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1 Abstract

Mendelian Randomization (MR) enables estimation of causal effects while controlling for unmea-
sured confounding factors. However, traditional MR’s reliance on strong parametric assumptions
can introduce bias if these are violated. We introduce a new machine learning MR estimator named
Quantile Instrumental Variable (IV) that achieves low estimation error in a wide range of plausible
MR scenarios. Quantile IV is distinctive in its ability to estimate nonlinear and heterogeneous
causal effects and offers a flexible approach for subgroup analysis. Applying Quantile IV, we in-
vestigate the impact of circulating sclerostin levels on heel bone mineral density, osteoporosis, and
cardiovascular outcomes in the UK Biobank. Employing various MR estimators and colocalization
techniques that allow multiple causal variants, our analysis reveals that a genetically predicted re-
duction in sclerostin levels significantly increases heel bone mineral density and reduces the risk of
osteoporosis, while showing no discernible effect on ischemic cardiovascular diseases. Quantile IV
contributes to the advancement of MR methodology, and the case study on the impact of circu-
lating sclerostin modulation contributes to our understanding of the on-target effects of sclerostin
inhibition.

2 Introduction

Instrumental Variable (IV) estimation is a technique used to estimate the causal effect of an exposure
on an outcome of interest from observational data. While IV estimation relies on the strong (and
untestable) assumption of access to a valid instrumental variable—some variable which is assumed to
only affect the outcome of interest via the exposure—it is a powerful technique because, unlike most
other causal inference strategies, it allows estimation even in the presence of unobserved confounders
of the exposure–outcome relationship. Because IV estimation relies on different assumptions than
other study designs, it can be used when other designs are not applicable or susceptible to bias.
Studies relying on IVs are increasingly being be used to provide robust evidence when combined
with designs that rely on different assumptions, to triangulate a causal effect from multiple sources
[1].

Genetic variants can be used as IVs to infer causal effects in Mendelian randomization (MR)
studies. MR leverages the fact that genetic variants are fixed throughout life and are unaffected by
environmental factors that may have confounding effects. The use of genetic variants as IVs has
enabled the estimation of the causal effect of lipoprotein fractions ([2, 3]), to predict the safety and
efficacy of modulating drug targets ([4, 5]) or to estimate the causal effect of circulating proteins
on diseases ([6, 7]). Despite these successes, MR studies may be biased either by failures of the
untestable “exclusion restriction” assumption due to horizontal pleiotropy—when the genetic vari-
ant affects the outcome both via the exposure and some other pathway—or due to inappropriate
assumptions on the functional form of the exposure–outcome relationship. Most recent work on
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MR has focused on the former, for example by allowing a fraction of the IVs to be invalid (e.g.
[8–10]). However, few studies addressed the validity of the parametric assumptions made by MR
estimators.

Most of the current MR estimators assume that both the genetic effect on the exposure and
the causal effect of the exposure on the outcome are linear. Recent efforts have substantially relaxed
these linearity assumptions, either by considering polynomial functional forms [11], locally linear
effects [12, 13] or semi-parametric models [14]. These innovations are important because they allow
non-constant treatment effects to be estimated. They do not assume that the effect of a unit increase
in the exposure is necessarily constant over the full range of the exposure allowing for more complex
but plausible dynamics such as threshold effects, diminishing returns or exponential effects. Despite
the progress made in the field of nonlinear MR, current models still rely on strong assumptions
including the assumption of a constant genetic effect amongst levels of the exposure and covariates
[15–17]. Nonparametric IV estimators [18, 19] do not require restricting the functional form relating
the exposure and the outcome beyond an additive assumption on the confounding, and as a result,
they allow for effect heterogeneity between the IV and exposure, and between the exposure and
outcome. Modeling effect heterogeneity allows estimating causal effects for specified subgroups of
individuals from a single model fit by conditioning the estimate on the levels of other covariates.
Estimation of conditional treatment effects is a powerful tool to anticipate effect heterogeneity, for
example, by investigating sex differences, age differences or other clinically meaningful subgroup
effects.

The development of nonparametric IV estimators has evolved independently from MR in the
econometrics, statistics and machine learning literature and there has been limited efforts to bridge
these worlds. Here, we harness recent developments in machine learning and nonparametric IV
estimation to propose a new estimator named Quantile IV that performs well in the context of
MR [18, 20]. Quantile IV, drawing from Hartford et al.’s DeepIV model, incorporates a crucial
simplification for enhanced performance in MR contexts without any added statistical assumption.
Specifically, DeepIV is a two-stage procedure that first models the conditional distribution of the ex-
posure given then IVs and covariates. This involves fitting a probabilistic model, often parametrized
by a neural network, and to sample values during training. In Quantile IV, we replace this step by
a neural network quantile regression and use simple averaging of the predicted conditional quantiles
to avoid sampling. In a realistic MR simulation setup, we show that our method outperforms the
default DeepIV estimator and other instantiations of this approach [14]. Using simulated data, we
show that our estimator achieves low error in all of the considered MR scenarios and we quantify
the coverage and type 1 error rate of confidence intervals obtained by bootstrap aggregation. To
evaluate our MR estimator in a real-world scenario, we evaluated the causal effect of a decrease in
circulating sclerostin on bone and cardiovascular diseases using a two-sample approach within the
UK Biobank. Sclerostin is the drug target of romosozumab, an anti-sclerostin monoclonal antibody
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used to prevent fractures in individuals with osteoporosis [21, 22]. Our investigation of possible
cardiovascular adverse events aims to clarify safety concerns related with sclerostin inhibition stem-
ming from the observation of a higher number of adjudicated serious cardiovascular events in the
treatment arm of clinical trials of romosozumab [21–24].

3 Results

3.1 Evaluation of nonparametric IV estimators in realistic MR simula-
tion scenarios

To evaluate the use of neural network-based nonparametric IV estimators in MR, we evaluated
the performance of two recently proposed estimators (DeepIV [20] and DeLIVR [14]), and our
new proposed method (Quantile IV); we also compared all three with the traditional linear two-
stage least squares estimator. There is no single parameter describing the shape of the causal
relationship between the exposure and outcome in nonlinear settings. We use the square root
of the mean squared error (RMSE) between the true causal relationship and the IV regression
function to evaluate the performance of the different estimators. The RMSE is taken over evenly
spaced points spanning the range of the exposure. We computed this metric for 200 simulation
replicates, and we consider scenarios varying the causal relationship shape, the sample size, the
variance explained in the exposure by the IVs, the strength of confounding and the number of
IVs (Table 1). We report the results over the range of the exposure encompassing 95% of the
distribution (Figure 1) but observed similar results over the full range (Supplementary Figure A1).
Quantile IV was competitive and achieved low RMSE across all of the simulation scenarios. The
linear estimate (two-stage least squares, 2SLS) is provided as a baseline comparison that is not
expected to outperform the nonparametric estimators except in the linear model. Furthermore, we
observed that the DeepIV estimator had high error and variability across the considered parameters
prompting us to focus on DeLIVR and Quantile IV for quantitative comparisons. We used t-tests
paired by simulation replicates to compare DeLIVR and Quantile IV (Table 2 and Supplementary
Table A1). In most of our simulation scenarios, Quantile IV significantly outperformed DeLIVR at
the nominal P-value threshold of 0.01 (12/15 scenarios when considering 95% of the exposure range
and 9/15 scenarios when considering the full range). DeLIVR significantly outperformed Quantile
IV when the number of instruments was set to 100, the largest number of IVs considered in our
study. In all our simulations, there was a linear and homogeneous effect of the IVs on the exposure,
which is an assumption made by DeLIVR, favoring this model.
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Table 1: Values taken by the different parameters in the simulation study. We
repeated every simulation 200 times and the bold values indicate the reference values for
the parameters. The reference value represents the fixed value of a simulation parameter
used when other simulation parameters are varied.

Simulation parameter Simulated Values

Structural equation 0.4x, 0.2(x� 1)2, max(x� 2, 0)
Sample size 10 000, 50 000, 100 000
Heritability of the exposure 0.1, 0.2, 0.5
Error correlation (confounding strength) -0.6, 0.3, 0.6
Number of independent instrumental variables 2, 10, 100

Table 2: Comparison between the mean square root of the mean squared

error between DeLIVR and Quantile IV across the different Mendelian ran-

domization simulation scenarios and over the central 95% of the empirical

exposure distribution. The P-value is from a paired t-test by simulation replicate.

Simulation parameter Sim. value DeLIVR Mean
RMSE (s.d.)

Quantile IV Mean
RMSE (s.d.) P-value

Sample size
10,000 0.21 (0.06) 0.22 (0.10) 0.094
50,000 0.17 (0.03) 0.13 (0.04) 2.81⇥ 10�22

100,000 0.18 (0.04) 0.11 (0.02) 1.34⇥ 10�57

Instrument strength
0.05 0.18 (0.04) 0.15 (0.05) 1.50⇥ 10�10

0.1 0.17 (0.03) 0.13 (0.04) 2.74⇥ 10�24

0.5 0.21 (0.04) 0.12 (0.02) 3.01⇥ 10�71

Causal relationship shape
Linear 0.08 (0.04) 0.06 (0.03) 1.79⇥ 10�5

Quadratic 0.18 (0.04) 0.12 (0.03) 7.89⇥ 10�38

Threshold 0.06 (0.03) 0.06 (0.03) 0.061

Confounding
-0.6 0.18 (0.03) 0.15 (0.05) 8.53⇥ 10�12

0.3 0.18 (0.09) 0.13 (0.04) 4.07⇥ 10�15

0.6 0.18 (0.03) 0.11 (0.03) 9.62⇥ 10�58

Number of instruments
2 0.23 (0.09) 0.17 (0.09) 3.38⇥ 10�20

10 0.17 (0.02) 0.12 (0.04) 5.58⇥ 10�40

100 0.16 (0.01) 0.22 (0.04) 2.35⇥ 10�41

A drawback of many nonparametric IV methods is that they do not easily allow for the com-
putation of confidence intervals or provide means to quantify uncertainty. We evaluated the use of
bootstrap aggregation (bagging) to construct confidence intervals focusing on the simulation sce-
nario consisting of the baseline value for all of the simulation parameters (Table 1). We observed
that coverage of the average treatment effect (ATE) for a unit increment in the exposure was close
or upwards of the nominal value across most of the exposure range (Supplementary Figure A2).
We recommend reporting effects within the central range of the exposure, where coverage was more
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consistent (e.g. between the 2.5th and 97.5th percentiles of the empirical distribution of the expo-
sure). We also observed a surprising drop in coverage below the nominal level for exposure values
near 0 despite a low absolute error in the estimation of the average treatment effect (Supplementary
Figure A2). We attribute this to overconfidence of the bagging confidence interval in this region
which could be due to factors related to the selection of the neural network parameter initialization
or architecture. We used a similar strategy to evaluate the false positive rate and observed that our
estimator did not exceed the nominal level (Supplementary Figure A3). Across the range of the
exposure, we observed an increase of the type 1 error rate close to the nominal level at a similar
location to the decrease in coverage. This observation is concordant with the hypothesis that the
neural network parameter initialization or architecture may be further optimized to improve on
these finite sample results.

