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Self-supervised Learning for Chest CT - Training
Strategies and Effect on Downstream

Applications
Amara Tariq, Bhavik N. Patel, and Imon Banerjee

Abstract— Self-supervised pretraining can reduce the
amount of labeled training data needed by pre-learning
fundamental visual characteristics of the medical imaging
data. In this study, we investigate several self-supervised
training strategies for chest computed tomography exams
and their effects of downstream applications. we bench-
mark five well-known self-supervision strategies (masked
image region prediction, next slice prediction, rotation pre-
diction, flip prediction and denoising) on 15M chest CT
slices collected from four sites of Mayo Clinic enterprise.
These models were evaluated for two downstream tasks
on public datasets; pulmonary embolism (PE) detection
(classification) and lung nodule segmentation. Image em-
beddings generated by these models were also evaluated
for prediction of patient age, race, and gender to study
inherent biases in models’ understanding of chest CT ex-
ams. Use of pretraining weights, especially masked regions
prediction based weights, improved performance and re-
duced computational effort needed for downstream tasks
compared to task-specific state-of-the-art (SOTA) models.
Performance improvement for PE detection was observed
for training dataset sizes as large as 3̃80K with maximum
gain of 5% over SOTA. Segmentation model initialized with
pretraining weights learned twice as fast as randomly ini-
tialized model. While gender and age predictors built using
self-supervised training weights showed no performance
improvement over randomly initialized predictors, the race
predictor experienced a 10% performance boost when us-
ing self-supervised training weights. We released models
and weights under open-source academic license. These
models can then be finetuned with limited task-specific an-
notated data for a variety of downstream imaging tasks thus
accelerating research in biomedical imaging informatics.

Index Terms— Biomedical Imaging, Computed Tomogra-
phy, Image Processing, Self-supervised learning

I. INTRODUCTION

DEEP learning models have been proposed and trained
for high-dimensional medical imaging data, such as CT

or MRI volumes, to target a variety of image interpretation
tasks, and have demonstrated diagnostic accuracy comparable
to that of human experts [11], [18], [21], [24]. While it
provides promising solutions, the current success has been
largely dominated by supervised learning frameworks, which
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typically require large-scale labeled datasets to achieve high
performance. If the size of training data is limited, the deep
learning models often suffer from over-fitting (high variance),
which results in poor generalizability on the validation data
[19], [32]. However, curating large scale training datasets of
medical images with labels is challenging because of the
tedious nature annotation processes and limited availability of
domain expertise which makes the large scale data annota-
tion expensive and time consuming, and fundamentally limits
building effective medical imaging models across varying
clinical use-cases.

Transfer learning using fine-tuning is one of the most
popular strategies to address training with limited data in the
radiology where the model is pretrained on a larger dataset
(often with generic images, e.g. ImageNet) using supervised
methods after which the model weights are fine-tuned for the
target clinical domain with limited data [31]. The underlying
assumption is that the supervised pertrained task and target
task have significant similarity and thus, the low-level learnt
features are common for both. Given the scarcity of labeled ra-
diology images datasets, it is still common practice to pre-train
medical imaging models using natural images of ImageNet
dataset even though they do not share low-level visual features.
However, recent studies show that pretraining on radiology
images has huge potential [30]. Most medical imaging models
under-perform on generalization which could be based on
the fact that supervised pretraining paradigm encourages the
model to mainly learn the highly correlated features with
the specific labels from the larger dataset rather than general
feature representation. Thus, most medical imaging models
under-perform on generalization which could be based on
the fact that supervised pretraining paradigm encourages the
model to mainly learn the highly correlated features with
the specific labels from the larger dataset rather than general
feature representation.

In contrast to fine-tuning, Self-supervised Learning (SSL)
is a process of training models to learn meaningful generic
representation using unlabeled data and create foundation
models [2] with the potential to transfer their knowledge of a
variety of downstream target tasks - even when the pretraining
task and target tasks are not similar [5], [7], [13], [16], [22],
[23], [25], [26], [33]. Such models are used to learn image
representations, encoding fundamental visual characteristics of
the imaging data, and are tested for downstream prediction
tasks like object detection on datasets like ImageNet. Simul-
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taneously, complex vision-language models like CLIP [16],
DALL-E [25], FLAVA [26], and Socratec models [34] were
trained in a self-supervised way for understanding correlation
in multi-modal data, and enabling reasoning across multiple
modalities, and even applied in generation tasks. SSL is also
being popular for radiology image analysis [3], [6], [20], [27];
however different from natural images, self-supervision using
radiology images needs targeted pretraining using unlabeled
medical images thus understanding the effects of various
self-supervision strategies are important to plan experiments
in advance and reduce unnecessary waste of computation
resources and time of training. Although there exists a “gap” in
literature since no study exists that benchmark SSL strategies
for medical images.

For two popular medical image interpretation tasks (classi-
fication and segmentation), we designed encoder based self-
supervised models and thoroughly benchmark a variety of self-
supervision strategies for CT imaging data, i.e., i) masked area
prediction, ii) next slice prediction, iii) rotation prediction, iv)
flip prediction, and v) denoising. Our experiments covered the
quality assessment of weights estimated by these strategies
in terms of performance boost gained by downstream models
when initialized with these weights. Additionally, performance
disparities of AI models based on sensitive patient attributes
is a major source of concern in wide-spread adoption of deep
learning models [4], [14], [15], [28]. Image processing models
for radiology images often learn patient attributes like race
and use them as “shortcuts” for diagnosis and detection [1].
This behavior often leads to bias in models’ performance,
especially against historically under-served populations. We
also quantified knowledge of patient sensitive attribute seeping
into self-supervised per-training as this bias may be also
introduced into any downstream models built by initializing
weights from self-supervised training.

