1 2 3 4	Title : An Open-label Clinical Study of Brief Submaximal Cardiopulmonary Testing in Pre- surgical Evaluation: Feasibility of implementation.
- 5 6 7 8 9	Zyad J. Carr (M.D.) ^{a, b} , Daniel Agarkov (M.D.) ^{a, b} , Judy Li (B.S.) ^a , Jean Charchaflieh (M.D.) ^{a, b} , Andres Brenes-Bastos (M.D.) ^{a,b} , Jonah Freund,(B.Sc., Candidate) ^{a, b} , Jill Zafar (M.D.) ^{a, c} , Robert B. Schonberger (M.D, M.H.C.D.S.) ^{a, b} , Paul Heerdt (M.D., Ph.D.) ^{a, b}
10 11	^a Yale University School of Medicine, New Haven, Connecticut USA
12 13	^b Department of Anesthesiology, Yale New Haven Hospital, New Haven, Connecticut USA
14 15	^c Department of Anesthesiology, Bridgeport Hospital, Bridgeport, Connecticut USA
16 17 18 19 20 21	Corresponding author : Zyad J. Carr, M.D. 333 Cedar St., TMP-3, New Haven, Connecticut 06510. (203)-785-3689. <u>zyad.carr@yale.edu</u>
22 23	
24	
25 26	
20 27	
28	
29	
30	
31	
32 33	
33 34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45 46	
40	

2

47 Abstract

- 48 **Objectives**: We tested the logistic feasibility of integrating brief submaximal cardiopulmonary
- 49 exercise testing (smCPET) in a pre-surgical evaluation (PSE) clinic.
- 50 **Design**: Prospective open-label clinical device trial.
- 51 **Setting**: Pre-surgical evaluation clinic.
- 52 **Participants**: 43 participants who met criteria of i) age ≥ 60 years old, ii) revised cardiac risk
- index of ≤ 2 , iii) self-reported metabolic equivalents (METs) of ≥ 4.6 (i.e. ability to climb 2 flights
- 54 of stairs), and iv) presenting for noncardiac surgery.

55 Interventions: Pre-intervention self-reported METs, Duke Activity Status Index (DASI)

56 surveys, smCPET trial, Borg survey of perceived exertion, and post-intervention survey.

57 Measurements: Feasibility endpoints were 1) operational efficiency as measured by length of

- time of experimental session ≤ 20 minutes, 2) no more than moderate perceived physical
- exertion as quantified by a modified Borg survey of perceived exertion of ≤ 7 in the absence of

60 observed complications, 3) high participant satisfaction with smCPET task execution,

for represented as a score of ≥ 8 , and 4) high patient satisfaction with scheduling of smCPET testing,

62 represented as a score of ≥ 8 .

63 Results: Session time was 16.9 minutes (\pm 6.8). Post-test modified Borg survey was 5.35 (\pm 1.8),

64 corresponding to moderate perceived exertion. Satisfaction [on a scale of 1 (worst) to 10 (best)]

regarding ease of smCPET tasks was 9.6 (± 0.7) and mean patient satisfaction with smCPET

scheduling was 9.5 (\pm 1.5). Operational efficiency was achieved after 10-15 experimental

67 sessions.

68 **Conclusions**: Our findings suggest that smCPET integration in a PSE clinic; 1) is time efficient

69 2) shows high participant satisfaction with task, and 3) rapidly achieved operational efficiency.

70	
71	Trial Registration: ClinicalTrials.gov Registration: #NCT05743673. Principal Investigator:
72	Zyad J. Carr, M.D. Date of Registration: 5-12-2023.
73	
74	Strengths and limitations of this study
75	• We examined patient- and logistic-centered acceptance of study procedures within the
76	environment of a high-volume preoperative surgical evaluation clinic.
77	• Study procedures were well tolerated, and participants readily accepted submaximal
78	cardiopulmonary exercise testing with high satisfaction with device use, scheduling, and
79	perceived exertion.
80	• User operational efficiency developed over 10-15 sessions of use.
81	• This feasibility study met our proposed endpoints but is comprised of a small sample of
82	participants, limiting its generalizability to larger populations.
83	
84	Keywords: Preoperative evaluation, submaximal cardiopulmonary exercise test, cardiac,
85	pulmonary, evaluation, risk stratification
86	
87	
88	
89	
90	
91	
92	

