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Abstract— Type 2 Diabetes Mellitus (T2DM) is a chronic
metabolic disorder with increasing population incidence.
However, T2DM takes years to develop, allowing onset
prediction and prevention to be a clinically effective treatment
strategy. In this study we propose and assess a novel approach
to diabetes prediction which integrates a specialized extension
of the random forest algorithm known as random survival
forest (RSF). Rather than predicting a binary outcome,
this machine learning model incorporates survival analysis
methodology to predict the time until a patient will receive a
diabetes diagnosis if their current lifestyle is maintained. We
trained a baseline model on 7,704 electronic medical records
from the Canadian Primary Care Sentinel Surveillance
Network (CPCSSN) with 14 biomarker and comorbidity
features across different measurement dates. Although tuning
parameters were purposefully chosen for quick training
rather than for predictive performance, our model exceeded
expectations with a concordance index of 0.84. Thus, RSF
models have been shown to produce accurate timelines of
diabetes onset trajectory, providing patients with quantifiable
and relatable risks that are easy to understand. The results of
our study have substantial implications for advancing machine
learning in clinical decision support and patient outcome
predictions, emphasizing the role of innovative models in
improving predictive accuracy.

I. INTRODUCTION
Type 2 Diabetes Mellitus (T2DM) is a chronic metabolic

disorder where patients have difficulty controlling blood
glucose levels due to insulin insensitivity [1]. As of 2019,
8.8% of Canadians are living with diabetes and there are
approximately 549 new diagnoses daily [2]. Type 2 di-
abetes is incurable, so prevention and delaying onset is
the best defense against this growing epidemic [3, 4]. The
predominant methods of prevention include lifestyle and
diet adjustments [5], and multiple studies report significant
correlations between metabolic biomarkers, exercise rates,
and diabetes incidence [6, 7].

Prior studies attempting to predict diabetes using Elec-
tronic medical records (EMR) often use traditional machine
learning models that do not capture longitudinal measure-
ments [Samsel2024PredictingDepression, 8–13]. Further-
more, studies using models with temporal features do not
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properly adjust for potential right censoring, that is, when a
patient may develop diabetes after the study concludes.

Survival analysis methodology such as joint models and
landmarking can address the right censoring prevalent in
time-to-event data by predicting time to diabetes diagnosis.
However, these techniques are often computationally inten-
sive, make assumptions regarding underlying distributions,
or struggle with analytical complexity [15].

To address these concerns, we propose the random survival
forest (RSF) model, which is an ensemble method of survival
trees to account for time to event data [16]. RSF is non-
parametric, can utilize multiple longitudinal factors found in
EMR data, and was found to outperform both joint models
and landmarking [17]. By providing explicit time to diabetes
diagnosis estimates, our model allows clinicians to better
advise patients on their diabetes risk and collaborate towards
personalized prevention plans for patients, thereby enhancing
the efficacy of patient care strategies.

II. METHODS

A. Data Collection and Preparation

The Canadian Primary Care Sentinel Surveillance Net-
work (CPCSSN) provided a dataset of EMRs consisting of
a random sample of 10,000 records with 43 features from
8,602 unique adult patients for model training. The dataset
was generated by compiling systolic blood pressure (sBP)
measurements with the closest in time clinical measurements
from within a certain time frame. Clinical measurements
of body mass index (BMI), low-density lipoprotein (LDL),
high-density lipoprotein (HDL), total cholesterol (TC), and
triglyceride (TG) were within one year, HbA1c (A1c) was
within three months, and fasting blood sugar (FBS) was
within one month. The dataset also included age and sex
of each patient alongside binary comorbidity indicators of
depression, hypertension (HTN), osteoarthritis (OA), and
chronic obstructive pulmonary disease (COPD). Dates for
all clinical measurements and health condition diagnoses
were also included, with clinical measurement dates ranging
between 2003 and 2015 and health conditions dates ranging
from 1989 to 2015.