As case-study, we focused on the commonly performed
imaging modality of chest computed tomography exams.
Potential downstream applications for chest CT are vast in-
cluding segmentation of multiple organs like lungs and heart
and/or segmentation of lung nodules, and detection of vari-
ous abnormalities, such as pulmonary embolism, COVID-19,
pneumonia, and lung cancer, coronary calcium scoring. Many
of these tasks have been released with datasets as multiple
public challenges. To counteract scarcity of annotated data
at individual institutions, data in challenges are often pooled
from multiple healthcare organizations and can make large,
annotated sets available for relevant tasks like PE detection
and lung nodule segmentation. However, this approach is
not scalable for producing annotated sets for all relevant
applications outside of the intended target (e.g., using publicly
available PE dataset for cardiac segmentation).

On the chest CT use case, we evaluated the efficacy of self-
supervised training on two separate clinical tasks (pulmonary
embolism (PE) detection, lung nodule segmentation) and com-
pared them to state-of-the-art models (SOTA) where we pre-
train the CNN backbone using self-supervision with unlabeled
private dataset and fine-tuned with limited task-specific public
datasets. For baseline comparison, we also trained the same
CNN backbone architecture without initializing with the pre-

TABLE I: Characteristics of all cohorts: self-supervised train-
ing and downstream target tasks: RSNA PE and Lung nodule
segmentation (LIDC-IDRI).

Self-supervised
Training Data

RSNA PE
Challenge LIDC-IDRI

Dataset
(volumes,
slices)

67309, 17509671
Slice thickness
<3 mm:
51525, 15333281
Contrast-enhanced:
37709, 11324045

7279, 1790594 1012, 10005

Findings

Lung related
findings:
46% volumes
Cardiovascular
findings:
12% volumes

PE:
2,211 volumes

Cancer:
388 volumes
Ambiguous:
547 volumes
No cancer:
394 volumes

Labels – PE:
96540 slices

Malignancy
scores:
1: 923 slices
2: 1114 slices
3: 3473 slices
4: 2126 slices
5: 2369 slices

Patients 19450 – 840
Patient Age
(mean +/- std) 63.4+/-15.1 years – –

Manufacturer

SIEMENS: 31,089
GE: 9,696
TOSHIBA: 9,207
Cannon: 1,542

– –

trained self-supervision weights.

II. MATERIALS AND METHODS

A. Cohort Description

With the approval of the Institutional Review Board (IRB)
for waiver of informed consent (IRB reference no. 21-005930),
approximately 67,309 chest CT exams from more than 20k
patients conducted between 2010 and 2022 were collected
from various geographically disparate sites of our multi-site
healthcare organization. Axial views of these studies were
extracted and clipped to the soft-tissue window (50, 350) HU.
Minimal filtering was done to preserve visual variance of the
data to be generalizable for various tasks. Exams with slice
thickness of more than 3mm were discarded. Table I shows
salient characteristics of these exams.

B. Model Design

We experimented with two architectures for self-supervised
learning (Fig 1); i) autoencoder architecture with encoder
and decoder modules for image reconstruction based learn-
ing, and ii) encoder-only or classifier-type architecture for
self-supervision through categorical labeling based learning.
Encoder-decoder architecture was inspired by the vector quan-
tized (VQ) autoencoder approach which maintains a code
book of base vectors and weight vectors used to represent
encoded input as a combination of base vectors [29]. Hence,
the output of the encoder is discrete rather than continuous,
and this approach is known for avoiding “posterior collapse”
challenge where a powerful decoder ignores learned posterior.
Our encoder model design included initial convolutional layers
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(a)

(b)

Fig. 1: Self-supervised model architectures using VQVAE:
(a) Encoder-decoder architecture, and (b) Encoder-only or
classifier architecture.

for image size compression and then a set of residual layers.
Decoder was designed as a reverse of the encoder model to
restore the original input image size. We designed our encoder-
only or classifier-type architecture closely following the ar-
chitecture of the encoder of our encoder-decoder type model.
Compression and classification layers were appended to the
encoder architecture to predict categorical self-supervision
labels, e.g. rotation and flip prediction.

Recent encoder-decoder architectures rely on letting the
decoder obtain multi-scale cues from the encoder based on
the skip connection; however, to ease the fine-tuning of the
vector space for the target task [12], we purposefully avoided
residual connections between encoder and decoder to force
the model to return one compressed but informative vector in
response to an input that is sufficient for producing decoder
output (Figure 1a). The model consisted of approximately
100 million trainable parameters and was designed to encode
and decode 512x512 pixel CT slices which is a common
dimension of CT images. We designed a composite loss
function with reconstruction loss (mean squared error (MSE)),
reconstruction loss in quantized space, reconstruction loss of
masked region, and negative of structural similarity index
measure (SSIM). While MSE focuses on quantifying error in
a reconstructed image (output image) compared to a reference
image (groundtruth image), SSIM focuses on degradation
of structural information in the reconstructed image when
compared with the reference images. Classifier-type model is
trained using straightforward cross-entropy loss as MSE and
SSIM type losses are only applicable to image reconstruction
model (Figure 1b). Self-supervised taining code is made
available at https://github.com/amaratariq/FoundationChestCT.