3.2 Mendelian randomization study population

We used a two-sample design within the UK Biobank (split sample) for this study. We used a subset
of 42,830 participants with available sclerostin measurements to estimate all the effect related to
this measurement. We used a non-overlapping subset of 370,218 participants to estimate all the
genetic effects related to our outcomes of interest. Descriptive statistics for both datasets are shown
in Supplementary Table A2.

3.3 Genetic association and colocalization analysis of circulating scle-
rostin and outcomes in the UK Biobank

To identify cis-pQTLs associated with circulating sclerostin levels, we conducted a genetic associ-
ation analysis of 1,449 common variants at the SOST locus in the UK Biobank (Supplementary
Figure A4). Our goal was to select strong genetic predictors of sclerostin levels for subsequent MR
analyses by using finemapping to select IVs. A SuSiE analysis [25] revealed two 95% credible sets
with log10 of the Bayes factor of 10.3 and 5.0. The first set contained 17 variants and the variant
with the largest posterior inclusion probability (PIP) was rs6416905 (PIP = 0.078). The second set
contained 6 variants and rs66838809 had the largest posterior inclusion probability (PIP = 0.48).
Variants within the two credible sets were in high linkage disequilibrium (LD) with a mean r2 = 1

for the first set and mean r2 = 0.89 for the second set. We selected the two variants with the high-
est PIP for subsequent MR analyses as they were the best representatives of the two independent
signals identified by SuSiE. As a sensitivity analysis, we also used a forward stepwise regression
procedure and obtained concordant results (Supplementary Note). The estimated effects of the two
selected IVs on circulating sclerostin levels are presented in Supplementary Table A3.

We used the same genetic association and fine-mapping procedure for the outcomes of inter-
est, namely heel bone mineral density, osteoporosis, and cardiovascular outcomes (PCI/CABG, MI,
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Table 3: Association statistics between the two lead variants for the scle-

rostin pQTL credible sets identified by SuSiE and quantitative traits and

diseases. All of the effects are presented with respect to the sclerostin reducing allele.
The UK Biobank associations were estimate in the current study and we present as-
sociations published by the GTEx (sclerostin expression) and CARDIoGRAMplusC4D
(cardiovascular diseases) consortia.

rs6416905 rs66838809
Dataset Coef. / OR (95% CI) P-value Coef. / OR (95% CI) P-value

UK Biobank quantitative traits

pQTL -0.059 (-0.072, -0.046) 1.50⇥ 10�18 -0.097 (-0.120, -0.074) 1.80⇥ 10�16

Heel bone mineral density 0.032 (0.026, 0.039) 3.30⇥ 10�25 0.072 (0.061, 0.083) 5.80⇥ 10�38

UK Biobank diseases (OR scale)

Osteoporosis 0.954 (0.934, 0.976) 3.10⇥ 10�5 0.834 (0.800, 0.870) 3.80⇥ 10�17

Myocardial infarction 0.988 (0.967, 1.010) 0.28 1.017 (0.979, 1.057) 0.39
Acute CAD 1.000 (0.981, 1.019) 0.99 1.042 (1.008, 1.078) 0.02
Ischemic stroke 0.986 (0.955, 1.018) 0.38 1.002 (0.946, 1.061) 0.95
PCI/CABG 1.007 (0.984, 1.030) 0.58 1.064 (1.022, 1.108) 0.003

Summary statistics (consortia) quantiative traits

GTEx V8 eQTL (artery tibial) -0.253 (-0.300, -0.206) 6.00⇥ 10�23 -0.311 (-0.410, -0.211) 2.40⇥ 10�9

GTEx V8 eQTL (artery aorta) -0.247 (-0.319, -0.176) 7.00⇥ 10�11 -0.401 (-0.542, -0.261) 5.00⇥ 10�8

Summary statistics (consortia) diseases (OR scale)

CARDIoGRAM MI 1.002 (0.981, 1.024) 0.83 1.043 (0.998, 1.091) 0.06
CARDIoGRAM CAD 0.991 (0.973, 1.010) 0.37 0.997 (0.958, 1.038) 0.90
CARDIoGRAM & UKB CAD 0.994 (0.978, 1.011) 0.48 0.999 (0.966, 1.033) 0.96

ischemic stroke and acute CAD). The association P-values expressed with respect to the sclerostin
decreasing allele are shown in Figure 2 along with measured LD in the region. We identified sig-
nificant associations with heel bone mineral density and the top association was with rs66838809
(chr17:41,798,621 G/A), whose “A” allele had �̂ = 0.072, 95% CI (0.061, 0.083), P = 5.8 ⇥ 10�38

(Table 3). This variant is also a lead variant for one of the sclerostin pQTL credible sets (Supple-
mentary Table A3). We identified an association between genetic variants at the SOST locus and
osteoporosis and the lead variant was again rs66838809 (chr17:41,798,621 G/A) whose “A” allele had
OR = 0.83, 95% CI (0.80, 0.87), P = 3.8⇥10�17. To formally test whether the observed associations
were due to shared causal variants with the sclerostin levels, we conducted a colocalization analysis
[26]. The colocalization algorithm estimates the posterior probability (PP) of four scenarios denoted
by H1 to H4 including the existence of a shared causal variants underlying the association signal in
both of the considered traits (H4). It is possible to test for these hypotheses assuming a single causal
variant, or to use finemapping and test pairs of credible sets to allow for multiple causal variants
per region [26]. Colocalization analysis revealed strong evidence of a shared causal variant between
heel bone mineral density and circulating sclerostin levels. The two sclerostin pQTL credible sets
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colocalized with heel bone mineral density credible set with PPH4 = 0.964 and 0.997. There was
also strong evidence for colocalization between osteoporosis and one of the pQTL credible sets with
posterior probabilities of a shared causal variant of 0.996. The second sclerostin pQTL credible set
(represented by rs6416905) had no evidence of colocalization with osteoporosis (PPH4 = 0.013).
Overall, there was robust evidence of colocalization between genetic associations with circulating
sclerostin levels, heel bone mineral density and osteoporosis recapitulating the known protective
effect of pharmacological sclerostin inhibition in osteoporosis [21, 22].

There was evidence of genetic associations at the SOST locus with some of the considered
cardiovascular outcomes (Figure 2). The outcome with the most significant genetic association was
myocardial infarction and the “T” allele of the lead variant, rs75086002 (chr17:42,021,918 C/T), had
an OR of 0.92 95% CI (0.89, 0.96) P = 5.9⇥10�6. This association does not reach the genome-wide
significance threshold, but it did cross the conservative Bonferroni threshold considering multiple
testing of 1,449 variants (3.5⇥ 10�5 = 0.05/1449). Using SuSiE, we inferred a 90% credible set for
this association signal, but it did not colocalize with the sclerostin pQTL credible sets (PPH4 with
the rs6416905 credible set = 0.005 and PPH4 with the rs66838809 credible set = 0.004). Visual
inspection of the association signals and inferred credible sets is also consistent with the hypoth-
esis of distinct association signals for myocardial infarction and sclerostin levels (Supplementary
Figure A5). The most probable hypothesis according to colocalization analysis is that the associa-
tions are due to distinct genetic variants (PPH3 = 0.78). Because inference of credible sets can be
statistically challenging, we also tested colocalization assuming the single causal variant assump-
tion. The results were concordant with the absence of colocalization between sclerostin pQTLs
and cardiovascular diseases (largest PPH4 = 0.01 with ischemic stroke). We retrieved the summary
association statistics between our two selected sclerostin pQTLs and the considered outcomes in the
UK Biobank and in data from the CARDIoGRAMplusC4D consortium which includes over 70,000
cases of CAD (Table 3). In our UK Biobank analysis, there was a nominally significant association
of rs66838809 with acute CAD (P = 0.02) and PCI/CABG (P = 0.003), but no evidence of asso-
ciation in data from the CARDIoGRAMplusC4D consortium (P-value for the largest CAD study
was 0.48 for rs6416905 and 0.96 for rs66838809).

Previous studies have considered eQTLs of sclerostin levels as instruments in MR studies [23,
27]. We sought to evaluate whether there was a shared genetic basis to the regulation of sclerostin
eQTLs and circulating sclerostin levels. The selected sclerostin pQTLs were robustly associated with
SOST expression in aorta and tibial arteries (P  5⇥ 10�8, Table 3). We observed that the eQTLs
and pQTLs were located near each other on the chromosome and were significantly associated with
both sclerostin gene expression and circulating levels (Supplementary Figures A6 to A8). Statistical
colocalization analysis however suggests that the underlying causal variants are different (Max
PPH4 = 0.12 for aorta and 0.004 for tibial artery, Supplementary Figure A9). This finding could
be due to the presence of different genetic regulatory mechanisms behind sclerostin gene expression
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in comparison to circulating protein levels, but it could also be due to limited statistical power
in GTEx or a mismatch between the GTEx and UK Biobank populations hampering statistical
finemapping analyses.

