Supplementary material 1 – Supplementary methods and results

Supplementary table 1: Relative risks relating physical activity and several chronic diseases as identified in a previous systematic review (Rojas-Rueda et al, 2013).

Morbi- mortality event	Reference	RR (95% CI)	Unit	RR scaled for 100 min cycling, ie 11.25 MET.hours (95% CI)
Breast Cancer (women)	Monninkhof et al., 2007	0.94 (0.92, 0.97)	For each additional hour per week	0.90 (0.87-0.95)
Colon Cancer	Harris et al., 2009	Males: 0.80 (0.67, 0.96)	Men: Per 30,1 METs per week	Males: 0.93 (0.88-0.99)
		Females: 0.86 (0.76, 0.98)	Women: Per 30,9 METs per week	Females: 0.94 (0.91- 0.99)
Cardiovascular Disease	Hamer & Chida, 2008	0.84 (0.79,0.90)	3 h per week of physical activity of moderate intensity	0.92 (0.90-0.95)
Dementia	Hamer & Chida, 2009	0.72 (0.60, 0.86)	33 METs per week	0.90 (0.86-0.95)
Type 2 Diabetes	Jeon et al., 2007	0.83 (0.75, 0.91)	Per 10 METs per week	0.81 (0.72-0.89)

RR: relative risk; CI: confidence interval.

The scaled RR was obtained using the formula: $RR_{scaled} = 1-(1-RR_{ref})*(11.25*Unit_{ref})$.

Disease	2018 number of prevalent cases (GBD 2019)	2018 number of incident cases (GBD 2019)	Mean duration (year)	Discounted mean duration* (year)	Average yearly medical costs (€2018)	Average total medical costs (€2018, accounting for discounting rate)
Breast Cancer (females)	581,096	50,787	11.44	9.95	4,720	46,968
Colon Cancer	278,713	50,936	5.47	5.11	5,224	26,716
Cardiovascular Disease	2,068,203	222,364	9.30	8.30	2,523	20,938
Dementia	1,104,927	150,914	7.32	6.69	3,400	22,748
Type 2 Diabetes	2,784,422	127,519	21.84	16.83	2,170	36,514

Supplementary table 2 : Estimates of disease mean duration and average discounted total medical costs

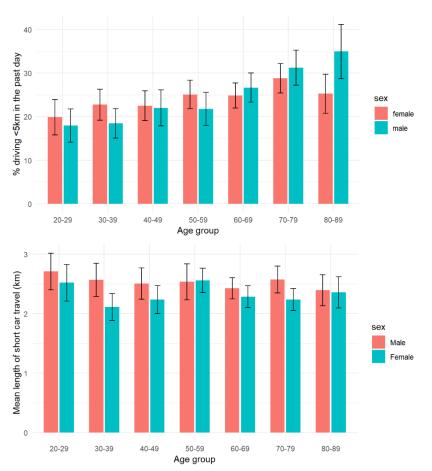
The method used to estimate average disease duration is those previously described in Dervaux et al (2022).

For each disease, the average duration by the ratio between the total number of prevalent cases and the total number of incident cases, provided by the 2019 Global Burden of Disease (<u>https://vizhub.healthdata.org/gbd-results/</u>). Such an estimation is made under the assumption of stationarity of the disease, ie assuming that disease prevalence and duration are stable over time. This estimated duration is then updated considering the discounting rate of 2.5%, which is the value recommended for the cost-benefit assessment of public investments in France (Quinet, 2013), and using the formula :

 $D_{discounted} = (1 - \exp(-D * r)/D)$; where D is the estimated undiscounted duration and r is the discounting rate.

Disease-specific average yearly medical costs were estimated based on expenses reimbursed by all health insurance schemes (available at: <u>https://data.ameli.fr/explore/dataset/depenses/information/</u>). These expenses, expressed in Euros 2018, include outpatient care, hospitalization in public or private healthcare facilities, and daily allowances.

Considering that the prevalence of chronic disease tends to increase and that medical progresses tend to increase disease duration, the assumption of disease stationarity may actually conduct to an under-estimation of disease duration, and therefore to an under-estimation of medical costs.


References:

Dervaux B, Rochaix L, Meurisse B. L'évaluation socioéconomique des effets de santé des projets d'investissement public. France: CGDD, France Stratégie, SGPI, 2022

https://www.strategie.gouv.fr/publications/levaluation-socioeconomique-effets-de-sante-projets-dinvestissement-public-0

Quinet E. Cost benefit assessment of public investments. *Final Rep Summ Recomm Paris Fr CGSP Policy Plan Comm* 2013.

https://www.strategie.gouv.fr/sites/strategie.gouv.fr/files/archives/CGSP_Evaluation_socioeconomi que_17092013.pdf.

Supplementary Figure 1: Proportion of the French adult population reporting any short (<5km) car trip in the past day (top), and mean distance driven (km) in the past day among those reporting any car trip (down) according to sex and age. *Enquête mobilité des personnes*, France, 2019. Black lines represent 95% confidence intervals.

Supplementary table 3 : Climate, health and health-related economic benefits of cycling in France, 2019, and estimated impact of two modal shift scenarios.

Outcome	Baseline estimates (Uncertainty interval, UI)	Incremental effect of shifting 25% of <u>short (<5km)</u> car trips to cycling (in addition to the baseline estimates) (UI)	Incremental ¹ effect of shifting 25% of <u>short-to-medium (<10km)</u> car trips to cycling (in addition to the baseline estimates) (UI)
Yearly km cycled (billion)	4.640 (3.284-5.996)	2.073 (1.864-2.314)	5.550 (4.222-6.884)
CO ₂ emissions prevented (Mto)	0.575 (0.4070.743) 1	0.257 (0.231-0.288)	0.688 (0.524-0.854)
# of deaths prevented	1,919 (1,101-2,736)	1,822 (1,010-2,633)	4,704 (2,689-6,721)
# of chronic diseases prevented	5,963 (3,178-8,749)	3,410 (2,343-4476)	8,509 (5,205-11,813)
# DALYS prevented	35,135 (22,693 – 48,791)	19,493 (12,684-26,302)	57,4650 (34,983-78,733)
Direct medical (tangible) costs savings (million €)	191 (98-285)	108 (71-144)	267 (178-393)
Intangible costs prevented (billion €)	4.75 (3.02-6.49)	2.59 (1.69-3.50)	7.56 (4.65-14.47)
Intangible costs prevented for every km cycled (€)	1.01 (0.60-1.59)	1.25 (0.82-1.73)	1.37 (0.48-2.39)

Intangible costs are estimated based on the value of a statistical life year (VSLY).

¹ As compared to a counterfactual where individual would have done the same trips driving instead of cycling