C. Strategies for Self-supervised Learning

We benchmark various self-supervision tasks for encoder
backbone pretraining. Fig. 2 shows input-output pair selection

for all approaches.
1) Next slice prediction: We leverage the 3D nature of CT

volume and experimented with self-supervision through next
slice prediction. Given the nth slice of the CT volume, the
model was trained to generate the n+1th slice of the same
CT volume under this self-supervision paradigm. Quality of
generated output was measured by its similarity to the original
n+1th slice of the volume. With x and y indicating input and
output of the model, and xc and xq

c indicative compressed
representation of x generated by y encoder and quantized
representation of xc generated by quantization layers, the
following equation described the composite loss function for
the model.

loss(x, y) = w1(x
2 − y2) + w2SSIM(x, y) + w3(x

2
c − xq

c
2)

(1)
Weights w1, w2, and w3 can be finetuned as hyper-parameters.

2) Masked image region prediction: We also attempted self-
supervision through randomly masked regions of the input
slice and then training the model to re-generate the unmasked
region. Performance of the model was judged by similarity of
the output with the original unmasked input slice as well as
model-generated patch for the masked input region and the
original image patch for the same region. The loss function
can be described by the following equation after denoting input
masked region as xm and model-generated patch for masked
region as ym.

loss(x, y) =

w1(x
2−y2)+w2SSIM(x, y)+w3(x

2
c−xq

c
2)+w4(x

2
m−y2m)

(2)

This self-supervision target was made progressively harder
by masking larger and larger image regions, starting from
masking of 5% of the total image area to masking of 20% of
the total image area. Model trained by masking 5% image area
was used to initialize the model trained with 10% image area
masked, and so on. As the self-supervision target was made
more complex, the model was initialized to take advantage
of its earlier knowledge obtained under relatively easier self-
supervision targets.

3) Denoising/Noise Removal: We experimented with self-
supervised talk of noise removal, particularly for random
salt and pepper noise at 50% level, i.e., noise was added
to approximately half of the pixel with noisy pixels being
randomly turned on (white or salt) and off (black or pepper).
The model was trained to remove this noise and recover the
original image. Composite training loss included mean squared
error between predicted/denoised and groundtruth slice and
SSIM, in addition to MSE in quantized space.

loss(x, y) = w1(x
2−y2)+w2SSIM(x, y)+w3 ∗ (x2

c −xq
c
2)

(3)
Predicted and groundtruth images are denoted by x and y

respectively while xc and xcq represent compressed image and
compressed image in quantized space, respectively. Weights
w1, w2, and w3 can be finetuned as hyper-parameters.
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4) Rotation prediction: We trained classifier-type self-
supervised model architecture through prediction of categori-
cal labels for CT slices where labels were set in self-supervised
manner. First, we randomly rotated CT slices by 0, 90, 180,
and 370 degrees. The self supervision learning task was set to
predict the rotation category with the last classification layer
designed for four-way classification. Cross-entropy loss used
for model training can be described by the following equation
such that yi represents with ith rotation category (set to 1
only if the input image x belongs to ith category), and p(yi)
represents the estimated probability of ith rotation category.

loss(x, y) = −
4∑

i=1

yip(yi) (4)

5) Flip prediction: We trained another classifier-type self-
supervised model for flip prediction such that input slice can
be flipped (i) horizontally, (ii) vertically or (iii) not flipped at
all. Classification layer was set for 3-way classification. Cross-
entropy loss was used for model training.

loss(x, y) = −
3∑

i=1

yip(yi) (5)

D. Downstream Applications

1) Pulmonary embolism detection: Radiology Society of
North America (RSNA) conducted a competition in 20201 to
develop machine-learning algorithms to detect and character-
ize instances of pulmonary embolism (PE) on chest CT exams.
The largest annotated PE dataset, consisting of approximately
12000 CT studies, contributed by five international research
centers, and labeled by a group of more than 80 expert
thoracic radiologists, was made publicly available for this
competition (Table I). Given the importance and challenge
related to the PE detection task, we employed this as one
downstream application and compared PE detection models
using pretraining weights from self-supervised models against
the performance of the winning model of this challenge in
comparative circumstances.

While availability of this multi-institutional dataset, approx-
imately 1.8 million annotated CT slices, allows training of
large, supervised models possible from scratch, collection of
such large dataset is usually not feasible for every medical im-
age processing model development. Therefore, we focused our
evaluation experiments on a simulated but realistic scenario
of availability of only a fraction of this large training data to
analyze the effects of dataset size on model performance. We
ran (a) PE detection model using pretraining weights, and the
(b) RSNA challenge winning SEResNext model2 for different
fractions of the data.