4

93 Background

94	Functional capacity or exercise tolerance, as measured by self-reported metabolic equivalents
95	(METs), remains a cornerstone of preliminary assessment of fitness for surgery. METs are
96	defined as multiples of the basal metabolic rate, conventionally defined as 3.5 ml.kg ⁻¹ .min ⁻¹ .
97	Self-reported ability to climb one flight of stairs has a general consensus of 4 METs ¹ . A
98	threshold of <4.6 METs (self-reported inability to climb two flights of stairs) has been observed
99	to correlate with major adverse cardiac events, all-cause mortality, and higher rates of
100	perioperative complications ²⁻⁴ . However, self-reported and physician estimated METs remain
101	insensitive in the accurate estimation of peak METs ⁵⁶ . Similarly, preoperative risk prediction
102	tools are fragmented or have demonstrated significant limitations in capturing at-risk populations
103	prior to surgical evaluation ⁷ . Thus, simple, reliable, and sensitive methods to improve the
104	precision of preoperative evaluation continues to be an area of importance in preoperative
105	assessment and the individualized identification of high-risk patients.
105 106	assessment and the individualized identification of high-risk patients. Traditional cardiopulmonary exercise testing (CPET) provides objective assessments of
106	Traditional cardiopulmonary exercise testing (CPET) provides objective assessments of
106 107	Traditional cardiopulmonary exercise testing (CPET) provides objective assessments of cardiopulmonary performance by analyzing measures of cellular respiration at rest and during
106 107 108	Traditional cardiopulmonary exercise testing (CPET) provides objective assessments of cardiopulmonary performance by analyzing measures of cellular respiration at rest and during exercise. Typically performed by measuring resting gas exchange followed by commencement of
106 107 108 109	Traditional cardiopulmonary exercise testing (CPET) provides objective assessments of cardiopulmonary performance by analyzing measures of cellular respiration at rest and during exercise. Typically performed by measuring resting gas exchange followed by commencement of maximal exercise to expose pathophysiological impairments. CPET usually exploits a symptom-
106 107 108 109 110	Traditional cardiopulmonary exercise testing (CPET) provides objective assessments of cardiopulmonary performance by analyzing measures of cellular respiration at rest and during exercise. Typically performed by measuring resting gas exchange followed by commencement of maximal exercise to expose pathophysiological impairments. CPET usually exploits a symptom- limited approach to stationary-cycle ergometer-derived exercise with a 3-minute resting stage, 3
106 107 108 109 110 111	Traditional cardiopulmonary exercise testing (CPET) provides objective assessments of cardiopulmonary performance by analyzing measures of cellular respiration at rest and during exercise. Typically performed by measuring resting gas exchange followed by commencement of maximal exercise to expose pathophysiological impairments. CPET usually exploits a symptom- limited approach to stationary-cycle ergometer-derived exercise with a 3-minute resting stage, 3 minutes of unloaded cycling, and a 10-12 minute ramp stage with increasing resistance until
106 107 108 109 110 111 112	Traditional cardiopulmonary exercise testing (CPET) provides objective assessments of cardiopulmonary performance by analyzing measures of cellular respiration at rest and during exercise. Typically performed by measuring resting gas exchange followed by commencement of maximal exercise to expose pathophysiological impairments. CPET usually exploits a symptom-limited approach to stationary-cycle ergometer-derived exercise with a 3-minute resting stage, 3 minutes of unloaded cycling, and a 10-12 minute ramp stage with increasing resistance until terminated by the participant ⁸ . Abnormalities have been shown to be associated with

5

derived peak VO₂ has been observed to predict surgical site infection, postoperative respiratory
failure, and increased risk of critical care readmission but not 30-day mortality and non-fatal
myocardial infarction¹⁴. Despite its prognostic value for perioperative complications, traditional
CPET has been limited in its widespread adoption for preoperative evaluation due to limited
availability, required technical skills, necessity of maximal patient effort, complexity of task, and
cost.

In contrast to traditional CPET, submaximal cardiopulmonary exercise test (smCPET) utilizes 122 123 graded exercise and concomitant gas exchange analysis to provide a granular and personalized assessment of cardiopulmonary performance⁸. Several advantages are provided by smCPET over 124 125 traditional CPET. First, a submaximal exercise effort is required since it analyzes the oxygen uptake efficiency slope (OUES) to extrapolate reliable estimates of peak METs and peak VO2¹⁵⁻ 126 ¹⁷. The OUES predictive capability allows effort-independent estimation of extrapolated peak 127 128 cardiopulmonary functional reserve, a particular advantage in deconditioned, frail, or 129 functionally limited patient populations. Furthermore, as a time-limited assessment, smCPET 130 may be efficiently integrated into conventional clinic schedules. Lastly, new devices have 131 continued to miniaturize the smCPET footprint, permitting easy storage and transport. smCPET 132 has demonstrated reliable prediction of length of stay and prediction of postoperative complications after noncardiac surgery¹⁸. 133 Despite these advantages, widespread adoption of smCPET for the purposes of preoperative 134

evaluation has not been observed. Thus, it is unclear if smCPET can be feasibly integrated into a
high-volume pre-surgical evaluation clinic setting.

137 Study Objectives: We examined the feasibility of integration of brief smCPET into a high-

138 volume pre-surgical evaluation (PSE) clinic of a large quaternary care facility. This initial study

139	stage was performed for the purpose of determining the adequacy of study and patient-centered
140	processes of the primary observational study which will examine the relationship of smCPET
141	and perioperative outcomes, as measured by the postoperative morbidity survey (POMS) ¹⁹ . Our
142	measured feasibility endpoints were 1) operational efficiency as measured by length of time of
143	experimental session \leq 20 minutes, 2) no more than moderate perceived physical exertion as
144	quantified by a modified Borg survey of perceived exertion of ≤ 7 in the absence of observed
145	complications, 3) high participant satisfaction with smCPET task execution, represented as a
146	score of ≥ 8 , and 4) high patient satisfaction with scheduling of smCPET testing, represented as a
147	score of ≥ 8 .
148	A prior study examining CPET and subjective clinician estimation had a sensitivity of 19.2% in
149	the identification of patients with low functional capacity (≤ 4 METs) ¹⁴ . We were interested in
150	quantifying if this was also present in our feasibility cohort using smCPET equivalents.
151	Secondary outcomes included a comparison of differences between 1) self-reported METs
152	survey vs. smCPET equivalent (extrapolated peak METs), 2) Duke Activity Status Index ²⁰
153	(DASI) vs. smCPET equivalent (extrapolated peak METs) and 3) estimated DASI maximal
154	oxygen consumption (estimated peak VO ₂) vs. smCPET equivalent (extrapolated peak VO ₂).
155	Materials and Methods
156	Study Design: This is an ongoing prospective open-label clinical device trial approved by the
157	Yale University Institutional Review Board (IRB#2000033885; ClinicalTrials.gov Registry.
158	#NCT05743673. Principal Investigator: Zyad J. Carr, M.D. Date of Registration: 5-12-2023).
159	Study Population: We successfully enrolled 43 participants who met the inclusion criteria of
160	age \geq 60 years old, with a revised cardiac risk index ²¹ of \leq 2, and self-endorsed subjective
161	metabolic equivalents of \geq 4, presenting for moderate to high-risk noncardiac surgery. The aim

