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ABSTRACT 
Objective: The urinary tract dilation (UTD) classification system provides objective assessment relevant 

to hydronephrosis management for children. However, the lack of uniform language regarding UTD in 

radiology reports leads to significant difficulty in both clinical management and research. We seek to 

develop a unified multi-task/multi-class model that can effectively extract UTD components and 

classifications from early postnatal ultrasound (US) reports. 

Methods: Radiology records from our institution were reviewed to identify infants aged 0-90 days 

undergoing early ultrasound for antenatal UTD.  The report and images were reviewed by the study team 

to create the ground truth of UTD classification and components (primary outcome). Bio_ClinicalBERT, a 

variant of the Bidirectional Encoder Representations from Transformers (BERT) model, was used as the 

embedding layers of the classification model. The model was fine-tuned with 11 linear classification layers. 

All but the last BERT layer were frozen during the fine-tuning process. The model performance was 

evaluated with five-fold cross-validation with an 80:20 train-test ratio. 

Results:  2460 early (0-90 days) US reports were included.  The five-fold cross-validated model 

performance is satisfactory (Weighted F1 > 0.9 for all UTD components).  We report the weighted F1 

scores, accuracies, and standard deviations for all 11 tasks and their average performance.   

Conclusions: By applying deep state-of-the-art NLP neural networks, we developed a high-performing, 

efficient, and scalable solution to extract UTD components from unstructured ultrasound reports using one 

single multi-task model.  This can potentially help standardize and facilitate large-scale computer vision 

research for pediatric hydronephrosis.  Key Words: machine learning, efficiency, ambulatory care, 

forecasting  
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INTRODUCTION 

Urinary tract dilation (UTD), defined as hydronephrosis or hydroureter, is a common (1 in 200-300 during 

prenatal ultrasound evaluation with 0.15-0.67% prevalence in the general population)1 and potentially 

significant clinical finding in children that requires accurate assessment for appropriate clinical 

management. Radiologic evaluations by ultrasound play a critical role in evaluating UTD. In order to 

standardize the evaluation of UTD, there are several attempts to provide a more objective and universal 

grading system for UTD.  The most commonly noted ones included the Society of Fetal Urology (SFU)2 

grading and UTD grading.3  SFU grading is simple and easy to use.  However, the fact that it does not 

account for salient details like ureteral dilation, bladder abnormalities, and renal parenchymal evaluations 

limits its clinical generalizability.  On the other hand, the UTD classification system has gained significant 

popularity with more comprehensive evaluations for both upper and lower tracts. 

Accurate identification and classification of UTD components are crucial for effective management 

and treatment planning. However, the variability in reporting styles and inconsistent terminology used in 

radiology reports hinder efficient data extraction and analysis. Consequently, there is a need for methods 

that can reliably and consistently extract UTD-related information from unstructured ultrasound reports and 

provide standardized and actionable data. To manually correct and categorize the radiology report would 

require a significant commitment of resources and is unlikely to be feasible as a long-term solution.  To 

address these challenges, we propose a novel approach that leverages advanced natural language processing 

(NLP) techniques and deep-learning-enabled pre-trained language models to develop a unified multi-

task/multi-class model for extracting UTD components and classifications from early postnatal ultrasound 

reports. Given the success of these techniques in clinical prediction tasks, 4–9 we hypothesize that we can 

develop an NLP model that can effectively and accurately identify UTD classification components and 

grading from unstructured ultrasound reports. 

 

MATERIALS AND METHODS  

Data Source and Outcome Definition  

The overall study design and workflow is shown in Figure 1. We reviewed ultrasound radiology reports 

from Boston Children’s Hospital, a freestanding acute care children's hospital located in Boston, 

Massachusetts, to identify infants aged 0-90 days who underwent early ultrasound for antenatal urinary 

tract dilation (UTD) from 2010-2022. The report and images were carefully examined by the study team to 

create the ground truth for UTD classification and its components, which served as the primary outcome. 