We conclude that association analysis identified strong cis-pQTLs of circulating sclerostin
levels that co-localize with genetic associations with heel bone mineral density and osteoporosis.
Despite some evidence of genetic associations with cardiovascular outcomes at the SOST locus,
evidence from large consortia of CAD and colocalization analyses suggest that they may be unrelated
to genetic variants influencing the regulation of circulating sclerostin levels.

3.4 Mendelian randomization of the effect of circulating sclerostin on
bone and cardiovascular diseases

To estimate the causal effect of a genetically predicted reduction in circulating sclerostin levels
on bone and cardiovascular traits and outcomes, we considered three complementary approaches
suitable for the cis-MR context [28]. Using the finemapped sclerostin pQTLs as IVs, we used the
inverse variance weighted (IVW) estimator accounting for LD and our Quantile IV nonparametric
estimator. As a complementary approach, we used PC-GMM, a novel estimator that can leverage all
of the variants in the region [29]. All of the methods estimated that reducing circulating sclerostin
would result in a statistically significant increase in heel bone mineral density and a reduction in
the risk of osteoporosis (Table 4). However, the magnitude of the estimates was different across
estimators. We report the estimated effect for both a 1 s.d. reduction in sclerostin levels about
the mean, and a 2 s.d. reduction about the mean (Table 4). These two contrasts correspond,
assuming normality in the distribution of circulating sclerostin levels, to a reduction from the mean
to the level of the bottom 16% or the bottom 2% of the distribution of the exposure. The IVW
estimator suggests that a 2 s.d. reduction in sclerostin levels about the mean reduces the odds of
osteoporosis by a surprising 92% (OR = 0.085). For the same change in circulating sclerostin levels,
Quantile IV estimates an OR = 0.626. Upon visual inspection of the Quantile IV estimate, there
was no evidence of pronounced nonlinearity (Figure 3). When considering heel bone mineral density
and osteoporosis as outcomes, Quantile IV estimated smaller, albeit significant, causal effects than
conventional linear methods.

Nonparametric IV estimation enables the estimation of conditional average treatment effects
(CATE) without explicitly specifying an interaction model. Such effects represent the average
effect of a treatment in a specific subset of individuals and can be used to assess treatment response
heterogeneity. To evaluate if the causal effect of varying circulating sclerostin levels differs across
levels of covariables, we estimated CATEs in men, women and in individuals with different values of
age at baseline. Age did not modify the effect of sclerostin inhibition on heel bone mineral density
or osteoporosis (P = 0.43 and P = 0.35, respectively). However, we observed sex heterogeneity as
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the CATE for a 1 s.d. decrease in circulating sclerostin levels was 0.15 for women vs 0.09 for men
(interaction P = 2.3⇥ 10�22, Supplementary Table A4, Supplementary Figure A10). We observed
directionally concordant sex-differences on the effect of sclerostin inhibition on osteoporosis with
interaction P = 0.04, but the effect difference was small.

Table 4: Mendelian randomization estimate of a 1 s.d. or 2 s.d. reduction

in sclerostin levels about the mean on heel bone mineral density and osteo-

porosis. Three different MR estimators are considered, and the estimates are from a
two-sample MR within the UK Biobank.

Phenotype Estimator ATE 1 s.d. reduction (95% CI) ATE 2 s.d. reduction (95% CI)

Heel BMD IVW 0.639 (0.554, 0.723) 1.277 (1.108, 1.446)
PC-GMM 0.526 (0.162, 0.889) 1.051 (0.324, 1.778)
Quantile IV 0.122 (0.117, 0.125) 0.236 (0.230, 0.243)

Osteoporosis (OR scale) IVW 0.291 (0.213, 0.398) 0.085 (0.045, 0.158)
PC-GMM 0.349 (0.182, 0.670) 0.122 (0.033, 0.449)
Quantile IV 0.794 (0.612, 0.949) 0.626 (0.373, 0.857)

When estimating the causal effect of a reduction of sclerostin levels on cardiovascular out-
comes there was disagreement between the results obtained by different estimators. The IVW and
PC-GMM estimated a nominally significant increase in the risk of PCI/CABG (PIVW = 0.026,
PPC-GMM = 0.017, Supplementary Figures A11 and A12) and PC-GMM estimated a nominally sig-
nificant increase in the risk of acute CAD (P = 0.021, Supplementary Figure A12). Quantile IV,
on the other hand, estimated a nominally significant protective effect on PCI/CABG (OR = 0.74,
95% CI (0.52, 0.97), Supplementary Figures A13 and A14). However, we interpret these results
with care as estimates from the three estimators were heterogeneous and there was no support-
ing colocalization evidence for shared causal variants between sclerostin pQTLs and cardiovascular
diseases in our previous analysis. We attribute these results to bias due to LD with other genetic
variants that have effects on the outcome independently from sclerostin levels and investigate this
in the next section.

3.5 Mendelian randomization analyses accounting for pleiotropic effects

In the MR analyses adjusted for age, sex, and ancestry principal components, we observed conflicting
effects for PCI/CABG despite limited evidence of a genetic associations between SOST variants and
this outcome. The top association was with rs370088062, chr17:41,657,403 “CT” to “C” deletion,
with P = 2.9 ⇥ 10�4. This variant showed no association with circulating levels of sclerostin
(P = 0.40), indicating that the observed effects in Mendelian Randomization might be biased due
to LD. More precisely, if the IVs are in LD with other genetic variants that have effects on the
outcome independently from sclerostin levels, the exclusion restriction assumption will be violated
biasing the MR estimates. This problem is particularly challenging in the cis-MR context because
of LD and the limited number of candidate IVs. To identify the variants most at risk of violating
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the MR assumptions, we repeated the association analysis with PCI/CABG adjusting for all of the
pQTLs identified in the stepwise conditional analysis (Supplementary Note). We then compared
the association P-values before and after adjustment for the pQTL associations under the premise
that variants whose association is unattenuated may influence PCI/CABG risk through pathways
unrelated to sclerostin (Supplementary Figure A15). This analysis revealed a group of correlated
variants including rs113533733 that had low association P-values with PCI/CABG after adjusting
for the sclerostin pQTL variants.

We sought to confirm that rs113533733 may have effects on other genes by consulting the
Open Targets Genetics platform [30]. This online resource includes a variant to gene prioritization
module based in part on the distance to transcription start sites and pQTL, splice QTL (sQTL)
and eQTL data. On this platform, the most likely gene assigned to rs113533733 is MPP3 (score
= 0.31) with support from sQTL and eQTL data. The other prioritized genes are DUSP3 (score
= 0.18), CFAP97D1 (nearest gene, score = 0.15) and MPP2 (score = 0.13). There is no evidence
linking SOST to rs113533733 except for its distance to the transcription start site of 41 kb and the
assigned score is 0.06. In GTEx V8, the strongest eQTL for this variant was with MPP3 in the
heart left ventricle tissue (P = 2.1⇥ 10�5). Considering this external evidence and our association
analysis conditional on sclerostin pQTLs, we concluded that rs113533733 may induce bias in the
MR analysis and repeated our MR estimation adjusting for this variant.

In the MR analysis adjusted for rs113533733, the effect of a 1 s.d. reduction in circulating
sclerostin levels on heel bone mineral density and osteoporosis remained significant with no atten-
uation in the P-value for all methods (Figure 4 and Supplementary Table A5). After adjustment
for rs113533733 the estimated causal effects of sclerostin levels on the considered cardiovascular
diseases were null for PC-GMM and Quantile IV (Figure 4, Supplementary Figure A16). The IVW
had an inconsistent estimate for the effect of sclerostin reduction on PCI/CABG (OR = 1.41, 95%
CI (1.02, 1.96), P = 0.04), but the large confidence interval, discordance with the other estimators,
absence of effect with related traits and lack of support from colocalization analyses suggest the
true effect is likely null.
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Figure 1: Root mean squared error between the estimated IV regression and

the true causal function over a grid spanning 95% of the empirical range of the

exposure. The boxplot for every estimator represents variability over 200 simulation
replicates. The simulation parameter values in bold correspond to the reference values.
2SLS: Two-stage least squares, DeLIVR [14], DeepIV [20], Quantile IV: proposed method.
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Figure 2: Association between common genetic variants at the SOST locus

(chr17:41,631,099-42,236,156) and the exposure and outcomes considered in

our MR study in the UK Biobank. The variants are ordered with respect to their
genomic coordinate and the leftmost part of the plot shows the observed LD between
the variants. The color lines represent association P-values for every genetic variant and
phenotype colored with respect to the sign of the regression coefficient (red for trait
increasing and blue for trait decreasing). The sclerostin decreasing allele is the coded
allele throughout.
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Figure 3: Quantile IV estimate of the average effect varying the levels of

circulating sclerostin about the mean on heel bone mineral density and os-

teoporosis in the UK Biobank. The shaded region corresponds to 90% bootstrap
confidence intervals. The plots cover the central 99% of the exposure range.
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4 Discussion

This study introduces Quantile IV, a novel nonparametric MR estimator that offers computational
stability while introducing few statistical assumptions. This innovation is particularly relevant given
the limited exploration of nonparametric IV estimators in MR contexts. We evaluated Quantile IV
across many realistic MR scenarios and applied it to study the causal effect of circulating sclerostin
inhibition on heel bone mineral density, osteoporosis and cardiovascular diseases. Compared to
DeepIV, another nonparametric IV estimator, Quantile IV consistently showed lower error and
greater stability in all simulations. To our knowledge, nonparametric IV estimators have scarcely
been tested and applied in MR. He et al. previously proposed DeLIVR, which we consider to be
a semi-parametric relaxation of the fully nonparametric estimator [14]. We have confirmed that
DeLIVR performs better and more consistently than DeepIV in our simulations. However, we note
that this superiority comes at the cost of restrictions on the functional form of the causal effect and
on imposing the additional assumption that the linear model with homoscedastic errors holds for
the first stage. These two conditions were fulfilled in our simulation study favoring DeLIVR over
DeepIV and Quantile IV which do not make these simplifying assumptions. However, Quantile IV
consistently demonstrated robust performance with minimal error across all the tested scenarios.
These scenarios probed various elements such as the impact of differing sample sizes, the strength
of the IVs, the shape of the causal effect, the degree of confounding influences, and the total number
of IVs employed. Quantile IV’s performance varied more in simulations with the smallest sample
size (n = 10, 000). The only scenario where DeLIVR significantly outperformed Quantile IV is
when the number of IVs was set to the largest number (100 independent IVs), but we reiterate
that the simulation favored DeLIVR as the linearity and constant error assumptions held. A
limitation of Quantile IV, as a machine learning-based estimator, is its lack of direct methods for
uncertainty quantification. We used a bootstrap aggregation (bagging) strategy to address this
limitation allowing us to construct confidence intervals and compute P-values for the hypothesis
that the ATE (or CATE) is null. The bagging confidence intervals had good coverage of the true
value on average, but we did notice some localized miscoverage despite low estimation error. We
attribute this finding to the neural network regularization and weight initialization which may favor
null effects resulting in conservative estimates when the ATE is close to zero. The false positive
rate was well controlled in our simulations, never exceeding the nominal level.