1https://www.rsna.org/education/ai-resources-and-training/ai-image-
challenge/rsna-pe-detection-challenge-2020

2https://www.kaggle.com/c/rsna-str-pulmonary-embolism-
detection/discussion/194145

Fig. 2: Self-supervision schemes for self-supervised model
training – (A) next slice prediction; (B) masked region predic-
tion; (C) Random salt and pepper noise removal (D) rotation
prediction, (E) flip prediction

2) Lung nodule segmentation: To assess the utility of self-
supervised training for segmentation tasks, we chose lung
nodule segmentation as our second task. The Lung Image
Database Consortium image collection (LIDC-IDRI)3 consists
of diagnostic and lung cancer screening thoracic CT scans
with annotated lesions. Fifteen academic centers and imaging
companies contributed to this set of 1018 cases (Table I).
Annotations from four experienced thoracic radiologists were
reconciled before rendering final annotations.

For this experiment, we used U-Net architecture given its
vast application in medical image segmentation tasks [17].
We compared the performance of randomly initialized U-
Net against U-Net with the “down” branch initialized by
compression layers of our self-supervised model’s encoder
architecture and weights. “Up” branch is initialized with the
random weights similar to the baseline U-Net.

3https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=1966254
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E. Sensitive Patient Attribute Prediction
AI-based diagnostic models for radiology exams often ex-

hibit strong predictive powers for patient attributes, and may
find spurious correlation between these sensitive attributes and
prediction tasks, resulting in patient attribute-based bias in
their performance [1]. Since self-supervision is proposed as
a building block for various downstream predictive models,
we wanted to investigate the potential bias introduced by this
foundational backbone. We extracted features for middle slices
(as marked by the largest body cross section area covered) for
a held out set of chest CT exams using self-supervised models
trained with self-supervision techniques. By passing them
through simple classification layers, we evaluate the relevance
of these features to predict sensitive attributes related to
patients - gender, race, and age group (bins of 10 years). As a
comparative baseline, we build comparable predictors for raw
images (middle slices) using an encoder model (from encoder-
decoder architecture) appended with classification layers. We
report predictive performance for patient attributes for features
extracted by self-supervised models using all self-supervision
techniques as well as raw slices.

III. RESULTS

A. Comparative Performance of Self-supervision Tasks
We designed an experiment to test the performance of self-

supervised models trained under all proposed self-supervision
schemes, i.e., next slice prediction, masked region prediction
(5%, 10%, 20% and 33% image regions masked), denoising,
rotation prediction and flip prediction. Each model was tested
on the same set of 128 CT volumes. Evaluation measures were
based on self-supervision tasks. Image reconstruction based
tasks (masked region and next slice prediction) were evaluated
in terms of MSE (mean square error) and SSIM (structural
similarity index matrix). For masked image region prediction,
we also incorporated masked-MSE which is a measure of
mean squared error between the original masked patch and the
reconstructed patch. Label prediction tasks (flip and rotation
prediction) were evaluated in terms of cross entropy loss (CE)
and AUROC for prediction labels. Results of this experiment
are presented in Table II.

Results indicate that overall MSE and SSIM values im-
proved when progressively increasing masked region size for
masked image region prediction task up to 20% of the image
regions. This trend can be attributed to the fact that each model
in this progressive chain is initialized with the weights of the
previous model (10% masked region prediction model with
the weights of 5% masked region prediction, 20% masked
region prediction model from 10% masked region prediction
model). This allowed each model to retain knowledge learned
in the past iteration of training and then learn further. However,
improvement was not observed when masked image region
size was increased from 20 to 33%. It may represent saturation
of model’s learning capacity under the current selection of
model and training dataset sizes. Better reduction is observed
in overall MSE (39% improvement going from 5% to 10%
masked region prediction, 35% improvement going from 10%
to 20% masked region prediction) compared to reduction

in masked region MSE loss (7% improvement going from
5% to 10% masked region prediction, 16% improvement
going from 10% to 20% masked region prediction). Almost
consistent improvement ( 7%) is observed at each step in SSIM
values. For 20% masked region prediction, it is relatively
straightforward for the model to reconstruct homogeneous
image regions like patches masked from the liver. However, the
model even learns to recreate complex shapes like vertebrae
when masked (sample included in Table II) with relatively
poor resolution at edges of the masked region. For 33%
masked region prediction, the model seems to struggle with
reconstructing when multiple organs are masked, reducing the
context information available for reconstruction. Denoising
also seems to be an effective self-supervision strategy. The
model trained for denoising achieves as low MSE as the model
trained with 20% mashed region prediction with even better
SSIM (masked-MSE is not applicable to denoising model).
For the next slice prediction model, the model has a relatively
higher overall MSE highlighting the challenge of prediction
of the next slice from a given slice, especially when slice
thickness can be as large as 3mm. Label prediction tasks (flip
and rotation prediction) performed comparably in terms of CE
loss with rotation prediction achieving near perfect AUROC
while flip prediction achieved high AUROC of 85%. Inherent
horizontal symmetry in the axial view of chest CT made it
difficult for the model to differentiate between horizontally
flipped and non-flipped images, resulting in lower AUROC.