A total of 2,500 early postnatal ultrasound reports (0-90 days) out of over 14,817 reports were randomly 

selected for the study cohort. Each report in the study dataset includes information such as the PACS 



accession number, medical record number (MRN), date of imaging, date of birth, and radiology report texts. 

We removed cases with invalid MRNs or accession numbers, missing notes, or uncertain annotations. The 

final study cohort consists of 2460 unique radiology reports.   

 

Figure 1. Overall study design and workflow. 

We then removed HIPPA-level sensitive information and unrelated details. This involved stripping 

dates, times, patient IDs, and zip codes, as well as numerical figures with over three digits. We also excluded 

content data tied to hospital names or places specific to our system. 

We defined our outcome (labels) by the UTD classification of 11 tasks for abnormalities including 

central calyceal dilation (left/right), peripheral calyceal dilation (left/right), abnormal ureter (left/right), 

abnormal parenchymal thickness (left/right), abnormal parenchymal appearance (left/right), and bladder 

abnormality. For each task, we defined 3 possible classes: yes, no, or absence (defined as absent kidney or 



multi-cystic dysplastic kidney).  All labels were created by our research team after reviewing the reports as 

well as the images. 

This study has been approved by the Boston Children’s Hospital Institutional Review Board. 

Model Development 

The multi-task model consisted of a Bidirectional Encoder Representations from Transformers 

(BERT)10 encoder, followed by task-specific linear classification layers for each of the 11 UTD 

classification tasks. The decision to adopt BERT was motivated by its outstanding performance across 

various NLP fields and its relatively compact size compared to other large language models (LLMs). 

BERT's contextualized word representations have consistently achieved state-of-the-art results in NLP 

applications. Bio_ClinicalBERT11, a variant of BERT trained on a biomedical corpus that includes 

radiology notes, was specifically selected, which enables the model to benefit from domain-specific 

knowledge and improved performance in radiology note comprehension.  

These linear layers were connected to the BERT encoder, allowing the model to learn task-specific 

representations and make predictions. During the fine-tuning process, the BERT layers, except the last one, 

were frozen to preserve the pre-trained weights and focus on adapting the model to the specific UTD 

classification tasks. 

 In our experiments, we employed a stratified sampling technique specifically to address the 

challenge posed by the imbalanced distribution of our three outcome classes. Stratified sampling ensured 

that each fold in the 5x5 cross-validation had a representative consistent proportion of each class, thereby 

improving the model's ability to generalize across different subsets of the data. WeWe conducted analysis 

through 5x5 cross-validation, each iteration was initiated with a random seed number to enhance the 

experiment robustness and reliability. We employed a stratified sampling technique to ensure that each fold 

of the cross-validation had a consistent proportion of each outcome class, thereby improving the model's 

ability to generalize across different subsets of the data. In each iteration, we used an 80:20 ratio for train-

test splits. The training phase spanned 25 epochs with a batch size of 12, and the Adam optimizer was 

configured with a learning rate of 5e-5. Within the training set, we performed a further division into training 

and validation subsets, adhering to an 80:20 ratio. To monitor the model's progress and mitigate the risk of 

overfitting, early stopping was implemented with a patience of 5 epochs.  

Finally, we assessed the model's performance on the out-of-sample test sets using a comprehensive 

set of evaluation metrics including weighted accuracy, F1 score, precision, recall, the area under the ROC 

curve (AUC), and its 95% confidence interval (CI) calculated supported by bootstrap resampling on the test 

sets (n = 1,000).   

Semi-supervised Learning and Error analysis 



During the evaluation phase, it came to our attention that a few initial labels were questionable, prompting 

the adoption of a semi-supervised learning approach to iteratively rectify these labels and enhance the 

model's performance in our study. To correct the labels, the model was initially trained on the collected 

data. Afterwards, instances where the model produced incorrect predictions across five cross-validation 

iterations were identified for error analysis and relabeling. These relabeled instances, along with the 

remaining dataset, were then utilized to retrain the model. This iterative process was repeated two times to 

show the efficiency of this approach, progressively refining the label accuracy, and advancing the overall 

model performance.  