In the preliminary data exploration phase, we conducted
an analysis of missing data, computed summary statistics,
and generated a correlation matrix to assess the relationships
between variables. We employed histograms to examine
the distribution of predictor variables and utilized boxplots
to identify potential outliers. This suite of visualizations
was instrumental in uncovering patterns, anomalies, errors,
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and imbalances in the dataset, facilitating a more informed
preprocessing strategy.

Survival time was calculated by taking the difference be-
tween the earliest date of a lab test or comorbidity diagnosis
and their diabetes diagnosis date. The end of the study date,
June 30th, 2015, was used for right-censored records where
diabetes onset went unobserved. Left-censored individuals
were removed, resulting in 7,756 eligible records with 14
predictors for the final dataset.

To identify the types of missing data, a series of logis-
tic regression models was generated with the Statsmodels
package[18]. For each feature, a binary missingness in-
dicator was used as the response with all other features
as covariates. Type of missingness was deemed missing
completely at random (MCAR) if the logistic regression
showed no significant covariate associations and missing at
random (MAR) otherwise. Records where the only missing
values were MCAR were dropped, and the remaining MAR
missing data was imputed by chained equations through
IterativeImputer from Scikit-Learn [19].

B. Random Survival Forest Model

The random survival forest model is an extension of
the random forest model that accounts for the presence of
censoring in survival data. It uses the log-rank splitting rule
that splits nodes by maximization of the log-rank test statistic
[16, 20]. The survival forest model was implemented through
scikit-survival library in Python 3.10.12 [19, 21].

To assess RSF models’ usefulness in predicting diabetes
diagnosis timing, tuning parameters were selected for rapid
training over optimal performance. This baseline random
survival forest was trained with a 75:25 train-test split of
our EMR data, consisting of 100 survival trees each with
a max depth of 15, a minimum leaf sample of 100, and a
minimum leaf split of 150.

To ensure replicability and facilitate further research, the
source code of all the presented machine learning models is
available on GitHub1

III. RESULTS AND DISCUSSION

A. Preliminary Results

The initial exploratory analysis revealed no anomalies,
with visualizations indicating that all clinical measures fell
within expected ranges and exhibited no significant imbal-
ances. The correlation matrix (Figure 1) showed no unex-
plained correlation. High correlation between total choles-
terol, HDL, and LDL is explained by cholesterol in blood
primarily consisting of HDL and LDL. Patients with higher
A1c and FBS show higher rates of diabetes outcomes,
which is expected since they are used as a diagnostic tool for
diabetes [22]. Table I summarizes the 7,756 eligible records
and their 14 non-chronological features before missing data
processing, stratified on records with diabetes observed and
diabetes unobserved. We determined that HDL and sBP were
the only two features that were MCAR, which allowed us to

1https://github.com/P-Saha/RSF-Diabetes-Prevention

Fig. 1: Correlation matrix of measured biomarkers. Zero represents no
correlation and 1 represents perfect correlation.

drop records in which only these features were missing. LDL,
TG, and total cholesterol were MAR and imputed, resulting
in a sample size of 7,704.

TABLE I: Summary statistics for 7,756 eligible records, stratified on
records with diabetes observed and diabetes unobserved. Results are pre-
sented as mean [sd] for continuous variables or n (%) for categorical
variables and missing values. P-values displayed are results of t-tests and
chi-square tests for continuous and categorical features respectively

Features Diagnosis(No) Diagnosis(Yes) p-value Missingness
N (total=7756) 4861 (62.7) 2895 (37.3) - -
Age 60.86 [13.70] 65.30 [11.97] < 0.001 0 (0.0%)
Sex (Male) 2058 (42.3) 1426 (49.3) < 0.001 0 (0.0%)
Biomarkers

sBP 129.25 [17.09] 132.46 [17.00] < 0.001 3 (0.039%)
BMI 29.20 [6.48] 32.16 [6.95] < 0.001 0 (0.0%)
LDL 2.85 [0.91] 2.34 [0.93] < 0.001 39 (0.50%)
HDL 1.43 [0.43] 1.22 [0.35] < 0.001 65 (0.84%)
A1c 5.71 [0.36] 6.70 [1.04] < 0.001 0 (0.0%)
TG 1.42 [0.95] 1.74 [1.12] < 0.001 48 (0.62%)
FBS 5.33 [0.63] 7.13 [1.95] < 0.001 0 (0.0%)
Total Cholesterol 4.92 [1.08] 4.34 [1.12] < 0.001 175 (2.26%)