B. Performance of Downstream Classification Task

Fig. 3 shows the results for PE detection. Performance com-
parison in terms of AUROC is presented for predictors initial-
ized with self-supervised pre-training weights (masked regions
prediction, next slice prediction, rotation and flip prediction)
and state-of-the-art (SOTA) model. The 20% masked region
prediction model was used as a representative of all masked
image region prediction models as it outperformed 5%, 10%
and 33% masked image region prediction models in self-
supervised learning task evaluation experiments described in
the previous section (Table 2). In general, predictors initialized
with weights of the masked region prediction model outper-
form all other types of self-supervised pre-training weights
across the board. They even outperform the SOTA model
when only smaller training datasets were made available for
training. Predictor initialized with masked regions prediction
self-supervision weights outperformed SOTA for training data
subsets as large as 770K slices, a dataset size which arguably
too large for practical manual annotations. Model initialized
with the weight of denoising based pre training also fared well
achieving almost as high AUROC as model initialized with
masked region prediction weights on dataset sizes as large as
115K. This result aligns with the results of self-supervision
task based evaluation experiment where denoising based pre-
trained model achieved as low MSE as 20% masked region
prediction based pretrained model. However, denoising based
pre training weights did not perform as well as 20% masked
regions prediction based pre training weights when even larger
training datasets were used for PE detection model training.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 5, 2024. ; https://doi.org/10.1101/2024.02.01.24302144doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.01.24302144
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 IEEE TRANSACTIONS AND JOURNALS TEMPLATE

TABLE II: Performance of self-supervised training on 128 hold-out CT volumes.

Image Reconstruction-based Tasks
Performance Sample Input Predicted Output Difference in predicted

output and groundtruth
Next slice prediction

MSE:
0.0233± 0.0033
SSIM:
0.6950± 0.0290

Masked region prediction - 5% Masking

MSE:
0.0073± 0.0009
Masked-MSE:
0.1333± 0.0722
SSIM:
0.744± 0.0143

Masked region prediction - 10% masking

MSE:
0.0044± 0.0002
Masked-MSE:
0.1226± 0.0557
SSIM:
0.7903± 0.0107

Masked region prediction - 20% masking

MSE:
0.0029± 0.0002
Masked-MSE:
0.0988± 0.0494
SSIM:
0.8527± 0.0115

Masked region prediction - 33% masking

MSE:
0.0045± 0.0003
Masked-MSE:
0.1000± 0.1142
SSIM:
0.8307± 0.0117

Denoising

MSE:
0.0029± 0.0011
SSIM:
0.8756± 0.0269

Classification-based Tasks
Rotation prediction

Cross-entropy loss 0.7436± 0.0001 AUROC (one-vs-rest) 1.0
Flip prediction

Cross-entropy loss 0.7533± 0.0599 AUROC (one-vs-rest) 0.85
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Both denoising and masked region prediction force the model
to learn localized visual attributes through removal of noise
from individual pixels and reconstruction of smaller image
regions, respectively. This type of learning seems particularly
useful for detection of small localized pathology of PE.

Predictors based on flip and rotation prediction training
weights do show some gain compared to the SOTA model
for training subsets of size up to 60K. However, their gains
are much smaller compared to predictors using masked region
prediction training weights. Again, this trend may be attributed
to the fact that flip and rotation prediction based training
does not force the model to learn localized visual features,
instead focusing on over image orientation learning. We also
plotted sensitivity and specificity values across a wide range
of training data subsets for the SOTA and predictor using
weights of 5% masked region prediction pre-training weights.
While looking into sensitivity and specificity of these models,
computed at the optimal probability threshold estimated by
ROC curves, we observed that the detector using pretraining
weights achieved consistently better specificity while keeping
sensitivity value comparable to SOTA model - particularly
when smaller subsets of training data (up to 770k slices) were
used. Note that the supervised SOTA model was only tasked
with learning one pathology (i.e., PE). On the other hand, the
self-supervised models learned fundamental visual characteris-
tics of CT data and then were able to transfer this knowledge,
with only the architectural change of adding a fully-connected
classification layer, for detection of a pathology with very
small visual footprint even better than the supervised model
narrowly focused on that one pathology.

We also compared the effectiveness of pretraining weights
obtained by masked region prediction with varying mask sizes
(5%, 10%, 20% and 33% of image size). Increasing the
masked region size, especially beyond 20% of image size,
does not seem to achieve consistent performance improvement
in the downstream task of PE detection for smaller training
dataset sizes of upto 60K (Figure 4). Some performance
improvement is observed for even larger training dataset sizes.
Performance of these pre-training weights on self-supervision
tasks may offer a clue for explaining this trend. Under the
current selection of dataset and model sizes, self-supervised
training only seems to improve the pretrained model for up to
20% masked region prediction.

C. Performance for Downstream Segmentation Task
Lung nodule segmentation is another challenging task re-

quiring exact segmentation of a relatively small pathology
of a lung nodule. U-Net is arguably the most robust medi-
cal segmentation model requiring relatively smaller training
datasets. We focused our experiments on this architecture and
compared two types of U-Net models; 1) U-Net initialized
randomly (UNet-Random), and 2) U-Net with “down” formed
of compression layers of self-supervised model encoder for
all self-supervision tasks (U-Net-5% masked region, U-Net-
10% masked region, U-Net-20% masked region, U-Net-33%
masked region, U-Net-Denoising, U-Net-Next Slice, U-Net-
Rotation, U-Net-Flip). Our hypothesis was that U-Net ini-
tialized with self-supervised pretraining weights has acquired

Fig. 3: PE detection performance comparison between state-
of-the-art PE detector (SOTA) and detectors using weights
from self-supervised training - (A) Sensitivity and (B) Speci-
ficity reported for SOTA and the best performing predictor
using pre-training weights (20% masked image region predic-
tion), (C) AUROC reported for the SOTA and predictors with
weights from all self-supervised tasks.