7

was to recruit 40 participants for this initial feasibility stage of the study. We estimated this
number to be adequate to identify any study-related logistic process problems, patient-centered
outcome deficiencies, and to determine operational efficiency.

165 We pre-screened by chart review and excluded potential participants with recorded severe or

166 critical heart valve disease, active exertional angina, non-ambulation, gait abnormalities, end-

167 stage renal disease, severe peripheral vascular disease, and neurological motor deficits. We

168 excluded non-English speaking participants, those under legal guardianship, and participants

169 documented to not have personal health care decision-making capacity. After pre-screening, a

170 phone call was placed by a study team member to the potential participant, and eligible

171 participants were invited for in-person informed consent, preoperative evaluation, questionnaire

assessment of METs, and a smCPET experimental session.

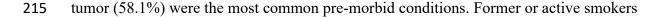
Testing Environment: Testing was performed at the PSE Clinic at Yale New Haven Hospital

174 which is typically responsible for approximately >40,000 preoperative evaluations per year. On a

daily basis, the PSE clinic is staffed by an anesthesiologist, 2 resident physicians, 3 certified

176 nurse practitioners and 6 nursing staff and contains six exam rooms.

Study Apparatus: The FDA-approved Shape II® system is a compact cardiopulmonary breath 177 178 by breath exercise testing system that uses sub-maximal exercise effort to generate multiple 179 quantitative measures of actual and extrapolated peak exercise tolerance. The device has been previously validated to conventional CPET measurements²². The compact design allows all the 180 181 necessary equipment to be placed on a standard rolling cart and it was deployed in a PSE clinic examination room (2.4 x 2.4 meters). The device requires 2 minutes of baseline data, 3 minutes 182 183 of escalating exercise using a stationary step and 1 minute of recovery data to generate a variety 184 of individual measures of cardiac and pulmonary physiological data (Supplementary Table 1).


185	Study procedures: On presentation to the PSE clinic, participants received height/weight and
186	vital sign measurements (heart rate, blood pressure and pulse oximetry). Informed consent was
187	performed, and participants were instructed on smCPET testing (~5 minutes). Session time was
188	measured from the beginning of pre-test METs questionnaires until the termination of the
189	smCPET recovery phase. Study pre-test instruments included a self-reported 7-question METs
190	assessment and the 12-question DASI survey. A post-test modified Borg survey of perceived
191	exertion was performed after smCPET session and was recorded immediately after termination
192	of the smCPET trial. After study interventions, a standard preoperative evaluation was
193	completed, and the participant was discharged. A 24-hour post-experiment survey of
194	minor/major complication and patient satisfaction was performed by telephone (Supplementary
195	Table 2). With the exception of the patient satisfaction survey, all survey instruments were
196	adapted from prior publications ²³⁻²⁵ . DASI peak METs and peak VO ₂ was calculated from
197	individual participants DASI score using the recommended formula.
198	Data analysis: Continuous variables are described as mean (standard deviation), ordinal
199	variables as median (range), and categorical variables as number (percent).
200	Results
201	Participant recruitment: Participants were recruited from June 2023 through October 2023. We
202	identified 209 potential participants that met eligibility criteria, 6 did not meet inclusion criteria,
203	59 failed pre-screening criteria and 89 declined study participation (Figure 2). Initially 46

9

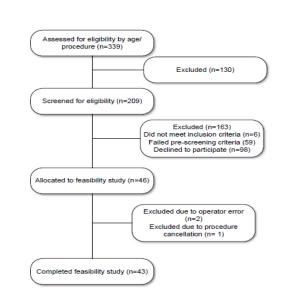
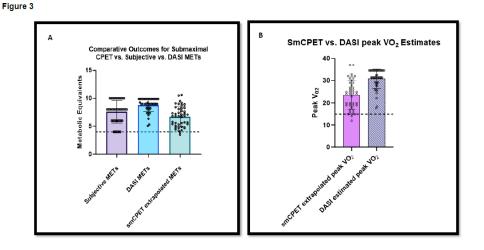

204 participants were enrolled but 3 were excluded (operator error: 2; surgery cancellation: 1) for a

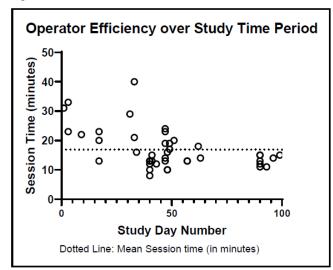
Figure 2


- final cohort of 43 participants.
- 206 **Baseline characteristics:** Trial
- 207 participants had a median age of
- 208 68 (range: 60-86 years old), 46.5%
- 209 were female, and mean body mass
- 210 index (BMI) was 27.5 (±6.0
- 211 kg/m²). Preoperative RCRI was a
- 212 median of 1 (range: 1-2). Essential
- 213 hypertension (51.2%),
- 214 hyperlipidemia (39.5%) and solid