Comorbidities
Depression (Yes) 1090 (22.4) 723 (25.0) 0.011 0 (0.0%)
Hypertension (Yes) 2682 (55.2) 2300 (79.4) < 0.001 0 (0.0%)
Osteoartitis (Yes) 1413 (29.1) 1051 (36.3) < 0.001 0 (0.0%)
COPD (Yes) 441 (9.1) 325 (11.2) 0.002 0 (0.0%)

Fig. 2: Median diabetes diagnosis time histogram for test set.

Our model had a concordance index (C-Index) of 0.84,
which is the evaluation measure for random survival forest
models [21]. This means that the model could accurately
predict the relative order of diabetes diagnosis time of two
randomly selected individuals 84% of the time [23].

Figure 2 shows the distribution of the median time of
survival for diabetes diagnosis amongst records in the test
set. In this context, the median time of survival is interpreted
as the time before the model predicts that a record has over
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a 50% probability of diabetes diagnosis. Specifically, the bin
into which a record is categorized signifies the estimated
years until a patient is predicted to surpass a 50% probability
of receiving a diabetes diagnosis. The median times for these
records range from within one year to 15 years after the
earliest biomarker measurement or health condition diagnosis
date. Only 923 records of 1926 records in the test set are
represented in the figure, with the remaining 1023 records
predicted to never go above a 50% chance of diabetes diag-
nosis. Table II provides feature importance means, calculated
using permutation importance from Scikit Learn
[19, 21]. The most important model features were A1c,
FBS, and total cholesterol, with feature importance means
of 0.1009, 0.0734, and 0.00281, respectively. The standard
deviations for these means were all less than 0.005. The
importance of these features support current literature and
diabetes monitoring standards [22].

TABLE II: Feature Importance estimated with permutation

Features Mean Standard Deviation
A1c 0.12 0.0052
FBS 0.072 0.0050
LDL 0.0036 0.00087
Total Cholesterol 0.0030 0.00076
BMI 0.00079 0.00050
Age at Exam 0.00072 0.00026
HTN 0.00070 0.00044
HDL 0.00067 0.00030
TG 0.00055 0.00054
Sex 0.00011 0.000073
COPD 0.000045 0.000032
Depression 0.000030 0.000074
OA 0.000008 0.000075
sBP -0.000067 0.000099

B. Key Findings

Overall, we found biomarkers and comorbidities com-
monly measured in health examinations to be important
predictors for diabetes onset. To our knowledge, we are the
first to utilize the RSF model to predict time to diabetes
diagnosis through biomarkers and other comorbidites from
a diverse Canadian population. Previous machine learning
research has been conducted to predict diabetes, however
they either utilize common random forests [24] or use RSFs
for predicting diabetic complications [25]. One previous
study employed the RSF model to predict the onset of
diabetes, focusing on cardio-respiratory fitness and waist-
to-height ratio as key indicators [26]. This research was a
prospective study confined to healthy male subjects, thus not
encompassing a wider demographic spectrum.

Gender Diabetes Disparity–Based on Table I, men had
a 32% higher likelihood of diabetes diagnosis compared to
women. (OR: 1.32, 95%; CI: [1.20;1.45]). Gender differences
in diabetes diagnosis are noteworthy, with Canadian census
data showing higher prevalence among men. Notably, women
in lower-income brackets experience even greater disparities
in prevalence rates [27].