The causal effect of inhibiting sclerostin on bone and cardiovascular health has been predicted
using MR in the past [23, 27, 31]. However, the results from previous MR studies are conflicting
and we opted to revisit the question using updated MR estimators, support from finemapping
and colocalization analyses and circulating sclerostin measurements from the UK Biobank Pharma
Proteomics Projects. To briefly summarize previous work, Bovijn et al. used IVs at the SOST locus
that were ascertained based on their effect on bone mineral density. Using MR, they recapitulated
the protective effect of sclerostin inhibition on osteoporosis and fracture risk, and estimated an
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increase of 18% in the odds of MI per 0.09 g/cm2 of bone mineral density (P = 0.003) [23]. The
second MR study by Holdsworth et al. selected genetic variants at the SOST locus that were
eQTLs of SOST in arterial or heart tissue and associated with bone mineral density [27]. These
variants were reported to not be associated with cardiovascular outcomes including MI (P = 0.73)
and CAD (P = 0.73) in CARDIoGRAMplusC4D. Another study by Zheng et al. conducted a
GWAS meta-analysis of circulating sclerostin including 33,961 individuals from 9 cohorts. A total
of 18 conditionally independent variants were associated with circulating sclerostin and the authors
have conducted MR based on all of the variants (including trans effects) and a subset of cis acting
variants. The cis-MR analysis from Zheng et al. suggests an increased risk of MI with an OR of
1.35 (P = 0.04) per 1 s.d. lowering of sclerostin levels. Faced with these contradictory results, we
first investigated the possibility of bias due to LD with variants that could influence cardiovascular
disease risk independently from sclerostin. Using finemapping, we were able to infer two credible sets
explaining the cis-regulatory signal of circulating sclerostin levels. The variants in the circulating
sclerostin credible sets colocalized with the osteoporosis and heel bone mineral density credible
sets, but not with MI or other cardiovascular diseases. This result suggests that previous MR
estimates may have been biased due to the presence of LD with cardiovascular risk variants that
act independently from the modulation of circulating sclerostin levels.

We then conducted cis-MR analyses to estimate the effect of a 1 s.d. reduction in circulating
sclerostin on heel bone mineral density, osteoporosis and cardiovascular outcomes. In accordance
with the well-known clinical effect of pharmacological sclerostin inhibition [21, 22], our MR estimates
showed that a genetically predicted reduction in circulating sclerostin levels leads to an increase
in heel bone mineral density and a decrease in the risk of osteoporosis. There was evidence of sex
differences with a larger increase in bone mineral density for a same reduction in sclerostin levels in
women compared to men (0.15 vs 0.09). This is concordant with the difference observed comparing
the ARCH trial of postmenopausal women to the BRIDGE trial of men where monthly injection of
210mg of romosozumab increased lumbar spine bone mineral density by 13.7% vs 12.1% and total
hip bone mineral density by 6.2% vs 2.5% [21, 22]. In our study, the magnitude of the Quantile IV
estimate for the effect of sclerostin inhibition on heel bone mineral density and osteoporosis were 4 to
5 times smaller than the parametric estimates from IVW and PC-GMM. This effect could be due to
the linear extrapolation of small genetic effects (e.g. allelic effects of < 0.1s.d.) to predict the effect
of a comparatively larger 1 s.d. decrease in circulating sclerostin. MR estimates are often larger
than effects estimated in randomized controlled trials and the difference is typically attributed to
the comparison of lifelong exposure effects compared to the effect of short-term interventions after
disease onset [32]. Whether violations of parametric assumptions contribute to the inflation of
effect estimates in real world settings is unclear. To better contextualize these findings, it would be
interesting to compare the MR estimate to the pharmacological effect of romosozumab. However, to
maximize statistical power in our study, we estimated causal effects on estimated heel bone mineral
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density which is different from clinical measurements used in clinical trials which rely on total
hip and lumbar spine bone mineral density acquired via dual-energy X-ray absorptiometry. The
effect of anti-sclerostin monoclonal antibodies on circulating sclerostin levels has not been assessed in
clinical trials further hampering direct comparisons with MR. Finally, our MR estimates accounting
for possible bias due to LD were concordant with colocalization analyses and results from large CAD
genetics consortia and found a null relationship between genetically predicted sclerostin levels and
ischemic cardiovascular diseases.

In this study, we proposed a new MR estimator, Quantile IV, and demonstrated its per-
formance in simulation models. Our estimator makes few modeling assumptions when compared
to traditional methods and it allows for non-linearity and effect heterogeneity. Unlike other MR
estimators, Quantile IV allows the estimation of conditional average treatment effect without spec-
ifying an interaction model, which is an important tool to assess treatment response heterogeneity.
This could be used, for example, to better predict whether subgroups of patients may benefit more
from a medical intervention. Our work only covered a small subset of the literature on machine
learning IV estimation. We focused on estimators from the nonparametric IV estimation literature
stemming from the work of Newey and Powell [18]. There are alternative approaches that have yet
to be evaluated in MR including methods based on kernel instrumental variable regression, deep
generalized method of moments or linear IV models with learned representations [33–35]. How these
methods compare to Quantile IV and other MR estimators remains unknown. Despite good overall
performance, Quantile IV is a computationally intensive method, especially if confidence intervals
need to be estimated via bootstrapping. This could be alleviated by using more efficient forms
or bootstrapping or deep probabilistic models which could be considered in future work. Another
limitation of any nonparametric estimator is that it requires access to individual level data.

We applied our estimator to tackle a challenging medical question, namely, to predict the
effect of sclerostin inhibition on bone and cardiovascular health. We opted for a two-sample design
within the UK Biobank to reduce the risk of weak instrument bias due to statistical sampling. Our
MR study and colocalization analyses suggest that inhibiting sclerostin increases heel bone mineral
density and reduces the risk of osteoporosis in the general population. This result is concordant
with the findings of clinical trials of romosozumab, a pharmacological sclerostin inhibitor. Our
MR and colocalization analyses suggest that inhibition of sclerostin will not lead to an increased
risk of ischemic cardiovascular diseases. Because of the limited number of observed cardiovascular
outcomes in our study, it is possible that a small causal effect would remain undetected due to low
statistical power. However, a false negative finding is unlikely because the lead sclerostin pQTLs
were not significantly associated with MI or CAD in the largest available dataset of GWAS summary
statistics from the CARDIoGRAMplusC4D consortium. The numerical increase in cardiovascular
events observed in individuals treated with romosozumab in clinical trials could be explained by off
target effects that are independent from the modulation of sclerostin and not captured by genetic
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studies.

Our study not only introduces a promising MR estimator but also provides new insights into
the effects of sclerostin inhibition on bone and cardiovascular health. These findings contribute to
the broader understanding of the on-target effects of sclerostin inhibition and the potential of MR
to study drug safety and efficacy.

5 Methods

5.1 Study population

The UK Biobank is a densely phenotyped population cohort of 500,000 participants that have been
genotyped and imputed [36]. At the recruitment visit, UK Biobank participants undergo a thor-
ough assessment with health questionnaires (touchscreen and verbal interview), blood and urine
biomarker panels and physical measurements including ultrasound bone densitometry. Linkage to
national health system hospitalization and death records further enable the algorithmic definition
of many diseases including acute cardiovascular events (Supplementary Methods, Supplementary
Table A6). A subset of 46,673 randomly selected participants enrolled in the UK Biobank Pharma
Protemics Project have high throughput proteomics data measuring around 3,000 circulating pro-
teins using the Olink platform. The current study is based on a subset of the UK Biobank cohort
described in more details in the Supplementary Methods.

5.2 Genetic association analyses

To identify genetic variants associated with circulating sclerostin levels (pQTLs), we conducted a
genetic association analysis of 1,449 common (MAF � 1%) biallelic genetic variants at the SOST
locus in 42,830 UK Biobank participants with available sclerostin measurements. The circulating
sclerostin measurements are taken from high throughput proteomics measurements of circulating
proteins (Supplementary Methods) [6]. We defined the SOST locus using the gene boundaries and
including 400kb padding upstream and 200kb padding downstream. The final coordinates of the
locus on the GRCh37 reference build are chr17:41,631,099-42,236,156. We used Plink v2.00a2LM
AVX2 Intel (25 Oct 2019) using the generalized linear model (--glm) option implementing linear
and logistic regression for association testing. The association statistics (i.e. estimated coefficients
and standard errors) were subsequently used for MR estimation using parametric models. We used
the same procedure to estimate the effect of genetic variants at the SOST locus on the outcomes
considered in the MR study. We used linear regression for heel bone mineral density and logistic
regression for osteoporosis, PCI/CABG, MI, acute CAD and ischemic stroke. All the genetic asso-
ciation models were adjusted for age at baseline, sex and the first 5 principal components to adjust
for residual population structure.
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5.3 Gene expression and cardiovascular disease summary statistics

We used data from the CARDIoGRAMplusC4D consortium to evaluate genetic associations from
a well-powered study. We used summary statistics from a GWAS meta-analysis considering genetic
variants imputed using the 1000 Genomes project data and including 60,801 cases of CAD [37]. We
also used data from the updated meta-analysis from CARDIoGRAMplusC4D that includes 10,801
additional CAD cases from the UK Biobank [38]. We consider this dataset for colocalization and
association analyses, but not for the MR analyses because Quantile IV requires individual level
data, as do most nonlinear MR estimators.