- comprised 51.2% of the cohort. Major abdominal surgeries (62.8%) comprised the majority of
- the noncardiac surgical procedures. Table 2 describes the baseline demographics of the study
- 218 population.
- 219 Feasibility and participant smCPET acceptability: The mean (SD) experimental session time 220 was 16.9 minutes (\pm 6.8). The mean (SD) modified Borg survey after experimental sessions was 221 5.35 (\pm 1.8), corresponding to moderate perceived exertion. On 24-hour post-experimental 222 session survey, a total of 43 (100%) of participants were reached. Mean (SD) patient satisfaction 223 [on a scale of 1 (worst) to 10 (best)] was 9.5 (\pm 1.5). The mean (SD) ease of performing smCPET tasks was reported as 9.6 (± 0.7). Among this cohort, no major or minor complications associated 224 225 with study testing were reported by participants (0/43; 0%). Operational efficiency was achieved 226 within 10-15 experimental session among four study team members who trained on the device.

- 227 Secondary measures: Average self-reported peak METs was higher when compared to
- smCPET equivalent (extrapolated peak METs) [7.6 (±2.0) vs. 6.7 (±1.8)]. DASI estimated peak
- 229 METs was higher when compared to smCPET equivalent (extrapolated peak METs) [8.8 (±1.2)
- vs. 6.7 (±1.8)]. DASI-estimated peak VO₂ was higher than smCPET equivalent (extrapolated
- peak VO₂) [30.9 (\pm 4.3) vs. 23.6 (\pm 6.5)]. Figure 3 provides a comparison of values obtained from
- smCPET compared to self-reported peak METs, DASI peak METs, and peak VO₂.
- 233 Discussion
- 234 The integration of
- 235 brief smCPET in a
- 236 high-volume PSE
- 237 clinic is feasible as
- 238 measured by
- endpoints of session

time, patient satisfaction with smCPET task execution, perceived exertion, and session


scheduling. Secondly, operational efficiency of study team members was acceptable within 10-

- 242 15 experimental sessions. Lastly, we observed consistent underestimation of self-reported METs,
- 243 DASI peak METs, and DASI peak VO₂ when compared to smCPET equivalent values.
- 244 We found that smCPET set-up, calibration, patient instruction, and execution of the study trial
- 245 was time efficient. Mean session time was 16.9 minutes with rapid improvement over the study

11

246 time period as operators (n=4) became facile with the study instrument (Figure 247 248 4). In fast paced, high-volume clinic 249 environments, this efficiency is 250 important, as patients are often seen 251 short notice for preoperative evaluation. 252 Given the short time requirement, we 253 were able to flexibly arrange smCPET

Figure 4

254 testing around other clinic appointments, facilitating successful study recruitment, and decreasing time burden on participants. PSE clinic-performed smCPET was also associated with 255 256 a high level of patient satisfaction related to ease of task performance, and perceived exertion. 257 The tested device uses a stair-step for graded exercise, which was often familiar to participants. 258 The short duration of graded exercise, with automated verbal prompts to increase work rate by the device, was not perceived by any participant as maximum effort by Borg survey. No 259 260 exercise-related major or minor complications were observed, and patients were consistently 261 encouraged to safely provide maximal effort within the graded exercise portion of smCPET. 262 Early termination of conventional CPET trials, due to participant fatigue or safety considerations, has been reported to be approximately 11%, no participant in our feasibility cohort elected early 263 trial termination¹⁴. It is important to note that we selected for functionally independent 264 265 participants with self-reported >4.6 METs, as represented by the ability to climb two flights of stairs, and expansion to less functional patients may result in higher failure rates. However, 266 267 smCPET has been successfully tested in high-risk and frail populations, suggesting that a wide 268 spectrum of preoperative populations could be tested using $smCPET^{26-28}$.

12

269	In prior work, Wijeysundera and colleagues ¹⁴ observed that subjective clinician estimation had a
270	sensitivity of 19.2% in the identification of patients with low functional capacity (\leq 4 METs) ¹⁴ .
271	We observed that self-reported subjective METs and DASI estimated METs were, on average,
272	lower than their smCPET equivalent (extrapolated peak METs). In our analysis, 18.6% (N=8/43)
273	of participants self-reported their peak METs within 10% of smCPET extrapolated peak METs,
274	27.9% of participants underestimated (N=12/43) and 53% (23/43) overestimated their peak
275	METs by >10%, respectively. smCPET identified that 18.6% (n=8) of our study cohort had \leq 4.7
276	extrapolated peak METs, correlating very closely to a METs threshold associated with higher
277	perioperative cardiovascular morbidity and mortality. Furthermore, smCPET identified that
278	20.9% of our cohort had an age adjusted peak VO2 of <20ml/kg/min, corresponding to poor
279	aerobic capacity, and 4.6% of our cohort achieved an extrapolated peak VO ₂ <15 ml/kg/min.
280	It has been shown that conventional preoperative evaluation may not improve perioperative
281	outcomes ²⁹ . This may suggest a useful role for more precise risk stratification using brief
282	smCPET in preoperative testing. Despite supporting evidence, widespread adoption of CPET and
283	new generation smCPET devices has not been observed in preoperative testing. This is likely
284	multifactorial due to limited awareness of new generation smCPET devices, perceived overhead
285	cost, perceived time constraints, perceived operational complexity, and lack of clinical evidence
286	regarding preoperative clinic integration. However, further knowledge of smCPET predictive
287	validity and optimal system processes for selecting patients is required to identify its
288	preoperative testing indications and its role in preoperative evaluation.