Fig. 4: AUROC comparison between PE detection models
built on top of encoders trained with self-supervised learning
tasks of 5%, 10%, 20% and 33% masked region reconstruction

some basic understanding of visual characteristics of CT scans
through self-supervised training, and therefore should train
faster for the task of segmentation for achieving comparable
performance. The results supported our hypothesis for smaller
training set sizes (horizontal axes of plots in Figure 5) consist-
ing of up to 50% of all available training data containing about
100 studies with 3000 annotated slices with lung nodules.
Again, 20% masked region prediction pretraining task was
used as a representative of all masked region prediction models
as it outperformed all other masked region prediction models
in self-supervised task evaluation experiment (Table II). As the
size of available training data was increased and training was
run for larger and larger number of iterations, U-Net-Random
tended to close the performance gap with U-Net initialized
with pretraining weights, However, the experiment clearly
established the benefits of using self-supervised pretraining
weights under limited resource scenario. i.e., smaller amounts
of annotated training data and limited computational time.

While masked region prediction seems to be a useful
pretraining task for two very different downstream tasks, the
nature of downstream tasks does affect the utility of pretraining
weights. Tasks with extremely small visual footprint gain
more from fine-grained pretraining tasks like masked region
prediction. On the other hand, even global features learned by
flip and rotation prediction are helpful for UNet to understand
global visual structure (“down” branch of UNet) and use
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this knowledge for localized segmentation (“up” branch of
UNet). Denoising based pretraining is also effective for both
downstream tasks of PE detection and segmentation.

We also observed interesting patterns when we compared
UNet initialized with pretraining weights of masked region
prediction tasks with varying mask sizes (5%, 10%, 20%, and
33% image regions). Increasing masked region size generally
improved the performance for downstream task of lung nodule
segmentation when pretraining weights were used to initialize
the “down” branch of UNet (Figure S1). However, this per-
formance trend is stronger for larger training dataset sizes and
numbers of training epochs. For very small training dataset
sizes and numbers of epochs, no consistent gain is observed
beyond 20% masked region prediction based pretraining. This
result is consistent with performance of these pretraining
weights for the downstream task of PE detection (Figure 4).
This trend is also inline with performance of pretrained models
on self-supervision tasks (Table II) where the model pretrained
with 33% masked image region reconstruction failed to out-
perform 20% masked image region prediction model.

D. Performance for Patient Attribute Prediction

While gender may have visible attributes in the chest CT,
race and age represent a hidden sensitive attribute which is not
straightforward to predict from the image. Well-known studies
have shown that deep learning based image processing models
for radiology images such as chest X-rays are astoundingly
accurate at predicting race of the patient [14], [15], often
resulting in damaging bias in performance of those models
for minority groups. Predictive performance of image features
extracted from all types of pretraining for all patients attributes
are shown in Figure 6. In addition, performance of equivalent
classifiers with no pretraining are also presented. For both
gender and age prediction, performance gain of even the best
performing self-supervision based features over no pretraining
classifier is negligible. It appears that gender and age predic-
tion gains little to no performance boost by using pretraining
weights. It indicates that there is a minimal chance of self-
supervision strategy introducing gender or age based bias in
the downstream model performance beyond the bias acquired
by the downstream model with no pretraining. Race prediction
presents a somewhat interesting scenario. There is on average
10% performance boost gained when image features from self-
supervised models are used, compared to the classifier with
no pre-training. While gender and age have certain visual
attributes in CT images and are thus easier targets to predict
for image processing model, prediction of these target does not
seem to need any help from pretraining based image features.
On the other hand, race is a difficult prediction target with
no well-defined visual attributes. Prediction of such a target is
aided by the image features obtained through self-supervised
training. This may increase the chance of race-based bias in
the downstream models initialized with self-supervised pre-
training weights, while gaining advantage in terms of down-
stream task performance (better results with smaller amounts
of training data and computational resources). However, race
prediction performance for image features from all types of

self-supervised image features is pretty even (AUROC between
0.72 and 0.74), except for the next slice prediction based
model (AUROC of 0.68). This self-supervision strategy also
shows the lowest performance gains for downstream tasks
of PE detection and lung nodule segmentation, indicating
overall poor quality of features obtained through such self-
supervision. Overall, the chance of introduction of bias in
downstream tasks seems to be equally strong for all otherwise
effective self-supervision strategies.

IV. DISCUSSION

To the best of our knowledge, we have presented the first
comprehensive benchmark study of self-supervised learning
strategies for chest CT exams for potential application in a
variety of downstream tasks such as PE detection and lung
nodule segmentation, in addition to evaluating the effects of
self-supervision of patient attribute based bias.

Self-supervised learning strategies discussed in this work
present a systematic solution to this challenge of generating
task-specific large datasets by learning fundamental visual
characteristics of CT from un-annotated CT volumes in self-
supervised fashion and then transferring this knowledge to
downstream tasks. Our experiments show that the downstream
prediction models initialized with pretraining weights learn
faster (saturates with fewer epoch) and outperform state-of-
the-art supervised downstream classification and segmentation
tasks when only small amounts of annotated training data is
available. While nature of the downstream task affects the
efficacy of pretraining weights coming from different types
of self-supervised training, masked region prediction seems
to be an overall effective method for pretraining for chest CT
performing well for widely different tasks of PE detection and
lung nodule segmentation. It is the best strategy for detecting
small visual footprint pathology (e.g., pulmonary embolism).