Diabetes Biomarker Differences–T-tests from Table I
showed that all measured factors were significantly different
between patients who became diabetic and patients who
remained non-diabetic. On average, patients with diabetes

had sBP that was in the healthy range (<130) whereas
patients with diabetes had sBP in the high-normal range.
Diabetic patients had higher BMI (BMI > 30) and differ-
ences in LDL, HDL, and total cholesterol compared to non-
diabetics, but both groups remained within recommended
ranges [28]. Diabetic patients exhibited borderline high TG
levels, whereas non-diabetic patients maintained normal TG
levels [29]. Average A1c and fasting blood glucose are also
highly different between patients diagnosed with diabetes
and healthy patients with varying health categories. Diabetes
can be diagnosed through a fasting blood sugar measurement
of over 7.0 mmol/L or through an A1c level above 6.5%. The
average diabetic patient was above both those thresholds,
while on average non-diabetic patients were well below
the diabetic threshold and would not even fall within the
prediabetic class, which requires a FBS between 6.1-6.9
mmol/L or an A1c of 6.0%- 6.4% for its diagnosis [30].

Enhanced RSF Prediction Granularity–Figure 2 eluci-
dates the innovative aspect of our methodology; in contrast
to conventional models that would categorize 923 records
as true for a diabetes diagnosis, the RSF model provides
a more nuanced differentiation. Predictions are rendered
in days to facilitate precise and individualized care strate-
gies, albeit aggregated into yearly intervals for histogram
representation. As illustrated in Figure 2, the predominant
segment of patients at risk are forecasted to manifest diabetes
within five years from their initial measurement. Records not
represented in the histogram, failing to surpass a 50% risk
threshold, imply a low likelihood of these individuals devel-
oping diabetes in their lifespan. Owing to RSF’s capability
to generate both a survival function and a cumulative hazard
function per record, this inherent 50% benchmark can be
adjusted to align with more conservative or liberal prognostic
timelines. Therefore, the RSF model adeptly balances inter-
pretability with comprehensive analytical depth, a challenge
often encountered with alternative predictive models.

A C-Index of 0.84 indicates high predictive performance
and shows great potential in the baseline capabilities of RSF.
Furthermore, the simplicity of our pipeline leaves lots of
room for optimization through parameter tuning. Although
the flexible design of RSF was specifically proposed to ac-
commodate the complexities of real world EMR, addressing
data sparsity and imbalance provides another avenue for
improvement. In particular for our dataset, the majority of
patients had only a single record, multiple records were left-
censored, and various records contained missing variables.

Longitudinal Data Challenges– Several advancements
in random forest methodologies have been proposed to
account for correlations among repeated measurements in
longitudinal datasets [31]. Despite the potential of these
enhancements to elevate predictive accuracy, our dataset’s
absence of repeated measures precludes their application.
In practical scenarios, Electronic Medical Records (EMR)
from clinical settings are anticipated to offer an abundance
of repeated measurements, thus paving the way for enhanced
model refinement.

It is critical to distinguish between the dates of diagnosis
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and the actual onset of conditions, recognizing that patients
may live with diabetes for a period before it is formally
diagnosed. This scenario typifies interval censoring, a com-
mon challenge in survival analysis. The exact duration of this
interval remains elusive in our study due to the prevalence
of single-record patients, leading our model to estimate the
time to diagnosis rather than the onset. Nonetheless, given
the complications and potential emergencies arising from
unmanaged diabetes, we posit that the interval between onset
and diagnosis is likely minimal.

Looking ahead, our future work will concentrate on data
generation processes to further refine our model’s framework
and assess the effectiveness of random survival forest model
extensions. This endeavor aims to optimize predictive per-
formance and applicability in real-world settings.

IV. CONCLUSION

Diabetes is a lifelong condition that may greatly re-
duce one’s quality of life. The best defense against this
growing epidemic is proactive prevention planning through
lifestyle changes. However, implementing and maintaining
these lifestyle changes can be challenging, especially without
a solid understanding of the risks. This study advocates the
use of random survival forest to predict the time to diabetes
diagnosis, offering a quantifiable and relatable risk that is
easy to comprehend. With a concordance index of 0.84 at
baseline, random survival forest models have proven to be
effective and accessible as a clinical tool with significant
potential for further improvement. The complexities observed
in our data reflect real-world constraints in electronic medical
records. The random survival forest model excels under these
conditions due to its robust non-parametric design. With such
a promising initial performance, we are eager to explore
additional applications of random survival forest in other
prognostic modeling tasks.
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