289 Study Limitations

290 This study had several limitations related to generalizability to other populations. As an open-291 label device clinical trial using a convenience sample of preoperative patients, we deliberately

13

292	excluded patients with high levels of comorbid conditions as quantified by RCRI. Although we
293	are not able to generalize to this population, our goal was to establish feasibility of brief
294	smCPET assessment within a presumed healthy but older perioperative cohort that would have
295	likely not been captured by extensive preoperative evaluation. Secondly, although published data
296	has validated smCPET predictive performance with perioperative cardiovascular morbidity and
297	mortality, our cohort is not yet powered for assessment of these outcomes. Finally, our
298	demonstration of no device-related adverse events is reassuring, but it should be cautiously
299	interpreted given the small sample size and possibility of rare exercise-induced adverse events.
300	Conclusions
301	In summary, we observed that smCPET was well accepted into the workflow of a high-volume
302	PSE clinic. All logistical, operational, and patient-centered feasibility endpoints were met.
303	Operator efficiency with the smCPET instrument was rapid and achieved relative parity at Day
304	30 or 10-15 sessions. This feasibility analysis has, 1) reinforced the structural integrity of our
305	active study protocol assessing relationships of smCPET findings with perioperative outcomes,
306	2) affirmed satisfactory patient-centered outcomes with the study procedures, and 3) provided
307	insight into functional capacity variation in a cohort of older, but otherwise functionally
308	independent, adult participants. Further studies should examine smCPET predictive validity and
309	optimal system processes for patient selection.
310	Statements & Declarations
311	Funding Sources: This study was partially supported by Shape Medical Systems, Inc.
312	(Minnesota, USA).

313 Competing Interests: The listed authors would like to disclose the following affiliations or

314 involvements: ZJC receives partial funding from Shape Medical Systems, Inc. (Minnesota, USA)

related to the present work. RBS reports owning stock in Johnson and Johnson unrelated to the

315

316	present work. RBS reports that Yale University has received funding from Merck for a study in	
317	which he was involved, unrelated to the present work. PH reported receiving research support	
318	grants from Edwards Lifesciences and consulting and/or royalty fees from Baudax Bio,	
319	Fire1Foundry, Cardiage LLC, and Edwards Lifesciences.	
320	Author Contributions: Study conception and design were performed by Zyad J. Carr, Paul	
321	Heerdt, Robert B. Schonberger. The first draft of the manuscript was performed by Zyad J. Carr,	
322	Jean Charchaflieh, Jill Zafar, Andres Brenes-Bastos. Data collection was performed by Zyad J.	
323	Carr, Jonah Freund, Judy Li, Daniel Agarkov. Statistical analysis was performed by Zyad J. Carr.	
324	Further manuscript editing was performed by all co-authors. All authors read and approved the	
325	final manuscript.	
326	Ethics Approval: This study was performed in accordance with the principles of the Declaration	
327	of Helsinki. Approval was granted by the Yale University (New Haven, Connecticut, USA)	
328	Institutional Review Board (IRB#2000033885; ClinicalTrials.gov Registry. #NCT05743673.	
329	Principal Investigator: Zyad J. Carr, M.D. Date of Registration: 5-12-2023).	
330	Consent to participate: Informed consent was obtained from all individual participants included	
331	in the study.	
332	Consent to publish: All participant data is deidentified. Co-author Jonah Freund has given	
333	express written consent for publication of his image in Figure 1.	
334	Data Availability: A deidentified data set is available on request to the corresponding author	
335	(Zyad J. Carr, zyad.carr@yale.edu).	
336 337 338 339	Acknowledgements: We would like to acknowledge the work of Rayna Lewoc, DNP, APRN, CRNA, Elizabeth Womack, Elizabeth Cozza, APRN, Gwendolyn Burkett, and the staff of the Yale-New Haven Hospital Pre-Surgical Evaluation Clinic.	

15

340 Patient and Public Involvement: Patient or the public were not involved in the design, or
341 conduct, or reporting, or dissemination plans of our research.
342