Experiment Against Existing Large Language Model (LLM) 

In our study, we benchmark our algorithm against GPT-3.5, a state-of-the-art LLM developed by OpenAI 

and commercially available as "ChatGPT." This model is distinguished for its extensive training data and 

exceptional capabilities in diverse language-based tasks. For a thorough comparison, we employed GPT-

3.5-Turbo, the most advanced version available. We used both "0-shot" and "3-shot" approaches for task 

execution following previous literature.12,13 In the "0-shot" method, we did not provide the model with any 

task-specific examples, relying solely on its pre-existing training. Conversely, the "3-shot" method included 

three task-specific examples to facilitate the model's understanding and performance. These examples were 

randomly sampled, one from each possible outcome category, to provide a comprehensive task primer. 

Prompts used in this experiment are provided in Appendix S1 and S2. 

Software and Hardware 

An alpha of 0.05 and 95% confidence intervals (CI) were used as criteria for statistical significance. 

Analyses were performed using Python 3.9 (package Pandas, Numpy, PyTorch) and NVIDIA Titan V with 

12GB of GPU memory to accelerate our machine learning computations. 

 

RESULTS 

Demographics and Cohort Characteristics 

Table 1 shows the demographics and year of imaging distribution of our study cohort. The majority of the 

cohort were males, constituting 67.68% of the total, while females represented 32.32%. The median age 

of individuals at the time of their ultrasound was 33 years, with an interquartile range spanning from 22 to 

62 years. Imaging frequency showed fluctuations over the years, with a notable peak in 2018 at 12.40% of 

the total scans.  

Table 1. Demographics and Ultrasound Trends over Years. 



Age (median [IQR]) 
 

33 [22, 62] 

Gender (count, percentage) 
 

Female 795 32.32% 
 

Male  1665 67.68% 

Year of Imaging (count, percentage) 
 

2011 33 1.34% 
 

2012 189 7.68% 
 

2013 186 7.56% 
 

2014 185 7.52% 
 

2015 147 5.98% 
 

2016 132 5.37% 
 

2017 137 5.57% 
 

2018 305 12.40% 
 

2019 255 10.37% 
 

2020 154 6.26% 
 

2021 178 7.24% 

  2022 75 3.05% 

Table 2 shows the distribution of labels pertaining to the 11 UTD classification tasks before 

model-instructed correction. There is a noticeable class imbalance, with the "No" category often 

overwhelmingly higher than the "Yes" category. Notably, while many tasks present a balance between 

left and right abnormalities, asymmetry is evident in "central calyceal dilation" with left at 59.35% and 

right at 31.50%, and "peripheral calyceal dilation" showing left at 52.76% and right at 26.91%. 

Table 2. Distribution of the Initial Human-Labeled UTD Classification Labels. 

Task Yes No Absent/MDCK 

left central calyceal dilation 1459 (59.35%) 960 (39.02%) 41.0 (1.67%) 

left parenchymal appearance abnormal 196 (7.97%) 2223 (90.36%) 41.0 (1.67%) 

left parenchymal thickness abnormal 175 (7.11%) 2244 (91.22%) 41.0 (1.67%) 

left peripheral calyceal dilation 1298 (52.76%) 1121 (45.57%) 41.0 (1.67%) 

left ureter abnormal 298 (12.11%) 2121 (86.22%) 41.0 (1.67%) 

right central calyceal dilation 775 (31.50%) 1641 (66.71%) 44.0 (1.79%) 

right parenchymal appearance abnormal 170 (6.91%) 2246 (91.30%) 44.0 (1.79%) 

right parenchymal thickness abnormal 147 (5.98%) 2269 (92.23%) 44.0 (1.79%) 

right peripheral calyceal dilation 663 (26.91%) 1753 (71.30%) 44.0 (1.79%) 

right ureter abnormal 221 (8.98%) 2195 (89.23%) 44.0 (1.79%) 

bladder abnormal 61 (2.48%) 2351 (95.53%) 48.0 (1.79%) 