We investigated the overlap between the genetic regulation of sclerostin circulating protein
level and gene expression quantitative trait loci (eQTLs) in aorta and tibial artery tissues in GTEx
V8 [39]. We selected these tissues because they are the ones with the most SOST expression and
they are plausible candidates to explain a cardiovascular impact of sclerostin. We note that bone
tissue is not included in GTEx hampering our ability to identify bone eQTLs of sclerostin.

5.4 Finemapping and colocalization analyses

Finemapping is used to infer credible sets of genetic variants that, under the model assumptions, will
include the true causal variant at a specified probability level. We used the “Sum of Single Effects”
statistical model (SuSiE) which considers the sum of regression models with a single non-zero effect
for finemapping. This approach can accommodate multiple causal variants within a region and
allows the computation of variant posterior inclusion probabilities (PIPs) for every variant [25]. We
used the implementation from the “susieR” R package (v0.12.35).

Colocalization analysis compares the estimated association between genetic variants and a
pair of traits to infer the presence or absence of shared causal variants. The “coloc” model estimates
the posterior probability of five mutually exclusive hypotheses. H0 is the hypothesis that there are
no causal variants, H1 that there is only a causal variant for trait 1, H2 that there is only a causal
variant for trait 2, H3 that there are causal variants for both traits and that they are distinct and
H4 that there is a shared causal variant for both traits. The original publication only accounted
for a single causal genetic variant per association signal [40], but this assumption was subsequently
relaxed [26]. To account for multiple causal variants, finemapping is first used to derive credible
sets, and pairwise colocalization between credible sets for the two traits is tested. We use this
approach in our study in instances where we were able to infer credible sets with coverage � 85%.
When unable to infer credible sets, we assumed a maximum of a single causal variant per trait. We
used the “coloc” R package (v5.2.2) to conduct all of the colocalization analyses (“coloc.abf” and
“coloc.susie” functions) with the default prior values and LD matrices computed in the subset of UK
Biobank participants that passed our genetic quality control. We followed the recommendations
from the “susieR” package authors and verified that the � statistic had low values and that the
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kriging plot did not have outlier variants to ensure a adequate matching between the LD matrix
and summary statistics and to detect allele flips.

5.5 Causal assumptions

The MR estimators used in this study rely on the three main IV assumptions (Supplementary
Figure A17) [41]. We denote the exposure of interest as X, the outcome as Y , the observed
covariables as W and the instrumental variables as Z. The first assumption (IV1), relevance, states
that the instrumental variable is not independent from the exposure (Z 6?? X | W ). The second
assumption (IV2), assumes unconfoundedness of the IV meaning that the IV is independent from
unobservable confounders of the exposure–outcome relationship (Z ?? U | W ). Third, we assume
the exclusion restriction (IV3) also commonly known as the “no horizontal pleiotropy” assumption
in the MR literature. This assumption requires that the effect the IV exerts on the outcome is
exclusively through the modulation of the exposure (Z ?? Y | X,W ). Common violations of this
assumption include direct pleiotropic effects of the IV on the outcome and, more perniciously, effects
due to LD with a variant influences the outcome independently from the exposure. Many attempts
to relax these assumptions rely on the identification of subset of IVs with homogeneous effects, the
inference of statistical structure in the causal effects or on the estimation of the mode of the causal
effect (e.g. [10, 42, 43]). These approaches are useful, but they are not suitable for use in cis-MR
because a single set of correlated candidate IVs is used hampering the estimation of modes, the
inference of latent statistical structure or the detection of outliers.

In our MR study investigating the effect of circulating sclerostin levels on bone and cardiovas-
cular health, we were able to confirm the relevance assumption by observing a strong association
between our IVs, rs6416905 and rs66838809, and circulating sclerostin levels (P = 1.49⇥ 10�18 and
P = 1.82⇥ 10�16 respectively). The F statistic for these two IVs was 60. The most plausible viola-
tion of the unconfoundedness assumption is population structure and we mitigated this risk by using
a genetically homogeneous subset of participants within the UK Biobank and further adjusting all
the MR estimates for the first 5 genetic principal components. Finally, since we only considered
genetic variants associated with circulating sclerostin levels at the SOST locus, it is plausible that
the observed effects are due to the modulation of sclerostin levels and not via other pathways. The
risk of violations of the exclusion restriction assumption mostly arises from bias due to LD with
other variants that may influence the considered outcomes. We use colocalization as an analytical
approach to confirm that the causal variants underpinning genetic associations with the exposure
and outcome are shared. We also conducted sensitivity analyses adjusting for genetic variants that
are likely to have direct effects on the outcome when there was evidence for direct effects.
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5.6 Two-sample parametric MR

We estimated the causal effect of circulating sclerostin levels on heel bone mineral density, osteo-
porosis, MI, acute CAD, PCI/CABG and ischemic stroke using genetic variants at the SOST locus
as IVs and using parametric MR models suitable for the cis-MR context. Specifically, we used the
IVW and PC-GMM estimators. The IVW is a weighted average of the ratio estimates of the IVs
where the weights are proportional to the precision of the ratio estimates [44]. The PC-GMM esti-
mator was designed for the cis-MR setting and uses a principal component analysis of a weighted
LD matrix accounting for instrument strength and the precision of the effect estimates on the out-
come [45]. The principal components from this decomposition are then used as IVs using generalized
method of moments for estimation [29]. We used the robust standard errors accounting for overdis-
persion in the current study. For the IVW and PC-GMM estimators, we used the implementation
from the R “MendelianRandomization” package (v0.9.0).

5.7 Nonparametric IV estimation

We first consider the model introduced by Hartford et al. when describing the DeepIV estimator
[20]:

Y = g(X,W ) + U (1)

In our context, Y represents the outcome, X denotes the exposure, W encompasses observed con-
founders. The latent variables U account for the unobservable factors that may affect Y , X and
W . It enters the model additively. Here g(·) is some unknown and potentially nonlinear function of
both X and W . We further introduce an instrumental variable (Z) that satisfies the IV assumptions
(IV1-3, Supplementary Figure A17).

The goal is to estimate the conditional average treatment effect (CATE) ⌘(w) defined as

⌘(w) = E(Y | do(X = x1),W = w)� E(Y | do(X = x0),W = w)

Under the do operator and the assumption of the model (1), we have

E(Y | do(X = x),W = w) = E(g(X,W ) | do(X = x),W ) + E(U | do(X = x),W )

= g(X,W ) + E(U | W )
(2)

We can estimate the CATE by estimating the h(·) function defined as

h(X,W ) := g(X,W ) + E(U | W ),

since the conditional expectation of the confounder given the covariates will not influence the
estimation of contrasts such as the CATE: ⌘(w) = g(x1, w) � g(x0, w) = h(x1, w) � h(x0, w).
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Note that if we additionally assume that E(U | W ) = 0, then h(X,W ) directly characterizes the
conditional effect of an intervention of X on Y .

To estimate h(·), DeepIV uses the following result

E(Y | W,Z) = E (g (X,W ) + U | W,Z)

= E (g (X,W ) | W,Z) + E (U | W )

=

Z
(g (X,W ) + E (U | W )) dF (X | W,Z)

=

Z
h (X,W ) dF (X | W,Z)

Based on this result, Hartford et al. suggest estimating h(·) by solving the following optimization
problem:

argmin
ĥ2H

1

n

nX

i=1

✓
yi �

Z
ĥ(x, wi)d bF (x|wi, zi)

◆2

(3)

Which is found using a two-stage procedure. The first stage uses a treatment network to estimate
the conditional cumulative distribution function bF (x | w, z) using any statistical or machine learning
model such as the mixture density network which was initially suggested; The second stage then
samples conditional exposure values from the first stage network and relates these samples to the
observed outcome to estimate h(x, w).

1

n

nX

i=1

✓
yi �

Z
ĥ(x, wi)d bF (x|wi, zi)

◆2

⇡ 1

n

nX

i=1

 
yi �

1

M

mX

j=1

ĥ (xj, wi)

!2

.

where xj are samples from the estimated cumulative density function xj ⇠ bF (x|wi, zi). This step
is akin to any supervised learning task and can be done using a feedforward neural network. We
note that this procedure is analogous to the two-stage least squares procedure that is a conventional
estimator in instrumental variable analysis.

This procedure relaxes the parametric assumptions of conventional MR methods and only
assumes that the confounder enters additively in the model. However, the sampling step needed
to train the second stage introduces additional stochasticity in the training process and may limit
performance in MR [14].

5.8 Quantile IV algorithm

The current method, Quantile IV, proposes replacing the density estimation in the first stage of the
DeepIV procedure by a quantile regression which eliminates the need for sampling and simplifies
the optimization. Quantile IV is a specific instantiation of DeepIV and is an equally valid estimator
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while performing advantageously in realistic settings.

We now describe the estimation strategy for Quantile IV. In the first stage, we estimate K

evenly spaced conditional quantiles of the exposure given the instruments using a neural network
trained using the quantile loss. Specifically, we wish to estimate a fixed number of evenly spaced
conditional ⌧ -th quantile of X given W and Z with 0 < ⌧ < 1.

q⌧ (W,Z) = inf
�
x : FX|W,Z(x) � ⌧

 

where FX|W,Z(x) = P (X  x|W,Z) is the conditional distribution function of X. We know that
the expectation of any function f(X) of some random variable X can be related to the quantile
using the following relation: E(f(X)) =

R 1

0 f(q⌧ )d⌧ , where q⌧ represents the ⌧ -th quantile of X. In
our context, this provides us a method to approximate the integral

R
h (X,W ) dF (X | W,Z) using

K conditional quantiles q⌧1(W,Z), . . . , q⌧K (W,Z). Partition (0, 1) using K + 1 even-spaced points
0 = a0 < a1 < · · · < aK = 1 where ak = k/K and choose quantiles ⌧k = ak�1+ak

2 for k = 1, . . . , K.
We have

Z
h (X,W ) dF (X | W,Z) =

Z 1

0

h(q⌧ (W,Z))d⌧

⇡
KX

k=1

h(q⌧k(W,Z))(ak � ak�1)

=
1

K

KX

k=1

h(q⌧k(W,Z)).