In a practical scenario, users can directly download pre-
trained weights and transfer them to other chest CT tasks, such
as coronary calcium scoring. We have presented frameworks
for using these weights for two vastly different models (CNN
based classifier, and UNet based segmentation model). The
significance lies in reducing the dependency in not only
reducing the amount of annotations required but also reducing
the dependency on having large dataset sizes, both of which
may not always be practically possible.

In addition to the results we observed, we also noticed
interesting behaviors during self-supervised training. In the
self-supervised learning paradigms, which was built around
next-slice prediction, the model primarily focused on com-
pression rather than learning anatomy visible in slices. When
tested on downstream tasks (Figure 3 for PE detection and
Figure 5 for lung nodule segmentation), the performance of
the downstream model using weights of this self-supervised
training strategy was poor in comparison to models using
weights of masked regions prediction pretraining. The per-
formance gap was wider for smaller training dataset sizes.
Categorical label prediction based self-supervision (rotation
or flip prediction) seems to acquire knowledge of global
visual characteristics rather than fine grained localized visual
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Fig. 5: DICE and IOU comparison between UNet and UNet initialized by all self-supervised training weights for lung nodule
segmentation over a wide range of available training dataset sizes and training iterations.

Fig. 6: AUROC based performance comparison for patient
attribute prediction

features, as indicated by the relatively poor performance of
pretraining weights obtained by such self supervision on PE
detection, but substantial performance gain obtained by the
same weights when used to initialize “down” branch of UNet
for lung nodule segmentation.

While PE detection and lung nodule segmentation experi-
ments clearly establish the utility of pretraining weights ob-
tained by self-supervision, their effect on potential introduction
of bias in downstream models warrant separate investigation.
We studied this effect by training patient attribute predictors
on a small held-out set of patients with and without pretraining
weights. Our experiments show that attributes with visible
features like gender or age are easily learned by the predic-
tors even without the help of pretraining weights, indicating
minimal chance of introduction of additional bias through

pretraining weights for these attributes. Prediction of attributes
with no definitive visual features like race is improved with
the use of pretraining weights. however, pretraining weights
from all effective self supervision strategies seem to learn race
features almost equally well. It is possible that bias based
on hidden patient attributes may be present in pretraining
weights when they are used to initialize downstream mod-
els. However, significant advantages in terms of performance
boost for limited training datasets and computational resources
are observed for downstream models when initialized with
pretraining weights. We argue that such performance gain
warrants the use of pretraining weights while highlighting
the need for debiasing of downstream models. Vast amount
of literature in the field of medical image processing is now
focused on experimenting with training of image processing
models with debiasing techniques [8]–[10]. Such techniques
will be applicable even when the models are initialized with
pretraining weights.

Given the potential, we hypothesized that self-supervised
learning can allow a paradigm shift for AI model development,
where many models across domains will directly build upon
or heavily integrate self-supervised models. Self-supervised
learning incentivizes homogenization where the same back-
bone architecture is repeatedly reused as the basis for di-
verse applications. Such consolidation allows centralization to
concentrate and amortize community efforts (e.g., to improve
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robustness) on a specific model that can be repeatedly applied
across applications to reap these benefits.

Limitation: Within the scope of this study, we only experi-
mented with a simplistic encoder architecture that suits a wide
range of tasks – however we demonstrate the application for
both the segmentation and classification tasks. As the first
step, we studied self-supervised learning for 2D slices of CT
volumes. In future, we plan to extend these experiments for 3D
CT volumes. Our experiments concluded that 20% masking
is the optimal self-supervision task for downstream targeted
classification and segmentation. However, this experiment is
restricted by the size of the pre-training data (67,309 volumes;
17,509,671 slices). More pretraining data may also help the
model to achieve better reconstruction for the larger masked
regions.
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Lungren. Assessment of convolutional neural networks for automated
classification of chest radiographs. Radiology, 290(2):537–544, 2019.

[12] F. Fan, H. Shan, M. K. Kalra, R. Singh, G. Qian, M. Getzin, Y. Teng,
J. Hahn, and G. Wang. Quadratic autoencoder (q-ae) for low-dose ct
denoising. IEEE transactions on medical imaging, 39(6):2035–2050,
2019.

[13] T. Gao, X. Yao, and D. Chen. Simcse: Simple contrastive learning of
sentence embeddings. arXiv preprint arXiv:2104.08821, 2021.

[14] J. W. Gichoya, I. Banerjee, A. R. Bhimireddy, J. L. Burns, L. A. Celi,
L.-C. Chen, R. Correa, N. Dullerud, M. Ghassemi, S.-C. Huang, et al.
Ai recognition of patient race in medical imaging: a modelling study.
The Lancet Digital Health, 4(6):e406–e414, 2022.

[15] J. W. Gichoya, K. Thomas, L. A. Celi, N. Safdar, I. Banerjee, J. D. Banja,
L. Seyyed-Kalantari, H. Trivedi, and S. Purkayastha. Ai pitfalls and
what not to do: mitigating bias in ai. The British Journal of Radiology,
96(1150):20230023, 2023.