Model Performance 

The model exhibited high F1 scores, ranging from 0.90 to 0.98, across the 11 tasks with tight 

confidence intervals, suggesting a robust and consistent performance (results shown in Table 3). Among 

the tasks, 'bladder abnormality' achieved the highest F1 score of 0.9796 [95% CI: 0.9688, 0.9904] while 

'left peripheral calyceal dilation' was on the lower end with an F1 score of 0.9012 [95% CI: 0.8908, 

0.9116]. The overall average F1 score for the model was 0.9418 [95% CI: 0.9307, 0.9529]. Similarly, the 

model demonstrated strong precision and recall for all the tasks, further corroborating the effectiveness of 

our approach. The AUROC scores also indicated excellent discriminative ability, with an average 

AUROC of 0.9392 [95% CI: 0.9239, 0.9545]. 

Figure 2 and Figure 3 present comparative error analyses of human errors and model errors, 

where  'Human incorrect' indicates instances where human labeling was erroneous upon review; 'Model 

incorrect' denotes cases where the model's predictions were inaccurate; and 'Human and model incorrect' 

represents scenarios where both human labeling and model predictions. We observe that the error analysis 

from the semi-supervised learning approach reveals distinct error patterns between human and model 

predictions, with conditions such as 'left central calyceal dilation' more commonly mislabeled by humans, 

while 'bladder' errors are more prevalent in model predictions. This suggests that an integrated correction 

approach leveraging both human and model strengths could improve overall accuracy. Furthermore, the 

reduction in errors through iterative rounds of label refinement, as reflected by 592 incorrect prediction in 

round 1 error analysis vs. 529 incorrect predictions in round 2 error analysis, suggests that this method is 

effective in enhancing the quality of the training data. Appendix S1 and S2 further present the model 

performance results of rounds 1 and 2 learning and evaluation, from which we observe that training and 

label correction helped with improving model performance. 

Table 4 shows the baseline results generated by ChatGPT, supported by its best GPT3.5 model at 

the time (i.e., GPT 3.5-Turbo). In terms of F1, our model outperforms GPT 3.5-Turbo by 20% - 30%. 

Another interesting observation is that providing GPT 3.5 with examples from each of the classes did not 

help it perform better in the tasks. 



Table 3. Performance of the Bio_ClincalBERT-based prediction model, round 3. 

Task F1 [95% CI] Recall [95% CI] Precision [95% CI] Accuracy [95% CI] 

Left central calyceal dilation 
0.9208 [0.896, 

0.9456] 

0.9050 [0.8884, 

0.9216] 

0.9031 [0.8851, 

0.9211] 

0.9050 [0.8884, 

0.9216] 

Left parenchymal appearance 

abnormal 

0.9617 [0.9411, 

0.9823] 

0.9580 [0.9437, 

0.9723] 

0.9582 [0.9482, 

0.9682] 

0.9580 [0.9437, 

0.9723] 

Left parenchymal thickness 

abnormal 

0.9747 [0.9569, 

0.9925] 

0.9720 [0.9534, 

0.9906] 

0.9738 [0.9668, 

0.9808] 

0.9720 [0.9534, 

0.9906] 

Left peripheral calyceal dilation 
0.9012 [0.8908, 

0.9116] 

0.9010 [0.8853, 

0.9167] 

0.9115 [0.8995, 

0.9235] 

0.9010 [0.8853, 

0.9167] 

Left ureter abnormal 
0.9116 [0.9018, 

0.9214] 

0.9150 [0.8971, 

0.9329] 

0.9069 [0.9009, 

0.9129] 

0.9150 [0.8971, 

0.9329] 

Right central calyceal dilation 
0.9375 [0.9308, 

0.9442] 

0.9410 [0.9198, 

0.9622] 

0.9355 [0.9305, 

0.9405] 

0.9410 [0.9198, 

0.9622] 

Right parenchymal appearance 

abnormal 

0.9537 [0.9485, 

0.9589] 

0.9500 [0.9273, 

0.9727] 