To learn quantiles q⌧k(w, z) for k = 1, . . . , K, we use a neural network parametrized by a set of
weights and biases denoted as � and with a K-dimensional output layer f(w, z ;�) : W ⇥Z ! XK .
Let f = (f (1), . . . ,f (K)), where f (k) is the k-th element of f . The quantile loss estimates conditional
quantiles [46] and can be expressed as:

L(w, z, x, ⌧,�) :=
KX

k=1

nX

i=1

⇢⌧k(xi � f (k)(wi, zi ;�)), (4)

where ⇢⌧ (u) = (⌧ � I[u  0])u. Hence K conditional quantiles (q⌧1(w, z), . . . , q⌧K (w, z)) can be
simultaneously estimated by f(w, z ;�). In the first stage of Quantile IV, we train a neural network
to minimize this quantile loss solving:

�̂ := argmin
�

L(w, z, x, ⌧,�) (5)

The key insight of the method is that these K quantiles divide the conditional distribution of the
exposure into equally probable regions and allow us to replace the sampling step in DeepIV by a
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simple average over these conditional quantiles as the input to the second stage regression. Under
this first stage model and using a second neural network h : X ⇥ W ! Y to estimate the IV
regression function, Equation (3) becomes

ĥ(x, w ; ✓) := argmin
h(x,w ;✓)

nX

i=1

 
yi �

1

K

KX

k=1

h(f (k)(wi, zi ; �̂), wi; ✓)

!2

(6)

The optimization of the weights and biases (denoted by ✓) of this neural network can be achieved
using conventional gradient-based optimizers (e.g. Adam [47]).

5.8.1 Neural network quantile regression

In our formulation of Quantile IV, we use a standard feedforward neural network trained with the
quantile loss to estimate the conditional quantiles of the exposure given the IVs. This approach
may pose problem because it does not strictly constrain the learned conditional quantiles to be
monotonically increasing, even though the quantile loss encourages the estimation of quantiles
satisfying this property. For example, there is no constraint in the model forcing the 90% quantile
to be smaller than the 95% quantile which is required by the definition of quantiles. This problem
is called the “quantile crossing” problem and Moon et al. have proposed a neural network model
and training procedure called the Noncrossing Multiple Quantile Regression with neural networks
(NMQN) to address it [48]. We have implemented the NMQN and tested the impact on Quantile
IV estimates. We observed that the estimated conditional quantiles are slightly more spread out
when comparing the NMQN to the naive implementation, but there was an increase in the average
mean squared error in preliminary analysis of the simulation study prompting us to rely on the
naive implementation. The option to use NMQN remains available in the implementation.

5.9 Quantile IV implementation and estimation

We implemented the Quantile IV estimator using the Python programming language and the Py-
Torch framework (v1.13.0, https://pytorch.org/). Our implementation is publicly available online
as part of our ml-mr Python package (https://github.com/legaultmarc/ml-mr). The Quantile IV
estimator is effectively composed of two neural networks and our implementation allows setting the
corresponding hyperparameters including the number of layers, number of hidden units and learn-
ing rate. To avoid overfitting, we use a sample splitting strategy which randomly selects 20% (by
default) of the samples to be used as a validation dataset. Training is based strictly on the training
dataset, but the validation dataset is used to stop training when there are no further improvements
on the validation loss, a strategy known as early stopping. Models can be trained using either
the CPU or specialized hardware such as Graphical Processing Units (GPUs). In practice, be-
cause the neural networks used in Quantile IV are relatively small, we have not observed significant
performance improvements when training on GPUs. Reasonable default values (Supplementary
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Table A7) for all of the hyperparameters were selected based on our experimentation on both real
and simulated data during model development. We used these default values from our software
implementation unless otherwise specified.

5.10 MR Simulation study

We conducted a simulation study to assess the performance of nonparametric IV estimators in the
context of MR. To achieve this, we selected simulation parameters covering a range of plausible
MR settings. We vary the structural relationship between the exposure and outcome between
a linear, J-shaped (quadratic) and threshold effect. These forms of nonlinearity are the most
relevant to medical applications and are commonly studied in epidemiology. We use the specific
parametrization from previous simulations of nonlinear MR as summarized in Table 1 [12]. We vary
the sample size between 10,000 individuals to 100,000 corresponding to plausible modern sample
sizes for small and large genetic studies. We use the heritability of the exposure explained by
the instrumental variables (h2

x) to vary the strength of the genetic IVs. We simulate traits with
h2
x = 0.1 corresponding to traits with a small fraction of the variance explained by genetic factors,

traits with moderate heritability (h2
x = 0.2) and traits with high heritability (h2

x = 0.5). For
reference and context, using the phenome-wide heritability browser based on the UK Biobank data
(https://nealelab.github.io/UKBB_ldsc/h2_browser.html), we observed that body mass index had
an estimated h2 = 0.25, systolic blood pressure had h2 = 0.15, heel bone mineral density (right)
had h2 = 0.33 and forced expiratory volume in 1-second had h2 = 0.43. We emphasize that in our
study, we only consider the heritability explained by the instrumental variable which is lower than
the genome-wide SNP heritability.

To simulate genetic variants to be used as IVs, we follow the procedure described in Sulc et
al. [11]. Briefly, we sample allele frequencies pi ⇠ Beta(1, 3) and draw the number of alternative
alleles following a binomial distribution with two draws. We then standardized the genotypes and
assigned the effects using the baseline LDAK heritability model as �i ⇠ N (0, pi(1� pi)�0.25) and
rescaling to reach the desired heritability. The exposure and outcomes are then simulated as

X =
kX

i=1

�iGi + ✏x (7)

Y = f(X) + ✏y (8)

where Gi are the simulated standardized genotypes, f(X) is the simulated structural relationship
between the exposure and the outcome and with

"
✏x

✏y

#
⇠ N2

 "
0

0

#
,

"
1 ⇢

⇢ 1

#!
(9)
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The formulation for the errors implicitly models the effect of unmeasured confounding and
follows the simulation model from He et al. [14]. The advantage of this formulation is that it
provides a convenient way of varying the strength of the latent confounding variable using a single
simulation parameter (⇢). When varying the simulation parameters, we hold the others fixed at a
reference value indicated in Table 1 (bold values).

5.11 Estimating treatment effects and their confidence intervals

The Quantile IV algorithm estimates the IV regression function ĥ(x, w; ✓). From this fitted model,
an estimator for the CATE is given by:

CATE(x0, x1, w) = ĥ(x1, w)� ĥ(x0, w)

where we dropped parameters for notational convenience. Similarly, an estimate of the ATE is
obtained by averaging the CATE over the empirical data distribution.

ATE(x0, x1) ⇡
1

n

nX

i=1

⇣
ĥ(x1, wi)� ĥ(x0, wi)

⌘

To obtain confidence intervals, we rely on bootstrapping [49]. We resample the dataset with re-
placement and refit Quantile IV for every one of the B bootstrap resamples. This yields a bag of
IV regression functions {ĥ(x, w, ✓b)}Bb=1. Bootstrapping in this way first allows us to ensemble the
predictions to obtain a bagging estimator for the CATE (and consequentially the ATE):

CATEbs =
1

B

BX

b=1

⇣
ĥ(x1, w; ✓b)� ĥ(x0, w; ✓b)

⌘

A confidence interval at the 1 � ↵ coverage level is obtained by selecting the ↵/2 and 1 � ↵/2

quantiles of the bootstrap estimates of the CATE. We derive P-values from these confidence intervals
by assuming asymptotic normality to avoid the high computational cost of computing bootstrap
P-values. Interaction P-values are computed using one way ANOVA of the bootstrap estimates of
the CATEs at varying levels of the conditioning variable.

5.12 Evaluation of the Quantile IV estimator

In simulation scenarios, we had access to the true causal relationship between the exposure and
outcome g(X,W ). In the simulation, the conditional expectation of the confounder given the
covariates is 0 meaning that the estimated IV function is an estimate of the interventional effect
under our model (i.e. E(U |W ) = 0 in Equation (2) and E(Y |do(X),W ) = g(X,W ) = h(X,W )).
Hence, we were able to assess model performance as the root mean squared error between the
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estimated function and the true function over a grid spanning the range of the exposure.

6 Data availability

The data used in this study is from the UK Biobank accessed under application #20168. The access
procedure are described on the UK Biobank website at: https://www.ukbiobank.ac.uk/enable-your-
research/apply-for-access.

7 References
1. Lawlor, D. A., Tilling, K. & Davey Smith, G. Triangulation in Aetiological Epidemiology. In-

ternational Journal of Epidemiology 45, 1866–1886. issn: 1464-3685. pmid: 28108528 (Dec. 1,
2016).

2. Voight, B. F. et al. Plasma HDL Cholesterol and Risk of Myocardial Infarction: A Mendelian
Randomisation Study. Lancet 380, 572–580. issn: 0140-6736. http://dx.doi.org/10.1016/
S0140-6736(12)60312-2 (Aug. 11, 2012).

3. Burgess, S. & Thompson, S. G. Multivariable Mendelian Randomization: The Use of Pleiotropic
Genetic Variants to Estimate Causal Effects. Am. J. Epidemiol. 181, 251–260. issn: 0002-9262.
http://dx.doi.org/10.1093/aje/kwu283 (Feb. 15, 2015).

4. Triozzi, J. L. et al. Mendelian Randomization Analysis of Genetic Proxies of Thiazide Diuretics
and the Reduction of Kidney Stone Risk. JAMA network open 6, e2343290. issn: 2574-3805.
pmid: 37962888 (Nov. 1, 2023).

5. Ference, B. A. et al. Variation in PCSK9 and HMGCR and Risk of Cardiovascular Disease
and Diabetes. N. Engl. J. Med. 375, 2144–2153. issn: 0028-4793. http://dx.doi.org/10.
1056/NEJMoa1604304 (Dec. 1, 2016).