343

344 References

- 345 346 1. Fleisher LA, Fleischmann KE, Auerbach AD, et al. 2014 ACC/AHA guideline on 347 perioperative cardiovascular evaluation and management of patients undergoing 348 noncardiac surgery: a report of the American College of Cardiology/American Heart 349 Association Task Force on practice guidelines. J Am Coll Cardiol 2014;64(22):e77-137. 350 doi: 10.1016/j.jacc.2014.07.944 [published Online First: 20140801] 351 2. Lurati Buse GAL, Puelacher C, Gualandro DM, et al. Association between self-reported functional capacity and major adverse cardiac events in patients at elevated risk 352 353 undergoing noncardiac surgery: a prospective diagnostic cohort study. British journal of anaesthesia 2021;126(1):102-10. doi: 10.1016/j.bja.2020.08.041 [published Online First: 354 355 20201017] 356 3. Reilly DF, McNeely MJ, Doerner D, et al. Self-reported exercise tolerance and the risk of 357 serious perioperative complications. Arch Intern Med 1999;159(18):2185-92. doi: 358 10.1001/archinte.159.18.2185 359 4. Biccard BM. Relationship between the inability to climb two flights of stairs and outcome 360 after major non-cardiac surgery: implications for the pre-operative assessment of functional capacity. Anaesthesia 2005:60(6):588-93. doi: 10.1111/j.1365-361 2044.2005.04181.x 362 5. Weinstein AS, Sigurdsson MI, Bader AM. Comparison of Preoperative Assessment of 363 Patient's Metabolic Equivalents (METs) Estimated from History versus Measured by 364 365 Exercise Cardiac Stress Testing. Anesthesiology research and practice
- 366
 2018;2018:5912726. doi: 10.1155/2018/5912726 [published Online First: 20180903]
- 367 6. Nieves-Alonso JM, Méndez Hernández RM, Ramasco Rueda F, et al. Estimated metabolic
 368 equivalents of task do not correlate with the maximal oxygen consumption of patients
 369 undergoing lung resection surgery. *Rev Esp Anestesiol Reanim (Engl Ed)*370 2022;69(7):437-41. doi: 10.1016/j.redare.2021.01.006 [published Online First:
 371 20220719]
- 372 7. Gray KD, Nobel TB, Hsu M, et al. Improved Preoperative Risk Assessment Tools Are Needed
 373 to Guide Informed Decision Making before Esophagectomy. *Annals of surgery*374 2023;277(1):116-20. doi: 10.1097/sla.00000000004715
- 8. Glaab T, Taube C. Practical guide to cardiopulmonary exercise testing in adults. *Respiratory research* 2022;23(1):9. doi: 10.1186/s12931-021-01895-6
- 9. Argillander TE, Heil TC, Melis RJF, et al. Preoperative physical performance as predictor of
 postoperative outcomes in patients aged 65 and older scheduled for major abdominal
 cancer surgery: A systematic review. *Eur J Surg Oncol* 2022;48(3):570-81. doi:
 10.1016/j.ejso.2021.09.019 [published Online First: 20211001]
- 10. Loewen GM, Watson D, Kohman L, et al. Preoperative exercise Vo2 measurement for lung
 resection candidates: results of Cancer and Leukemia Group B Protocol 9238. *J Thorac Oncol* 2007;2(7):619-25. doi: 10.1097/JTO.0b013e318074bba7

384	11. Benzo R, Kelley GA, Recchi L, et al. Complications of lung resection and exercise capacity:
385	a meta-analysis. <i>Respiratory medicine</i> 2007;101(8):1790-7. doi:
386	10.1016/j.rmed.2007.02.012 [published Online First: 20070403]
387	12. Hartley RA, Pichel AC, Grant SW, et al. Preoperative cardiopulmonary exercise testing and
388	risk of early mortality following abdominal aortic aneurysm repair8. British Journal of
389	Surgery 2012;99(11):1539-46. doi: 10.1002/bjs.8896
390	13. Older P, Hall A, Hader R. Cardiopulmonary exercise testing as a screening test for
391	perioperative management of major surgery in the elderly. Chest 1999;116(2):355-62.
392	doi: 10.1378/chest.116.2.355
393	14. Wijeysundera DN, Pearse RM, Shulman MA, et al. Assessment of functional capacity before
394	major non-cardiac surgery: an international, prospective cohort study. Lancet (London,
395	England) 2018;391(10140):2631-40. doi: 10.1016/s0140-6736(18)31131-0
396	15. Ferguson M, Shulman M. Cardiopulmonary Exercise Testing and Other Tests of Functional
397	Capacity. Curr Anesthesiol Rep 2021:1-8. doi: 10.1007/s40140-021-00499-6 [published
398	Online First: 2021/11/30]
399	16. Baba R, Nagashima M, Goto M, et al. Oxygen uptake efficiency slope: a new index of
400	cardiorespiratory functional reserve derived from the relation between oxygen uptake and
401	minute ventilation during incremental exercise. J Am Coll Cardiol 1996;28(6):1567-72.
402	doi: 10.1016/s0735-1097(96)00412-3
403	17. Hollenberg M, Tager IB. Oxygen uptake efficiency slope: an index of exercise performance
404	and cardiopulmonary reserve requiring only submaximal exercise. J Am Coll Cardiol
405	2000;36(1):194-201. doi: 10.1016/s0735-1097(00)00691-4
406	18. Snowden CP, Prentis JM, Anderson HL, et al. Submaximal cardiopulmonary exercise testing
407	predicts complications and hospital length of stay in patients undergoing major elective
408	surgery. Annals of surgery 2010;251(3):535-41. doi: 10.1097/SLA.0b013e3181cf811d
409	19. Grocott MP, Browne JP, Van der Meulen J, et al. The Postoperative Morbidity Survey was
410	validated and used to describe morbidity after major surgery. J Clin Epidemiol
411	2007;60(9):919-28. doi: 10.1016/j.jclinepi.2006.12.003 [published Online First:
412	20070507]
413	20. Hlatky MA, Boineau RE, Higginbotham MB, et al. A brief self-administered questionnaire to
414	determine functional capacity (the Duke Activity Status Index). Am J Cardiol
415	1989;64(10):651-4. doi: 10.1016/0002-9149(89)90496-7
416	21. Ford MK, Beattie WS, Wijeysundera DN. Systematic review: prediction of perioperative
417	cardiac complications and mortality by the revised cardiac risk index. Annals of internal
418	medicine 2010;152(1):26-35. doi: 10.7326/0003-4819-152-1-201001050-00007
419	22. Miller AD, Woods P.R., Olson T.P., Hulsebus M.L., O'Malley K.A., MacCarter D., Johnson
420	B.D. Validation of a Simplified, Portable Cardiopulmonary Gas Exchange
421	System for Submaximal Exercise Testing. The Open Sports Medicine Journal 2010;4:34-40. doi:
422	10.2174/1874387001004010034
423	23. Borg GA. Psychophysical bases of perceived exertion. Medicine and science in sports and
424	<i>exercise</i> 1982;14(5):377-81.
425	24. McAuley P, Myers J, Abella J, et al. Evaluation of a specific activity questionnaire to predict
426	mortality in men referred for exercise testing. Am Heart J 2006;151(4):890.e1-7. doi:
427	10.1016/j.ahj.2005.09.017
428	25. Bell EC, Cox NS, Goh N, et al. Oxygen therapy for interstitial lung disease: a systematic
429	review. Eur Respir Rev 2017;26(143) doi: 10.1183/16000617.0080-2016