0.9484 [0.9444, 

0.9524] 

0.9500 [0.9273, 

0.9727] 

Right parenchymal thickness 

abnormal 

0.9718 [0.9679, 

0.9757] 

0.9680 [0.9447, 

0.9913] 

0.9676 [0.9646, 

0.9706] 

0.9680 [0.9447, 

0.9913] 

Right peripheral calyceal 

dilation 

0.9266 [0.9201, 

0.9331] 

0.9220 [0.9085, 

0.9355] 

0.9287 [0.9227, 

0.9347] 

0.9220 [0.9085, 

0.9355] 

Right ureter abnormal 
0.9204 [0.9144, 

0.9264] 

0.9210 [0.9068, 

0.9352] 

0.9207 [0.9167, 

0.9247] 

0.9210 [0.9068, 

0.9352] 

Bladder abnormal 
0.9796 [0.9688, 

0.9904] 

0.9800 [0.9655, 

0.9945] 

0.9796 [0.9736, 

0.9856] 

0.9800 [0.9655, 

0.9945] 

Average 
0.9418 [0.9307, 

0.9529] 

0.9394 [0.9219, 

0.9569] 

0.9395 [0.9321, 

0.9469] 

0.9394 [0.9219, 

0.9569] 

 

Table 4. Baseline results using GPT 3.5-Turbo. 

 
Left 

central 

calyceal 

dilation 

Left 

parenchymal 

appearance 

abnormal 

Left 

parenchymal 

thickness 

abnormal 

Left 

peripheral 

calyceal 

dilation 

Left 

ureter 

abnorm

al 

Right 

central 

calyceal 

dilation 

Right 

parenchymal 

appearance 

abnormal 

Right 

parenchymal 

thickness 

abnormal 

Right 

peripheral 

calyceal 

dilation 

Right 

ureter 

abnormal 

Bladder 

abnormal 

0-shot 0.6912 0.6082 0.4398 0.6589 0.6460 0.7097 0.7566 0.6358 0.7059 0.7166 0.6983 

3-shot 0.6489 0.6616 0.4679 0.7244 0.5361 0.7495 0.7042 0.6503 0.6785 0.6916 0.7526 
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DISCUSSIONS 

Our proposed approach integrates cutting-edge NLP deep learning algorithms to effectively capture the 

semantic context and extract meaningful representations from unstructured ultrasound reports. By 

integrating advanced NLP techniques and semi-supervised learning, we developed a high-performing NLP 

model to address the challenges associated with UTD classification and component extraction, making 

notable contributions to the field. The integration of advanced NLP techniques enables our model to 

effectively comprehend the complex language patterns and nuances present in ultrasound reports. This 

allows for accurate identification and classification of UTD components, facilitating clinical management 

and decision-making processes. By automating the extraction of UTD information from ultrasound reports, 

our approach can provide consistent UTD grading to infants who presented with hydronephrosis. Since 

UTD grades are well-known to risk categorize hydronephrosis patients, we expect this work would 

streamline the clinical and research workflow and saves resource. 

Another key aspect of our approach is the adoption of semi-supervised learning to rectify incorrect 

labels. This is crucial in scenarios where labeled data could be prone to errors. By iteratively correcting the 

labels based on the model's predictions, we enhance the accuracy and reliability of the training data. This 

iterative process progressively refines the model's understanding of UTD components, resulting in 

improved performance over multiple iterations. Our findings demonstrate the effectiveness of semi-

supervised learning in enhancing the model's capabilities and addressing the challenges inherent in UTD 

classification. 

 The implications of our research extend beyond the scope of UTD classification and component 

extraction. By establishing a standardized and efficient method for extracting UTD information from 

ultrasound reports, our approach lays the foundation for large-scale machine-learning research on pediatric 

hydronephrosis. The availability of accurately labeled data enables the development and evaluation of 

future computer vision algorithms for automated detection, quantification, and analysis of UTD 

components. This opens up new avenues for research, potentially leading to improved diagnostic accuracy, 

treatment planning, and patient outcomes. 