6. Sun, B. B. et al. Plasma Proteomic Associations with Genetics and Health in the UK Biobank.
Nature, 1–10. issn: 1476-4687. https://www.nature.com/articles/s41586-023-06592-6
(2023) (Oct. 4, 2023).

7. Henry, A. et al. Therapeutic Targets for Heart Failure Identified Using Proteomics and
Mendelian Randomization. Circulation 145, 1205–1217. issn: 0009-7322. http://dx.doi.
org/10.1161/CIRCULATIONAHA.121.056663 (Apr. 19, 2022).

8. Verbanck, M., Chen, C.-Y., Neale, B. & Do, R. Detection of Widespread Horizontal Pleiotropy
in Causal Relationships Inferred from Mendelian Randomization between Complex Traits and
Diseases. Nat. Genet. 50, 693–698. issn: 1061-4036. http://dx.doi.org/10.1038/s41588-
018-0099-7 (May 2018).

9. Mounier, N. & Kutalik, Z. Bias Correction for Inverse Variance Weighting Mendelian Ran-
domization. Genetic Epidemiology. issn: 1098-2272. https://onlinelibrary.wiley.com/
doi/abs/10.1002/gepi.22522 (2023) (2023).

27

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 9, 2024. ; https://doi.org/10.1101/2024.01.30.24302021doi: medRxiv preprint 

https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access
https://www.ukbiobank.ac.uk/enable-your-research/apply-for-access
28108528
http://dx.doi.org/10.1016/S0140-6736(12)60312-2
http://dx.doi.org/10.1016/S0140-6736(12)60312-2
http://dx.doi.org/10.1093/aje/kwu283
37962888
http://dx.doi.org/10.1056/NEJMoa1604304
http://dx.doi.org/10.1056/NEJMoa1604304
https://www.nature.com/articles/s41586-023-06592-6
http://dx.doi.org/10.1161/CIRCULATIONAHA.121.056663
http://dx.doi.org/10.1161/CIRCULATIONAHA.121.056663
http://dx.doi.org/10.1038/s41588-018-0099-7
http://dx.doi.org/10.1038/s41588-018-0099-7
https://onlinelibrary.wiley.com/doi/abs/10.1002/gepi.22522
https://onlinelibrary.wiley.com/doi/abs/10.1002/gepi.22522
https://doi.org/10.1101/2024.01.30.24302021
http://creativecommons.org/licenses/by-nc-nd/4.0/


10. Bowden, J., Davey Smith, G., Haycock, P. C. & Burgess, S. Consistent Estimation in Mendelian
Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genet.
Epidemiol. 40, 304–314. issn: 0741-0395. http://dx.doi.org/10.1002/gepi.21965 (May
2016).

11. Sulc, J., Sjaarda, J. & Kutalik, Z. Polynomial Mendelian Randomization Reveals Non-Linear
Causal Effects for Obesity-Related Traits. HGG Adv 3, 100124. issn: 2666-2477. http://dx.
doi.org/10.1016/j.xhgg.2022.100124 (July 14, 2022).

12. Burgess, S., Davies, N. M., Thompson, S. G. & EPIC-InterAct Consortium. Instrumental
Variable Analysis with a Nonlinear Exposure-Outcome Relationship. Epidemiology 25, 877–
885. issn: 1044-3983. http://dx.doi.org/10.1097/EDE.0000000000000161 (Nov. 2014).

13. Tian, H., Mason, A. M., Liu, C. & Burgess, S. Relaxing Parametric Assumptions for Non-Linear
Mendelian Randomization Using a Doubly-Ranked Stratification Method. PLOS Genetics 19,

e1010823. issn: 1553-7404. https://journals.plos.org/plosgenetics/article?id=10.
1371/journal.pgen.1010823 (2023) (June 30, 2023).

14. He, R. et al. DeLIVR: A Deep Learning Approach to IV Regression for Testing Nonlin-
ear Causal Effects in Transcriptome-Wide Association Studies. Biostatistics. issn: 1465-4644.
http://dx.doi.org/10.1093/biostatistics/kxac051 (Jan. 4, 2023).

15. Wade, K. H. et al. Challenges in Undertaking Nonlinear Mendelian Randomization. Obesity
31, 2887–2890. issn: 1930-739X. https://onlinelibrary.wiley.com/doi/abs/10.1002/
oby.23927 (2023) (2023).

16. Small, D. S. Commentary: Interpretation and Sensitivity Analysis for the Localized Average
Causal Effect Curve. Epidemiology (Cambridge, Mass.) 25, 886–888. issn: 1531-5487. pmid:
25265134 (Nov. 2014).

17. Burgess, S. Violation of the Constant Genetic Effect Assumption Can Result in Biased Esti-
mates for Non-Linear Mendelian Randomization Oct. 31, 2022. https://www.medrxiv.org/
content/10.1101/2022.10.26.22280570v2.abstract.

18. Newey, W. K. & Powell, J. L. Instrumental Variable Estimation of Nonparametric Models.
Econometrica 71, 1565–1578. JSTOR: 1555512. http://www.jstor.org/stable/1555512
(2003).

19. Darolles, S., Fan, Y., Florens, J.-P. & Renault, E. Nonparametric instrumental regression.
Econometrica 79, 1541–1565 (2011).

20. Hartford, J., Lewis, G., Leyton-Brown, K. & Taddy, M. Deep IV: A Flexible Approach for
Counterfactual Prediction in Proceedings of Machine Learning Research Proceedings of the
34th International Conference on Machine Learning (eds Precup, D. & Teh, Y. W.) 70 (PMLR,
2017), 1414–1423. https://proceedings.mlr.press/v70/hartford17a.html.

21. Saag, K. G. et al. Romosozumab or Alendronate for Fracture Prevention in Women with Osteo-
porosis. New England Journal of Medicine 377, 1417–1427. issn: 0028-4793. pmid: 28892457.
https://doi.org/10.1056/NEJMoa1708322 (2023) (Oct. 12, 2017).

28

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 9, 2024. ; https://doi.org/10.1101/2024.01.30.24302021doi: medRxiv preprint 

http://dx.doi.org/10.1002/gepi.21965
http://dx.doi.org/10.1016/j.xhgg.2022.100124
http://dx.doi.org/10.1016/j.xhgg.2022.100124
http://dx.doi.org/10.1097/EDE.0000000000000161
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1010823
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1010823
http://dx.doi.org/10.1093/biostatistics/kxac051
https://onlinelibrary.wiley.com/doi/abs/10.1002/oby.23927
https://onlinelibrary.wiley.com/doi/abs/10.1002/oby.23927
25265134
https://www.medrxiv.org/content/10.1101/2022.10.26.22280570v2.abstract
https://www.medrxiv.org/content/10.1101/2022.10.26.22280570v2.abstract
http://www.jstor.org/stable/1555512
http://www.jstor.org/stable/1555512
https://proceedings.mlr.press/v70/hartford17a.html
28892457
https://doi.org/10.1056/NEJMoa1708322
https://doi.org/10.1101/2024.01.30.24302021
http://creativecommons.org/licenses/by-nc-nd/4.0/


22. Lewiecki, E. M. et al. A Phase III Randomized Placebo-Controlled Trial to Evaluate Efficacy
and Safety of Romosozumab in Men With Osteoporosis. The Journal of Clinical Endocrinology
& Metabolism 103, 3183–3193. issn: 0021-972X. https://doi.org/10.1210/jc.2017-02163
(2023) (Sept. 1, 2018).

23. Bovijn, J. et al. Evaluating the Cardiovascular Safety of Sclerostin Inhibition Using Evidence
from Meta-Analysis of Clinical Trials and Human Genetics. Sci. Transl. Med. 12. issn: 1946-
6234. http://dx.doi.org/10.1126/scitranslmed.aay6570 (June 24, 2020).

24. Tobias, J. H. Sclerostin and Cardiovascular Disease. Current Osteoporosis Reports. issn: 1544-
2241. https://doi.org/10.1007/s11914-023-00810-w (2023) (July 25, 2023).

25. Wang, G., Sarkar, A., Carbonetto, P. & Stephens, M. A Simple New Approach to Variable
Selection in Regression, with Application to Genetic Fine Mapping. Journal of the Royal
Statistical Society Series B: Statistical Methodology 82, 1273–1300. issn: 1369-7412. https:
//doi.org/10.1111/rssb.12388 (2023) (Dec. 1, 2020).

26. Wallace, C. A More Accurate Method for Colocalisation Analysis Allowing for Multiple Causal
Variants. PLOS Genetics 17, e1009440. issn: 1553-7404. https://journals.plos.org/
plosgenetics/article?id=10.1371/journal.pgen.1009440 (2023) (Sept. 29, 2021).

27. Holdsworth, G. et al. Sclerostin Downregulation Globally by Naturally Occurring Genetic Vari-
ants, or Locally in Atherosclerotic Plaques, Does Not Associate With Cardiovascular Events
in Humans. Journal of Bone and Mineral Research 36, 1326–1339. issn: 1523-4681. https:
//onlinelibrary.wiley.com/doi/abs/10.1002/jbmr.4287 (2023) (2021).

28. Schmidt, A. F. et al. Genetic Drug Target Validation Using Mendelian Randomisation. Nat.
Commun. 11, 3255. issn: 2041-1723. http://dx.doi.org/10.1038/s41467-020-16969-0
(June 26, 2020).

29. Patel, A. et al. Robust Use of Phenotypic Heterogeneity at Drug Target Genes for Mechanistic
Insights: Application of Cis-Multivariable Mendelian Randomization to GLP1R Gene Region
https://www.medrxiv.org/content/10.1101/2023.07.20.23292958v1 (2023). preprint.

30. Ghoussaini, M. et al. Open Targets Genetics: Systematic Identification of Trait-Associated
Genes Using Large-Scale Genetics and Functional Genomics. Nucleic Acids Research 49,

D1311–D1320. issn: 1362-4962. pmid: 33045747 (Jan. 8, 2021).
31. Zheng, J. et al. Lowering of Circulating Sclerostin May Increase Risk of Atherosclero-

sis and Its Risk Factors: Evidence From a Genome-Wide Association Meta-Analysis Fol-
lowed by Mendelian Randomization. Arthritis & Rheumatology. issn: 2326-5205. https :
//onlinelibrary.wiley.com/doi/abs/10.1002/art.42538 (2023) (2023).