[16] K. He, H. Fan, Y. Wu, S. Xie, and R. Girshick. Momentum contrast
for unsupervised visual representation learning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages
9729–9738, 2020.

[17] F. Isensee, P. F. Jaeger, S. A. Kohl, J. Petersen, and K. H. Maier-Hein.
nnu-net: a self-configuring method for deep learning-based biomedical
image segmentation. Nature methods, 18(2):203–211, 2021.

[18] D. B. Larson, M. C. Chen, M. P. Lungren, S. S. Halabi, N. V. Stence, and
C. P. Langlotz. Performance of a deep-learning neural network model
in assessing skeletal maturity on pediatric hand radiographs. Radiology,
287(1):313–322, 2018.

[19] Z. Li, K. Kamnitsas, and B. Glocker. Analyzing overfitting under class
imbalance in neural networks for image segmentation. IEEE transactions
on medical imaging, 40(3):1065–1077, 2020.

[20] W. Liao, H. Xiong, Q. Wang, Y. Mo, X. Li, Y. Liu, Z. Chen, S. Huang,
and D. Dou. Muscle: Multi-task self-supervised continual learning to
pre-train deep models for x-ray images of multiple body parts. In
International Conference on Medical Image Computing and Computer-
Assisted Intervention, pages 151–161. Springer, 2022.

[21] A. Park, C. Chute, P. Rajpurkar, J. Lou, R. L. Ball, K. Shpanskaya,
R. Jabarkheel, L. H. Kim, E. McKenna, J. Tseng, et al. Deep learning–
assisted diagnosis of cerebral aneurysms using the headxnet model.
JAMA network open, 2(6):e195600–e195600, 2019.

[22] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, et al. Learning transferable
visual models from natural language supervision. In International
conference on machine learning, pages 8748–8763. PMLR, 2021.

[23] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena,
Y. Zhou, W. Li, and P. J. Liu. Exploring the limits of transfer learning
with a unified text-to-text transformer. The Journal of Machine Learning
Research, 21(1):5485–5551, 2020.

[24] P. Rajpurkar, J. Irvin, R. L. Ball, K. Zhu, B. Yang, H. Mehta, T. Duan,
D. Ding, A. Bagul, C. P. Langlotz, et al. Deep learning for chest radio-
graph diagnosis: A retrospective comparison of the chexnext algorithm
to practicing radiologists. PLoS medicine, 15(11):e1002686, 2018.

[25] A. Ramesh, M. Pavlov, G. Goh, S. Gray, C. Voss, A. Radford, M. Chen,
and I. Sutskever. Zero-shot text-to-image generation. In International
Conference on Machine Learning, pages 8821–8831. PMLR, 2021.

[26] A. Singh, R. Hu, V. Goswami, G. Couairon, W. Galuba, M. Rohrbach,
and D. Kiela. Flava: A foundational language and vision alignment
model. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 15638–15650, 2022.

[27] H. Sowrirajan, J. Yang, A. Y. Ng, and P. Rajpurkar. Moco-cxr: Moco
pretraining improves representation and transferability of chest x-ray
models, 2021. URL https://arxiv. org/abs, 2010.

[28] S. Tripathi, K. Gabriel, S. Dheer, A. Parajuli, A. I. Augustin, A. Elahi,
O. Awan, and F. Dako. Understanding biases and disparities in radiology
ai datasets: a review. Journal of the American College of Radiology,
20(9):836–841, 2023.

[29] A. Van Den Oord, O. Vinyals, et al. Neural discrete representation
learning. Advances in neural information processing systems, 30, 2017.

[30] Y. Wen, L. Chen, Y. Deng, and C. Zhou. Rethinking pre-training
on medical imaging. Journal of Visual Communication and Image
Representation, 78:103145, 2021.

[31] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable
are features in deep neural networks? Advances in neural information
processing systems, 27, 2014.

[32] A. C. Yu, B. Mohajer, and J. Eng. External validation of deep learning
algorithms for radiologic diagnosis: a systematic review. Radiology:
Artificial Intelligence, 4(3):e210064, 2022.

[33] J. Yu, Z. Wang, V. Vasudevan, L. Yeung, M. Seyedhosseini, and Y. Wu.
Coca: Contrastive captioners are image-text foundation models. arxiv
2022. arXiv preprint arXiv:2205.01917.

[34] A. Zeng, M. Attarian, B. Ichter, K. Choromanski, A. Wong, S. Welker,
F. Tombari, A. Purohit, M. Ryoo, V. Sindhwani, et al. Socratic models:
Composing zero-shot multimodal reasoning with language. arXiv
preprint arXiv:2204.00598, 2022.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted February 5, 2024. ; https://doi.org/10.1101/2024.02.01.24302144doi: medRxiv preprint 

https://doi.org/10.1101/2024.02.01.24302144
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Materials and Methods
	Cohort Description
	Model Design
	Strategies for Self-supervised Learning
	Next slice prediction
	Masked image region prediction
	Denoising/Noise Removal
	Rotation prediction
	Flip prediction

	Downstream Applications
	Pulmonary embolism detection
	Lung nodule segmentation

	Sensitive Patient Attribute Prediction

	Results
	Comparative Performance of Self-supervision Tasks
	Performance of Downstream Classification Task
	Performance for Downstream Segmentation Task
	Performance for Patient Attribute Prediction

	Discussion