In addition, the observation that our integrated multi-task human-model substantially outperforms 

ChatGPT underscores the limitations of relying solely on LLMs. These models, while powerful, are not 

panaceas; they do not invariably outperform more lightweight models, especially in complex tasks requiring 

nuanced understanding. The extensive data needed to fine-tune such LLMs, coupled with their intensive 

computational resource requirements, can be prohibitive. In our case, few-shot learning proved ineffective, 

possibly introducing noises rather than providing useful information, likely because of the complexity of 

the study question, involving multiple tasks with a variety of possible classes. This is reflected in our results 

where our tailored model significantly outperformed GPT 3.5-Turbo by 20% to 30% in F1 scores, indicating 



that merely providing the GPT model with additional class examples did not enhance its task performance. 

In real-life expert-domain applications, developing targeted models are likely more efficient than deploying 

LLMs. 

Nonetheless, the results of this study must be interpreted in the context of its limitations.  This is a 

single-institution study based on retrospective review at a tertiary referral center which may limit the 

generalizability of our findings. Different institutions might have varied patient populations, imaging 

protocols, or reporting styles, which could influence the outcomes. External validation sets from a different 

institution or dataset could offer a more rigorous assessment of our model's broader applicability.  

Additionally, the process of determining the ground truth for UTD classification, based on the review of 

reports and images by our research team, introduces another potential source of bias. This subjective 

approach might lead to errors in labeling, a concern that was substantiated during our evaluation phase 

when we identified and rectified erroneous annotations. While our model assisted in correcting these 

annotations, it's worth noting that if not properly managed, such a process could theoretically reinforce 

biases, even if we did not observe this trend in our study.  Furthermore, the challenge of imbalanced data 

(i.e., rare labels such as increased parenchymal echogenicity or bladder abnormality) remains a potential 

concern. Although we employed stratified sampling to mitigate the effects of the imbalanced distribution 

of our outcome classes, the inherent imbalances in the dataset could still influence the model's performance. 

Future studies should consider these limitations and potentially explore multi-institutional datasets and 

more rigorous validation strategies to enhance the robustness and generalizability of the findings.  Lastly, 

the exclusion of cases with missing values may introduce another layer of bias into our study. By removing 

these instances, we may inadvertently skew the dataset towards more complete but potentially 

unrepresentative cases. This could result in a model that is less generalizable to real-world scenarios where 

missing data are common. For example, cases with missing values might systematically differ from those 

without, perhaps reflecting more complex or severe conditions that were not fully captured in the dataset. 

Consequently, the model's ability to generalize to all types of patients, including those with incomplete 

records, could be compromised. 

 

CONCLUSIONS 

By applying deep state-of-the-art NLP neural networks, we developed a high-performing, efficient, and 

scalable solution to extract UTD components from unstructured ultrasound reports using one single multi-

task model.  This can potentially help standardize and facilitate large-scale computer vision research for 

pediatric hydronephrosis.  
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SUPPLEMENTARIES  

S1. 0-shot prompt for GPT-3.5-Turbo. [task name] is a placeholder for tasks, and [report] is a 

placeholder for actual radiology reports. 

 

S2. 3-shot prompt for GPT-3.5-Turbo. [task name] is a placeholder for tasks, [example n] is a 

placeholder for example radiology reports matched by the desired task and answer, and [report] is a 

placeholder for actual radiology reports. 

 

Please read an ultrasound report and decide if the patient has [task name].  

You should answer by choosing one of the following labels: ['Yes', 'No', 'Cannot answer 

because of absent kidney or multicystic dysplastic kidney (MDCK)'].  

 

Radiology report: 

``` 

[report] 

``` 

 

Does the patient have [task name]? 

Please read an ultrasound report and decide if the patient has [task name].  

You should answer by choosing one of the following labels: ['Yes', 'No', 'Cannot answer 

because of absent kidney or multicystic dysplastic kidney (MDCK)']. I'll provide you with 

three examples first. 

