronounced relative differences in the pandemic
scenario (Table S3).

3.3. Influential factors
We examined mixing patterns with respect to intimacy level and found more
pronounced differences in the total number of distinct contacts when specifically
considering physical interactions, compared to analysing all contacts (Figure S10).
Furthermore, we consider the location where contacts occur by comparing interactions
that take place within and outside the household setting. It can be seen that during the
pre-pandemic period, the majority of contacts occurred outside the household (Figure
S11 and Figure S12), while during the pandemic, household interactions were the main
components of mixing patterns. In particular, we observed that Children and Teenagers
show high variability in terms of the number of contacts outside the home during the
pandemic, possibly caused by the interventions in place. We examined the impact of
temporal reconstruction on transmission dynamics for different lengths of the infectious
period, observing as expected that the influence is less pronounced for shorter
infection periods and becomes more significant for longer durations (Table S4).

4. Discussion
Social interactions are quintessential for characterising and describing the transmission
of respiratory infectious diseases, constituting a key element in modelling transmission
dynamics. Population-level epidemic models often neglect the temporal component of
human contact behaviour, treating interactions occurring on a specific day as
independent from those on other days. In this study, we reconstructed contact
interactions over the course of one week and investigated the implications of such a
reconstruction in modelling the transmission of respiratory diseases. In particular, we
considered two epidemiological settings in which human interactions have been shown
to differ widely, i.e., during a pre-pandemic and a pandemic stage.

Our findings align with established evidence from other studies regarding the
heterogeneity of contact behaviour, such as age, intimacy level, contact location, and
country [5,12,19,29,30]. We further demonstrated a high proportion of contact
repetition, emphasising its influence on contact patterns over time. Considering the
temporal aspect of contact interactions, especially in epidemiological contexts
characterised by a high frequency of contact repetition, such as schools and
workplaces, could provide valuable insights to develop intervention strategies in these
locations. Furthermore, we identified an increase in the proportion of daily contacts,
along with a decrease in the total number of contacts during the COVID-19 pandemic,
likely caused by the non-pharmaceutical interventions in place at the time [9]. This
finding can provide useful insights into setting population-level interventions for future
epidemic or pandemic threats, and further underlines the importance of collecting
comprehensive contact data in various settings, ensuring a better understanding of
different human interactions.
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One of the key elements that characterise super-spreading events is a particularly high
number of interactions [31,32]. In the attempt to gain insights into the drivers of
super-spreading events, one could reconstruct the number of distinct contacts made by
specific groups of individuals in specific locations. Our study highlights the significance
of accounting for the longitudinal aspect of contact behaviour, specifically addressing
the potential repetition of contacts. Linked with viral shedding kinetics, environmental
factors, and other contact characteristics (e.g., duration) [28], the total number of
distinct contacts provides crucial insights for identifying the circumstances under which
superspreading events can take place.

To unravel the implications of accounting for temporal contact patterns in modelling, we
simulated epidemics by implementing both a contact structure that accounts for
repetition, i.e., frequency-based approach, and a contact structure in which contact
behaviour is considered independent during consecutive days, i.e., naive approach. The
results indicate that omitting the temporal component of contact behaviour might lead
to an underestimation of the transmission parameter [17], and this becomes
particularly noticeable with an increase in contact repetitions, typical of the pandemic
period. Moreover, we investigated other outbreak characteristics (e.g., time to peak,
peak incidence, and epidemic durations), showing an impact of accounting for the
longitudinal aspect of contact interactions. We acknowledge that the reproduction
number may differ between the two approaches, potentially influencing the observed
differences. While outbreak characteristics are shown to depend on the temporal
nature of contact interaction, we observed that accounting for temporal components
has a lower impact on infections with high transmissibility, in line with what has been
previously observed by Smieszek et al (2009). Therefore, it is crucial to acknowledge
that, apart from contact patterns and transmission probability, other characteristics
(e.g., infectious period distribution) also play a role in shaping the epidemiological
outcome of an epidemic [33].

Social contacts exhibit greater complexity than the model assumptions. Specifically,
our assumption of daily contact, where an individual interacts every day with the same
person, may lead to an overestimation of repetition. In contrast, our assumption of
non-daily contact, occurring each time with a different individual, may underestimate
the impact of repetition. However, we focused on a time frame of one week, where
such assumptions are supposed to have a limited effect on the overall results.
Additionally, we only accounted for contact reciprocity at the population level rather
than the individual level (e.g., if i is a daily contact of j, this does not imply that j is a
daily contact of i) [17]. Further investigations are needed to assess whether individual
reciprocity may have additional effects. Furthermore, we restricted our analysis to the
stochastic SIR epidemic model. While it is possible to extend this to more complex
models, we expect the general findings established in this paper will similarly apply to
other models and modelling frameworks [21]. Finally, CoMix is a longitudinal survey
where participants may experience fatigue as the survey progresses [2]. When
correcting for the under-reporting, we implicitly assume that the impact of fatigue is
consistent for both daily and non-daily contacts. However, it can be argued that this
effect might vary across different contact frequencies. One approach could be to ask
about daily contacts once and only ask about non-daily contacts in later survey waves,
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as a way to minimise under-reporting while completing the survey.

5. Conclusions
This study describes the frequency of social interactions responsible for the
transmission of respiratory infectious diseases, in several EU countries in a
pre-pandemic setting and during the COVID-19 pandemic in Belgium. Our findings
underscore the importance of considering longitudinal aspects of social contact data
when assessing the total number of infections attributable to an infectious case.
Additionally, we emphasise the significance of investigating the temporal component in
population-level models for the spread of infectious diseases. Failure to account for the
repetition of contacts may result in an underestimation of the transmission potential of
infectious diseases. Moreover, our analysis reveals that mixing patterns are contingent
upon individual characteristics, such as age, and specific locations, including
households. These insights provide valuable guidance for shaping both local and
global intervention measures to limit the spread of respiratory infections.
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