32. Ference, B. A. How to Use Mendelian Randomization to Anticipate the Results of Random-
ized Trials. Eur. Heart J. 39, 360–362. issn: 0195-668X. http://dx.doi.org/10.1093/
eurheartj/ehx462 (Feb. 1, 2018).

33. Xu, L. et al. Learning deep features in instrumental variable regression. arXiv preprint
arXiv:2010.07154 (2020).

29

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 9, 2024. ; https://doi.org/10.1101/2024.01.30.24302021doi: medRxiv preprint 

https://doi.org/10.1210/jc.2017-02163
http://dx.doi.org/10.1126/scitranslmed.aay6570
https://doi.org/10.1007/s11914-023-00810-w
https://doi.org/10.1111/rssb.12388
https://doi.org/10.1111/rssb.12388
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1009440
https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1009440
https://onlinelibrary.wiley.com/doi/abs/10.1002/jbmr.4287
https://onlinelibrary.wiley.com/doi/abs/10.1002/jbmr.4287
http://dx.doi.org/10.1038/s41467-020-16969-0
https://www.medrxiv.org/content/10.1101/2023.07.20.23292958v1
33045747
https://onlinelibrary.wiley.com/doi/abs/10.1002/art.42538
https://onlinelibrary.wiley.com/doi/abs/10.1002/art.42538
http://dx.doi.org/10.1093/eurheartj/ehx462
http://dx.doi.org/10.1093/eurheartj/ehx462
https://doi.org/10.1101/2024.01.30.24302021
http://creativecommons.org/licenses/by-nc-nd/4.0/


34. Singh, R., Sahani, M. & Gretton, A. Kernel Instrumental Variable Regression in Advances
in Neural Information Processing Systems (eds Wallach, H. et al.) 32 (Curran Associates,
Inc., 2019). https : / / proceedings . neurips . cc / paper _ files / paper / 2019 / file /
17b3c7061788dbe82de5abe9f6fe22b3-Paper.pdf.

35. Bennett, A., Kallus, N. & Schnabel, T. Deep Generalized Method of Moments for Instrumental
Variable Analysis in Advances in Neural Information Processing Systems (eds Wallach, H. et
al.) 32 (Curran Associates, Inc., 2019). https://proceedings.neurips.cc/paper_files/
paper/2019/file/15d185eaa7c954e77f5343d941e25fbd-Paper.pdf.

36. Bycroft, C. et al. The UK Biobank Resource with Deep Phenotyping and Genomic Data.
Nature 562, 203–209. issn: 0028-0836. http://dx.doi.org/10.1038/s41586-018-0579-z
(Oct. 2018).

37. Nikpay, M. et al. A Comprehensive 1000 Genomes–Based Genome-Wide Association Meta-
Analysis of Coronary Artery Disease. Nature Genetics 47, 1121–1130. issn: 1546-1718. https:
//www.nature.com/articles/ng.3396 (2023) (10 Oct. 2015).

38. Nelson, C. P. et al. Association Analyses Based on False Discovery Rate Implicate New Loci
for Coronary Artery Disease. Nat. Genet. 49, 1385–1391. issn: 1061-4036. http://dx.doi.
org/10.1038/ng.3913 (Sept. 2017).

39. The GTEx Consortium. The GTEx Consortium Atlas of Genetic Regulatory Effects across Hu-
man Tissues. Science 369, 1318–1330. https://www.science.org/doi/10.1126/science.
aaz1776 (2023) (Sept. 11, 2020).

40. Giambartolomei, C. et al. Bayesian Test for Colocalisation between Pairs of Genetic Associ-
ation Studies Using Summary Statistics. PLoS Genet. 10, e1004383. issn: 1553-7390. http:
//dx.doi.org/10.1371/journal.pgen.1004383 (May 2014).

41. Didelez, V. & Sheehan, N. Mendelian Randomization as an Instrumental Variable Approach
to Causal Inference. Stat. Methods Med. Res. 16, 309–330. issn: 0962-2802. http://dx.doi.
org/10.1177/0962280206077743 (Aug. 2007).

42. Verbanck, M., Chen, C.-Y., Neale, B. & Do, R. Detection of Widespread Horizontal Pleiotropy
in Causal Relationships Inferred from Mendelian Randomization between Complex Traits and
Diseases. Nat. Genet. 50, 693–698. issn: 1061-4036. http://dx.doi.org/10.1038/s41588-
018-0099-7 (May 2018).

43. Qi, G. & Chatterjee, N. Mendelian Randomization Analysis Using Mixture Models for Robust
and Efficient Estimation of Causal Effects. Nature Communications 10, 1941. issn: 2041-1723.
https://www.nature.com/articles/s41467-019-09432-2 (2023) (1 Apr. 26, 2019).

44. Burgess, S. & Thompson, S. G. Mendelian randomization: methods for causal inference using
genetic variants (CRC Press, 2021).

45. Batool, F., Patel, A., Gill, D. & Burgess, S. Disentangling the Effects of Traits with Shared
Clustered Genetic Predictors Using Multivariable Mendelian Randomization. Genet. Epi-
demiol. issn: 0741-0395. http://dx.doi.org/10.1002/gepi.22462 (May 31, 2022).

30

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 9, 2024. ; https://doi.org/10.1101/2024.01.30.24302021doi: medRxiv preprint 

https://proceedings.neurips.cc/paper_files/paper/2019/file/17b3c7061788dbe82de5abe9f6fe22b3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/17b3c7061788dbe82de5abe9f6fe22b3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/15d185eaa7c954e77f5343d941e25fbd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/15d185eaa7c954e77f5343d941e25fbd-Paper.pdf
http://dx.doi.org/10.1038/s41586-018-0579-z
https://www.nature.com/articles/ng.3396
https://www.nature.com/articles/ng.3396
http://dx.doi.org/10.1038/ng.3913
http://dx.doi.org/10.1038/ng.3913
https://www.science.org/doi/10.1126/science.aaz1776
https://www.science.org/doi/10.1126/science.aaz1776
http://dx.doi.org/10.1371/journal.pgen.1004383
http://dx.doi.org/10.1371/journal.pgen.1004383
http://dx.doi.org/10.1177/0962280206077743
http://dx.doi.org/10.1177/0962280206077743
http://dx.doi.org/10.1038/s41588-018-0099-7
http://dx.doi.org/10.1038/s41588-018-0099-7
https://www.nature.com/articles/s41467-019-09432-2
http://dx.doi.org/10.1002/gepi.22462
https://doi.org/10.1101/2024.01.30.24302021
http://creativecommons.org/licenses/by-nc-nd/4.0/


46. Angrist, J. D. & Pischke, J.-S. Mostly Harmless Econometrics: An Empiricist’s Companion
https://doi.org/10.1515/9781400829828 (2023) (Princeton University Press, Princeton,
2009).

47. Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization in. 3rd International
Conference for Learning Representations (Jan. 29, 2017). arXiv: 1412 . 6980 [cs]. http :
//arxiv.org/abs/1412.6980 (2024).

48. Moon, S. J., Jeon, J.-J., Lee, J. S. H. & Kim, Y. Learning Multiple Quantiles With Neural
Networks. Journal of Computational and Graphical Statistics 30, 1238–1248. issn: 1061-8600.
https://doi.org/10.1080/10618600.2021.1909601 (2023) (Oct. 2, 2021).

49. Davison, A. C. & Hinkley, D. V. Bootstrap Methods and Their Application isbn: 978-0-
521-57471-6. https : / / www . cambridge . org / core / books / bootstrap - methods - and -
their- application/ED2FD043579F27952363566DC09CBD6A (2024) (Cambridge University
Press, Cambridge, 1997).

8 Acknowledgements

MAL is supported by a fellowship from the Canadian Institute of Health Research (CIHR). BJA
holds a Senior Scholar Award from the Fonds de recherche du Québec: Santé.

9 Author contributions

MAL, BJA and JP contributed to the study design and application of the method to UK Biobank
data. MAL, JH and AYY contributed to the methodological development of the Quantile IV
algorithm and design the MR simulation study. All of the authors contributed to writing the
manuscript and approved the final submitted version.

10 Competing interests

JH is an employee of Recursion during the course of this work and has received optional ownership
interest in Recursion. BJA is a consultant for Eli Lilly, Silence Therapeutics, Editas Medicine
and Novartis and has received research contracts from Pfizer, Ionis Pharmaceuticals, Eli Lilly and
Silence Therapeutics

31

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 9, 2024. ; https://doi.org/10.1101/2024.01.30.24302021doi: medRxiv preprint 

https://doi.org/10.1515/9781400829828
https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1080/10618600.2021.1909601
https://www.cambridge.org/core/books/bootstrap-methods-and-their-application/ED2FD043579F27952363566DC09CBD6A
https://www.cambridge.org/core/books/bootstrap-methods-and-their-application/ED2FD043579F27952363566DC09CBD6A
https://doi.org/10.1101/2024.01.30.24302021
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Abstract
	Introduction
	Results
	Evaluation of nonparametric IV estimators in realistic MR simulation scenarios
	Mendelian randomization study population
	Genetic association and colocalization analysis of circulating sclerostin and outcomes in the UK Biobank
	Mendelian randomization of the effect of circulating sclerostin on bone and cardiovascular diseases
	Mendelian randomization analyses accounting for pleiotropic effects

	Discussion
	Methods
	Study population
	Genetic association analyses
	Gene expression and cardiovascular disease summary statistics
	Finemapping and colocalization analyses
	Causal assumptions
	Two-sample parametric MR
	Nonparametric IV estimation
	Quantile IV algorithm
	Neural network quantile regression

	Quantile IV implementation and estimation
	MR Simulation study
	Estimating treatment effects and their confidence intervals
	Evaluation of the Quantile IV estimator

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Supplementary Note
	Forward stepwise regression analysis of sclerostin pQTLs

	Supplementary Methods
	Genetic quality control
	Mendelian randomization exposure and outcome definitions

	Supplementary Tables
	Supplementary Figures