 

Example 1 - Radiology report: 

``` 

[example 1] 

``` 

Correct answer: Yes 

 

Example 2 - Radiology report:b 

``` 

[example 2] 

``` 

Correct answer: No 

 

Example 3 - Radiology report:b 

``` 

[example 3] 

``` 

Correct answer: Cannot answer because of absent kidney or multicystic dysplastic kidney 

(MDCK) 

 

Now read the following radiology report: 

``` 

[report] 

``` 

 

Does the patient have [task name]? 



S3. Round 1 model performance 

Task F1 [95% CI] 
Recall [95% 

CI] 

Precision 

[95% CI] 

Accuracy 

[95% CI] 

AUROC 

[95% CI] 

left central calyceal 

dilation 

0.9284 

[0.9032, 

0.9536] 

0.9074 

[0.8902, 

0.9246] 

0.8833 

[0.8651, 

0.9015] 

0.9074 

[0.8902, 

0.9246] 

0.9201 

[0.8948, 

0.9454] 

left parenchymal 

appearance abnormal 

0.9532 

[0.9333, 

0.9731] 

0.9613 

[0.9477, 

0.9749] 

0.9489 

[0.9386, 

0.9592] 

0.9613 

[0.9477, 

0.9749] 

0.9423 

[0.9224, 

0.9622] 

left parenchymal 

thickness abnormal 

0.9645 

[0.9464, 

0.9826] 

0.9715 

[0.9533, 

0.9897] 

0.9610 

[0.9535, 

0.9685] 

0.9715 

[0.9533, 

0.9897] 

0.9518 

[0.9392, 

0.9644] 

left peripheral calyceal 

dilation 

0.9060 

[0.8953, 

0.9167] 

0.8841 

[0.8688, 

0.8994] 

0.8771 

[0.8650, 

0.8892] 

0.8841 

[0.8688, 

0.8994] 

0.9026 

[0.8886, 

0.9166] 

left ureter abnormal 

0.9243 

[0.9153, 

0.9333] 

0.9212 

[0.9017, 

0.9407] 

0.9038 

[0.8975, 

0.9101] 

0.9212 

[0.9017, 

0.9407] 

0.9061 

[0.8868, 

0.9254] 

right central calyceal 

dilation 

0.9247 

[0.9185, 

0.9309] 

0.9252 

[0.9027, 

0.9477] 

0.9305 

[0.9251, 

0.9359] 

0.9252 

[0.9027, 

0.9477] 

0.9316 

[0.9287, 

0.9345] 

right parenchymal 

appearance abnormal 

0.9502 

[0.9457, 

0.9547] 

0.9541 

[0.9321, 

0.9761] 

0.9478 

[0.9435, 

0.9521] 

0.9541 

[0.9321, 

0.9761] 

0.9465 

[0.9348, 

0.9582] 

right parenchymal 

thickness abnormal 

0.9672 

[0.9628, 

0.9716] 

0.9681 

[0.9452, 

0.9910] 

0.9687 

[0.9655, 

0.9719] 

0.9681 

[0.9452, 

0.9910] 

0.9648 

[0.9564, 

0.9732] 

right peripheral 

calyceal dilation 

0.9050 

[0.8982, 

0.9118] 

0.9006 

[0.8868, 

0.9144] 

0.9135 

[0.9074, 

0.9196] 

0.9006 

[0.8868, 

0.9144] 

0.9139 

[0.9083, 

0.9195] 

right ureter abnormal 

0.9316 

[0.9250, 

0.9382] 

0.9275 

[0.9133, 

0.9417] 

0.9278 

[0.9235, 

0.9321] 

0.9275 

[0.9133, 

0.9417] 

0.9302 

[0.8799, 

0.9805] 

bladder abnormal 

0.9736 

[0.9615, 

0.9857] 

0.9821 

[0.9653, 

0.9989] 

0.9782 

[0.9719, 

0.9845] 

0.9821 

[0.9653, 

0.9989] 

0.9803 

[0.9749, 

0.9857] 

Average 

0.9390 

[0.9278, 

0.9502] 