430 431 432 433 434 435 436 437 438 439 440	 10.1183/16000617.0080-2016. Print 2017 Jan. [published Online First: 2017/02/23] 26. Oakland HT, Joseph P, Elassal A, et al. Diagnostic utility of sub-maximum cardiopulmonary exercise testing in the ambulatory setting for heart failure with preserved ejection fraction. <i>Pulm Circ</i> 2020;10(4):2045894020972273. doi: 10.1177/2045894020972273 [published Online First: 20201125] 27. Bernstein EJ, Mandl LA, Gordon JK, et al. Submaximal heart and pulmonary evaluation: a novel noninvasive test to identify pulmonary hypertension in patients with systemic sclerosis. <i>Arthritis Care Res (Hoboken)</i> 2013;65(10):1713-8. doi: 10.1002/acr.22051 28. Woods PR, Frantz RP, Taylor BJ, et al. The usefulness of submaximal exercise gas exchange to define pulmonary arterial hypertension. <i>J Heart Lung Transplant</i> 2011;30(10):1133-42. doi: 10.1016/j.healun.2011.03.021 [published Online First: 20110531]
441 442 443 444 445	29. Beckerleg W, Kobewka D, Wijeysundera DN, et al. Association of Preoperative Medical Consultation With Reduction in Adverse Postoperative Outcomes and Use of Processes of Care Among Residents of Ontario, Canada. <i>JAMA Intern Med</i> 2023;183(5):470-78. doi: 10.1001/jamainternmed.2023.0325
446 447	Figure Legends
448	
449 450	Figure 1 . A visual representation of the smCPET device in the PSE Clinic. (Model: co-author JF)
451 452 453	Figure 2. A Flow Diagram of Participant Enrollment.
454 455 456 457	Figure 3 . Figure 3a reports differences between estimated peak METs between self-reported and extrapolated peak METs derived from smCPET. Figure 3b reports differences between Duke Activity Status Index estimated peak VO ₂ and submaximal CPET extrapolated peak VO ₂ .
458 459	Figure 4. Operator Efficiency Measured by Session Time over the Study Time Period.
460 461	Table 1. Baseline Demographical Data of the Study Cohort (n=43).
462 463 464	Supplementary Table 1 . Summary and Selected Measurements of Submaximal Cardiopulmonary Exercise Testing.
465 466 467 468	Supplementary Table 2. Adapted Subjective METs Survey.
-100	Table 1. Baseline Demographical Data of the Study Cohort (n=43)
	Age, in years, median (range)68(60-86)

Age, in years, median (range)	68	(60-86)
Gender		
Male	23	(53.5%)
Female	20	(46.5%)
Body Mass Index, in m/kg ² , mean (SD)	27.5	(±6.0)

1	ο
Т	0

Revised Cardiac Risk Index Score, median (Range)	1	(1-2)
Preoperative Comorbidities		
Essential Hypertension	22	(51.2%)
Hyperlipidemia	17	(39.5%)
Ventricular Dysrhythmia	1	(2.3%)
Congestive Heart Failure	1	(2.3%)
Myocardial Infarction	3	(7.0%)
Cerebrovascular Disease	1	(2.3%)
Chronic Obstructive Pulmonary Disease	3	(7.0%)
Asthma	4	(9.3%)
Obstructive Sleep Apnea	3	(7.0%)
History of Prior Lung Resection	1	(2.3%)
Diabetes Mellitus	7	(16.3%)
Thyroid Disorders	7	(16.3%)
Solid Tumor	25	(58.1%)
Anemia	1	(2.3%)
Social History		
Smoking		
Active	4	(9.3%)
Former	18	(41.9%)
Never	21	(48.8%)
Marijuana Use (active)	4	(9.3%)
Alcohol Use		
Active	24	(55.8%)
Former	16	(37.2%)
Never	3	(7.0%)
Cardiovascular Medication Use		
Beta-blocker	14	(32.6%)
Calcium channel antagonist	9	(20.9%)
ACE/ARB antagonist	16	(37.2%)
Diuretic	12	(27.9%)
Surgical Categories		
Abdominal Major	27	(62.8%)
Musculoskeletal Major	4	(9.3%)
Neurosurgical Major	2	(4.7%)
Thoracic Major	5	(11.6%)
Other Major	5	(11.6%)