0.9366 

[0.9181, 

0.9551] 

0.9310 

[0.9234, 

0.9386] 

0.9366 

[0.9181, 

0.9551] 

0.9355 

[0.9199, 

0.9511] 

 

S4. Round 2 model performance 

Task F1 [95% CI] 
Recall [95% 

CI] 

Precision 

[95% CI] 

Accuracy 

[95% CI] 

AUROC 

[95% CI] 

left central calyceal 

dilation 

0.9398 

[0.9146, 

0.9650] 

0.9116 

[0.8947, 

0.9285] 

0.9147 

[0.8965, 

0.9329] 

0.9116 

[0.8947, 

0.9285] 

0.9398 

[0.9145, 

0.9651] 

left parenchymal 

appearance abnormal 

0.9472 

[0.9263, 

0.9681] 

0.9529 

[0.9383, 

0.9675] 

0.9420 

[0.9317, 

0.9523] 

0.9529 

[0.9383, 

0.9675] 

0.9472 

[0.9273, 

0.9671] 

left parenchymal 

thickness abnormal 

0.9665 

[0.9484, 

0.9846] 

0.9576 

[0.9387, 

0.9765] 

0.9725 

[0.9650, 

0.9800] 

0.9576 

[0.9387, 

0.9765] 

0.9665 

[0.9539, 

0.9791] 



left peripheral calyceal 

dilation 

0.9046 

[0.8939, 

0.9153] 

0.8856 

[0.8696, 

0.9016] 

0.8966 

[0.8845, 

0.9087] 

0.8856 

[0.8696, 

0.9016] 

0.9046 

[0.8906, 

0.9186] 

left ureter abnormal 

0.9124 

[0.9024, 

0.9224] 

0.9172 

[0.8991, 

0.9353] 

0.9205 

[0.9142, 

0.9268] 

0.9172 

[0.8991, 

0.9353] 

0.9124 

[0.8941, 

0.9307] 

right central calyceal 

dilation 

0.9212 

[0.9143, 

0.9281] 

0.9263 

[0.9047, 

0.9479] 

0.9264 

[0.9210, 

0.9318] 

0.9263 

[0.9047, 

0.9479] 

0.9212 

[0.9193, 

0.9231] 

right parenchymal 

appearance abnormal 

0.9541 

[0.9486, 

0.9596] 

0.9582 

[0.9352, 

0.9812] 

0.9547 

[0.9504, 

0.9590] 

0.9582 

[0.9352, 

0.9812] 

0.9541 

[0.9424, 

0.9658] 

right parenchymal 

thickness abnormal 

0.9764 

[0.9723, 

0.9805] 

0.9791 

[0.9555, 

1.0027] 

0.9756 

[0.9724, 

0.9788] 

0.9791 

[0.9555, 

1.0027] 

0.9764 

[0.9680, 

0.9848] 

right peripheral 

calyceal dilation 

0.9117 

[0.9049, 

0.9185] 

0.9198 

[0.9058, 

0.9338] 

0.9139 

[0.9078, 

0.9200] 

0.9198 

[0.9058, 

0.9338] 

0.9117 

[0.9061, 

0.9173] 

right ureter abnormal 

0.9246 

[0.9183, 

0.9309] 

0.9245 

[0.9092, 

0.9398] 

0.9270 

[0.9227, 

0.9313] 

0.9245 

[0.9092, 

0.9398] 

0.9246 

[0.8763, 

0.9729] 

bladder abnormal 

0.9802 

[0.9691, 

0.9913] 

0.9806 

[0.9658, 

0.9954] 

0.9837 

[0.9774, 

0.9900] 

0.9806 

[0.9658, 

0.9954] 

0.9802 

[0.9748, 

0.9856] 

Average 

0.9399 

[0.9285, 

0.9513] 

0.9376 

[0.9197, 

0.9555] 

0.9389 

[0.9313, 

0.9465] 

0.9376 

[0.9197, 

0.9555] 

0.9399 

[0.9243, 

0.9555] 

 

 
 