Variable	Description	Commentary
calibration and exercise chall	lenge using a differential pressur	The device uses breath by breath sampling during e pneumotach method for volume calibration and sensor for O_2 measurements. Automated calibration
using a calibration gas mixtu used for causes of exertional	re (15.6% O ₂ /5% CO ₂) is perform	med at regular intervals. The Shape II calculations ficial Intelligence (AI) based algorithms previously
HR (resting)	Resting heart rate	Measured during 1st stage prior to exercise.
HR (peak)	Peak heart rate achieved during exercise	Measured during 2nd stage during exercise.
% HR reserve utilized	Percentage of heart rate reserve utilized	Percentage of resting heart rate and the age- dependent predicted maximum heart rate
% HR max predicted attained	Percentage of predicted maximum achieved heart rate achieved	Difference between maximum measured heart rat during exercise and age-dependent estimated maximum heart rate.
CRI	Chronotropic Recovery Index	A measure of heart rate recovery after exercise
RR rest	Respiratory rate at rest	Measured during 1st stage prior to exercise.
RR end exercise	End-exercise respiratory rate	Measured during 2nd stage during exercise.
End-tidal CO ₂ (rest)	End-tidal carbon dioxide, at rest	Influenced by cardiac output, pulmonary vascular resistance, and chronic hypoventilation syndrome
End-tidal CO ₂ (peak)	End-tidal carbon dioxide, peak exercise	Peak carbon dioxide during exercise
Resting SpO ₂	Resting pulse oximetry	Resting peripheral oxygenation
Peak SpO ₂	Peak exercise pulse oximetry	Peak exercise peripheral oxygenation
RER	Respiratory Exchange Ratio	Ratio between metabolic production of CO_2 and uptake of O_2
VE/VCO ₂ slope	Minute ventilation/CO2 production slope	Breathing efficiency slope reflects the efficiency elimination of CO ₂
$\Delta \text{ EtCO}_2$ (rest to end exercise)	Change in end-tidal carbon dioxide during exercise	A measure of cardiac output and pulmonary bloo flow
Gxcap (peak)	Gas exchange-derived pulmonary vascular capacitance at peak exercise	Shown to correlate with cardiac output and inversely with pulmonary vascular resistance (PVR) and DLCO; in patients with PAH or PVH, Gxcap is reduced due to increased PVR.
OUES (linear slope)	Oxygen uptake efficiency slope, percentage of expected	Assesses how well oxygen is extracted from the inhaled air, distributed to the muscles by the cardiopulmonary system, and utilized by the muscles in energy metabolism; Particularly valuable in assessing exercise capacity and response to medications or rehabilitation
Peak Attained METs	Metabolic Equivalents	Metabolic equivalents attained during submaxima exercise.
Peak Extrapolated METs	Metabolic Equivalents	Peak estimated metabolic equivalents
O ₂ pulse	Amount of oxygen consumed per heartbeat	
Sub-maximal VO ₂ (peak attained)	Sub-maximal exercise oxygen uptake	Achieved peak maximal oxygen uptake during submaximal exercise.
Extrapolated maximum	Predicted maximal exercise	Calculated peak maximal oxygen uptake.

MVI score	Dimensionless; (cumulative sum score)	Combined cardiopulmonary index with threshold value of normal vs. impairment.
Cardiac disease silo score	Dimensionless; (cumulative sum score)	Parameters: VE/VCO ₂ slope, O ₂ pulse to VO ₂ slope, circulatory equivalents, HR recovery
Pulmonary Vascular Disease silo score	Dimensionless; (cumulative sum score)	Parameters: VE/VCO2 slope, peak Gxcap, resting SpO ₂ , SpO ₂ desaturation
Chronic Obstructive Pulmonary Disease silo score	Dimensionless; (cumulative sum score)	Parameters: FEV1 % Predicted, breathing reserve, SpO2 desaturation, P mixed expired CO2/P end- tidal CO2 ratio (V/Q ratio)
Restrictive Lung Disease silo score	Dimensionless; (cumulative sum score)	Parameters: FVC % Predicted, SpO ₂ desaturation, VT max / VT rest, RR/VCO ₂ slope (lung stiffness)
De-conditioning silo score	Dimensionless; (cumulative sum score)	Parameters: extrapolated peak VO ₂ , % ideal BMI, HR to VO ₂ linear regression slope, HR recovery 1 minute post exercise
V/Q plot	Dimensionless; (cumulative sum score); (Normal, Left ventricular dysfunction, Chronic Obstructive Pulmonary Disease, Transitional or Pulmonary Arterial Hypertension)	Assesses which physiological area may contribute to visualized impairments during submaximal exercise testing.
AwCap peak (VT pk x PECO ₂ peak)	airway capacitance; L x mmHg	Airway Capacitance
VT pk (peak attained VT)	Peak attained tidal volume in L/min	Value obtained during exercise.
VE peak (peak attained VE)	Peak attained minute ventilation in L/min	Value obtained during exercise.

Abbreviations: HR; heart rate; CRI; chronotropic Recovery Index; RR; respiratory rate (in breaths/min); CO₂; carbon dioxide; SpO₂; pulse oximetry; RER; respiratory Exchange Ratio; Gxcap; pulmonary arterial capacitance; OUES; oxygen uptake efficiency slope; METs; metabolic equivalents; VO₂; oxygen consumption; MVI; multivariable index; VE; minute ventilation; VT; tidal volume; AwCap; airway capacitance.

21

Supplementary Table 2. Adapted Self-Reported Subjective Metabolic Equivalents Survey

Question	Estimated Metabolic Equivalents	Accepted value
Can you perform the following activities (yes/no)		
Watching television, writing, desk work?	1-2	2
Walk slowly on level ground (1.7mph)	2-3	3
Climb two flights of stairs, without stopping to rest?	3-5	4
Walk at moderate pace on level ground (3mph/20 minute mile), ride a stationary bicycle at very light intensity or vacuum around the home?	3-5	4
Ride a stationary bicycle at moderate intensity?	5-6	6
Jogging, fast swimming, play soccer or tennis?	7-8	8
Run a 7.5 minute/mile, jump-rope 100 skips/minute, run up the stairs	10-13	10